INDEX

actual energy performance (AEP), 442
advanced partial conversion hydrocracking, 75–76
air-or water-cooled effluent exchanger, 102
air preheating, 319
alkylation, 14
American Society for Testing Materials (ASTM), 9
ammonium bisulfide disassociation curve, 102–103
ammonium chloride disassociation curve, 102, 104
API RP 932-B, 104
appropriate placement, for distillation column
column grand composite curve, 221–222
column integration, 222–225
principle for, 219
for reaction integration process, 220–221
for utility costs, 219–220
aromatics, 18, 32
hydrogenation, 25
and PAH content, 24
saturation, 39–40
ASTM D975, 23, 30, 61
ASTM Grade No. 2-D S15, 31
atmospheric distillation, 13
automotive diesel fuel, 4
aviation gasoline, 17
axial and centrifugal compressors and expander-compressors, 354
back-to-back compressor, 358–359
bad catalyst bed distribution, 93–94
“barrel” compressor, 355
base case heat exchanger network, 208, 209
basic process flowsheeting, 25–28
Bernoulli equation, 325–329
best efficiency point (BEP), 337–338
best-in-operation energy performance (OEP), 442–443
between-bearing compressor, 357–358
biodiesel, 6, 21
bioethanol, 20
biological fouling, 381
blending, 15
block decomposition, HEN design, 202–204
bridge wall temperature (BWT), 312
bridge wall temperature-limited heaters, 322
burner selection, fired heaters cost, 310
flame envelope, 308
guideline, 309
NOx emission, 308
objective, 308
physical dimension of firebox, 308–309
process-related parameters, 309–310
burner to tube clearance, 307–308
California Air Resources Board (CARB), 5, 24
carbon residue, 34
catalyst activation problems, 494–495
catalyst beds, number of, 87–89
catalyst deactivation balance, 523–526
catalyst deactivation imbalance treating/cracking, 497–500
catalyst loading, 93–95
catalyst migration, 526–527
catalyst support issues, 527–530
reactor internal issues, 530–536
catalysts, hydrocracking process acid function, 67–68
activation, 69
catalyst regeneration, 70
catalyst support sintering, 70
coking, 69
deactivation and regeneration, 69
noncatalyst metals deposition, 70
reversible poisoning/catalyst inhibition, 70
catalysts, hydrotreating, 40–44
catalyst support sintering, 70
catalyst type change, 515–516
catalytic hydrogen treating see diesel hydrotreating (DHT)
catalytic reforming, 13–14
centrifugal impellers, 360
centrifugal multistage horizontal split compressor, 354–355
centrifugal multistage radially split compressor, 355
cetane index (CI), 32
cetane number, 19–20, 32
C-factor, 262
CFR change, 515
chemical reaction fouling, 381
Clean Air Act (CAA), 5
Clean Diesel Fuel Alliance, 35
clean energy, 4
cloud point (CP), 20, 33
coal power plants, 436
coke agglomerated catalyst, 83
coker gas oil, 28
coking, 15
cold filter plugging point (CFPP), 34
cold flow, 33
cold high-pressure separator (CHPS), 27
cold separator temperature, 98–99
column grand composite curve (CGCC), 221–222
column integration against background process, 222–223
design procedure
feed conditioning optimization, 225
feed stage optimization, 223–225
reflux rate optimization, 225
side condensing/reboiling optimization, 225
combined feed ratio (CFR), 71
Co/Mo catalysts, 41–42
component mass balance, 410–411
compressor assessment
 blades, 358–359
 centrifugal compressor, 367–368
 compressor selection, 368–369
dynamic compressors, 353
fundamentals of centrifugal compressors, 360–362
impeller configurations
 between-bearing configuration, 357–358
 integrally geared configuration, 358
inlet throttle valve, 366–367
multistage beam type compressor, 354–356
multistage integrally geared compressors, 356–357
partial load control, 364–366
performance curves
 choking, 363
 design point, 362
 surge, 362–363
positive displacement compressors, 353
principles, 353–354
working, 358–360
Conradson Carbon Residue, 516
conversion, 149
conversion cut point change, 515
corrosion, 35–36, 506–508
 fouling, 381
cracked feedstocks, 505
cross-pinnc heat transfer, 197, 198
crude assays, 12
crude characterization
 adjusted TBP cut, 12
 ASTM D-86 distillation, 10–11
 ASTM D-1160 distillation, 11
ASTM D-2287 distillation, 11
ASTM D-2892 distillation, 11
ASTM D-3710 distillation, 11
commercial yields vs. theoretical yields, 12–13
crude assays, 12
TBP cut, 12
crude distillation unit, process flow diagram for, 208, 209
crystallization fouling, 380
debutanizer design, 135–136
debutanizer first flow scheme advantage, 164
basic flow scheme, 164–165
crude unit gas concentration section, 165
debutanizer column, 165
feed, 164
fractionator net overhead liquid, 165
net overhead vapor, 164
preflash drum upstream, 166
steam stripping, 166
desisopentanizer (DIP) columns, 237, 238
tower, 482
denitrogenation (HDN), 37
dense loading machine, 94
depentanizers (DP) columns, 237–239
design flux, 82–85
desulfurization (HDS), 37
deveation trends view, 464
dew point margin, 130
diesel fuel, 4, 19–20
 properties, 31–36
 specifications, 24
 standards, 23, 127–128
diesel hydrotreating (DHT)
 aromatics and PAH content, 24
 basic process flowsheeting, 25–28
 catalysts, 40–44
diesel fuel properties, 31–36
diesel fuel specifications, 24
diesel hydrotreating
(DHT) (Continued)
diesel fuel standards, 23
D975 standard, 24
feeds, 28–30
key process conditions, 44–47
pollution control devices, 25
reaction mechanisms, 36–40
reduction of undesirable species, 23
sulfur specification, 30–31
types of process designs, 47–48
ultra-low-sulfur fuel regulations
Worldwide Refinery Process Review, 24
diesel particulate filter (DPF), 24
diesel-powered engines, 5
diolefins, 59
distillate hydrotreating unit design
debutanizer design, 135–136
integrated design, 136–147
number of separators, 123–127
stripper design, 127–135
distillation
design and operation
reliability, 251–252
economics of scale, 251
efficiency, 253–255
energy cost, 252
extreme conditions, 252
feed compositions, 252
flow regimes, 275, 276
limitations, 252
low relative volatility, 252
small equipment count, 251
stripping, 252
distillation column
appropriate placement for
column grand composite curve, 221–222
column integration, 222–225
base case, 401–403
calculations for missing and incomplete data
heat exchanger fouling, 403
heat/mass balances, 404–405
heat transfer, 403
overhead product composition, 404
p-xylene, 404–406
configuration of, 249, 250
guidelines, 419–420
heat and material balance assessment, 408–409
component mass balance, 410–411
overall mass balance, 409–410
operating profile assessment
composition profile, 416–417
flow profile, 414
pressure drop profile, 416
temperature and pressure profiles, 414–415
process simulation, 406–408
tower efficiency assessment
benchmark efficiency, 411
feed compositions, 413
Lockett’s equation, 412
McCabe–Thiele diagram, 411–412
O’Connell correlation, 412–414
separation efficiency, 411
typical trend of, 412–413
tower rating assessment, 417–419
distillation column operating window
capacity limits, 255, 256, 275, 276
column tray design example calculations
diameter calculations, working guide for, 281
feasible operation window, 290–296
hydraulic performance evaluations, 286–290
tower diameter, 282–284
tray design procedure, 281, 282, 289
tray layout, 284–286, 289
definition of, 255–256
design checklist, 278–280
design parameters, effects of
column diameter and tray spacing, 277
emulsion regime, 276–277
froth regime, 276
hole diameter and fractional hole area, 278
pressure effects, 277
sieve and valve trays, 278
spray regime, 276
weir height, 278
downcomer backup flood (see downcomer flood)
dumping, 259
excessive weeping, 273–274
internal liquid to vapor mole ratio
determination, 274–275, 277
jet flood, 258
reflux ratio, 260
relative momentum, 256
spray flow, 257, 258, 261
stable operation, 260
tower dimensions, 260
tray and downcomer dimensions, 260
tray flood, 258, 261–264
weeping operation, 259
weir loading
 guideline, 271
 maximum, 272
 minimum, 272
 minimum downcomer residence time, 272–273
 and tray spacing, 272
distillation system optimization
design and operation of, 469
energy optimization
column bottom temperature, 477–478
column reflux ratio, 478–480
debutanizer column, 476
economic value
 function, 476–477
 operating parameters, 475
 operating pressure, 481
 product specifications and prices, 476–477
overall process
 optimization, 481–482
 basis, 482–483
 current operation assessment, 483
 objective function, 485
 off-line optimization results, 485–486
 online optimization results, 488
 optimization implementation, 486–488
 simulation, 483–485
 sustaining benefits, 488–489
tower optimization basics
 feed temperature, 472
 overflash, 471
 overhead temperature, 472
 parameter optimization, 473–474
 parameter relationship, 472–473
 pressure, 471–472
 pumparound, 472
 reflux ratio, 470–471
 soft constraints, 474–475
 stripping steam, 472
distributor basket location, 95–96
distributor basket orientation, 95–96
dividing wall distillation column
 base case description, 239–240
deisopentanizers, 237, 238
depentanizers, 237–239
description, 225
fundamentals, 226–227
guidelines, 227–228
naphtha separation, 240–242
naphtha splitter, 242
overall reboiler duty, 243
dividing wall distillation
 column (Continued)
 Petlyuk arrangement, 226, 227
 prefractionator arrangement, 226, 227
downcomer choke, 259
 Glitsch correlation, 270
 Koch correlation, 271
 maximum downcomer velocity, 270
 Nutter correlation, 271
 occurence, 270
 Summers’ correlation, 271
downcomer flood
downcomer backup
 clear liquid height on tray, 266–267
 head loss under downcomer apron, 267
 occurence, 258, 259
 total hydraulic head, 268–269
 tray pressure drop, 267–268
downcomer choke, 259
dry and wet pressure drop, 265
parameters for tray hydraulics, 264, 265
tray pressure drop, 265
draft, fired heaters
correct and incorrect draft, 311, 312
draft control, 310, 311
effects, 319
forced draft, 311
natural draft, 311
D975 standard, 24
dual fractionator flow scheme, 170–171
dual zone stripper
dual fractionator flow scheme, 170–171
 fractionation flow scheme, 168–170
dumping condition, 273
dynamic compressors, 353
electrical conductivity, 34
energy balance, 432–435
energy benchmarking
calculations precision for, 444–445
criteria for data extraction, 444
data extraction, 429–431
definition of energy intensity, 426–427
energy balance, 432–435
energy performance index, 441–442
 best-in-operation energy performance, 442–443
 peer energy performance, 443
technology energy performance, 443–444
energy dashboard, 463–465
energy intensity, 426–427
energy optimization, distillation system
column bottom
 temperature, 477–478
column reflux ratio, 478–480
debutanizer column, 476
economic value function, 476–477
operating parameters, 475
operating pressure, 481
product specifications and prices, 476–477
energy performance index (EPI), 441–442
 best-in-operation energy performance, 442–443
 peer energy performance, 443
technology energy performance, 443–444
energy sustainability, 3–4
energy targeting method, 191, 196
capital cost, 198
composite curves
 concepts, 195
generation, 192
heat demand vs. availability, 192
hot and cold composite
 streams, 192–195
hot and cold utility
 requirement, 196
minimum temperature
 approach, 193, 196
pinch point, 196
process heat recovery, 196
surface area calculation, 199
cost targeting, 198–202
cross-pinch heat transfer, 197, 198
energy operating cost, 198
pinch design rules, 196, 198
enrichment flow scheme, 101
equipment view, 464
European Programme on Emissions,
 Fuels and Engine Technologies
 (EPEFE), 33
exchanger minimum approach
 temperature (EMAT), 207
exhaust gas recirculation (EGR), 24

Fair’s correlation, 262, 263
Fair’s flooding limit, 263–264
Fair weep point method, 273–274
FCC gas oil (LCO), 28
feeds, 28–30
feedstock changes
 catalyst issues, 517–518
 product distribution, 516–517
 single-stage hydrocracking unit
 processing VGO, 520–523
startup issues, 518–519
two-stage unit processing
 VGO/CGO, 519
feedstock variations and
 contaminants, 495–496
feed temperature, 472
fired heaters
 capacity-expansion revamps, 321
 considerations, 303
 conversion revamps, 321–322
design for reliability
 burner selection, 308–310
 burner to tube clearance, 307–308
 flux rate, 304–307
 fuel conditioning system, 310
design limitations, 322
double-fired heaters, 322
efficient operation
 air preheating effects, 319
 availability and efficiency, 320
draft effects, 319
 excess air, 319–320
 fuel saving, 316
 O₂ analyzers, 317
 optimizing excess air, 315,
 317–319
 reducing stack temperature, 317
 reliability, 319
 flux distribution, 306
guidelines, 320–321
 oil and gas firing, 307
 operating reliability parameters
 average tube life, 314
 bridge wall temperature, 312
draft, 310–312
 excess air or O₂ content, 314–315
 flame impingement, 313–314
 flame pattern, 315
tube wall temperature, 312–313
 primary role of, 303
 schematic illustration, 303, 304
tube thinning, 306, 307
flame envelope, 308
flame impingement, 313–314
flame pattern, fired heaters, 315, 316
flash drums, 139–140
 hydrocracking unit design, 160
 flash point, 18, 32
flow maldistribution, 500–501
flow regime, 82
fluid catalytic cracking (FCC), 13, 26, 52, 239
foam, 34
forced draft, 311
fouling, heat exchanger
 fouling factor, 381–382
 pressure drop, 382
 resistances, 396
 root causes of, 380–381
fractionation flow scheme, 168–170
fractionation section design, 161
fractionator first flow scheme
 comparison of equipment costs, 162–163
 disadvantages, 162
 effluent material, 161
 feed heater, 162
 flow scheme, 161
 fuel and electricity requirements, 163
 naphtha and lighter products, 162
 overhead vapor, 162
 utilities comparison, 163
 vaporized product, 162
Francis weir formula, 266
freeze point, 18
freezing fouling, 381
fresh feed quality, 74–75
Froude number, 274
fuel conditioning system, fired heaters, 310
fuel equivalent (FE), 427
 condensate, and water, 437–441
 energy intensity, 428–429
 for fuel, 428
 for power, 428, 435–437
 for steam, 428, 437–441
fuel equivalent for fuel, 428
furnace operation
 optimization, 449–450
gasoline
 production, 17
 specification, 16–17
Glitsch correlation, 270
good catalyst bed distribution, 93
g graded bed design, 95–98
grade bed loading, 97
Grade No. 1-D S15, 24
Grade No. 2-D S15, 24
grand composite curves (GCC),
 construction of, 218
gravity flow distributor, 89–90
guideline energy performance (GEP), 442
HDS reaction, 25
heat balances, 411
heat exchanger assessment
 basic concepts and calculations
 arithmetic mean temperature difference, 373
 clean overall heat transfer coefficient, 372
 countercurrent and cocurrent flows, 373
 Fourier equation, 371
 heat flow, 374
 inlet temperature difference, 373
 logarithmic temperature difference, 373
 overall fouling resistance, 372
 temperature efficiency, 374
 effects of velocity, 384–385
fouling
 fouling factor, 381–382
 pressure drop, 382
 resistances, 396
 root causes of, 380–381
poor design assessment, 397–398
pressure drop
 monitoring, 397
 shell-side, 383–384
 tube side, 382–383
rating assessment
changing conditions, 385–388
fouling, 393–395
series/parallel, 389–393
U values, 374
actual value, 378–379
clean value, 376–378
controlling resistance, 380
design data, 375
monitoring, 396–397
overdesign, 379
reaction air cooler, 375
required value, 376
heat exchanger capital cost, 198
heat exchanger fouling mitigation, 449
heat exchanger network (HEN) design
base case, 208–210
block decomposition, 202–204
example, 204–206
exchanger resequence, 210, 211
modification types, 208
spaghetti structure, 203, 204
heat flux, 305
heat-pumped C3 Splitter, 402
heat recovery ratio, 145
heavy polynuclear aromatics
(HPNAs), 149, 159, 509–511
heavy straight run (HSR) naphtha, 17
high frequency reciprocating rig
(HFRR), 35
high head impellers, 362
high-pressure separator (HHPS), 27
high-quality ultra–low-sulfur diesel
(ULSD), 81
horizontal separators, 114–115
hot and cold composite
streams, 192–195
hot separator
configuration, 98
hydrocracking unit design, 158–160
operating temperature, hydrocracking
unit design, 172–174
HPNA rejection, 177–181
by fractionation, 181
via carbon adsorption, 180–181
HyCycle Unicracking process, 75
hydroaromatics (HDA) reaction, 25
hydrocracking, 14
catalysts
acid function, 67–68
activation, 69
catalyst regeneration, 70
catalyst support sintering, 70
coking, 69
deactivation and regeneration, 69
noncatalyst metals deposition, 70
reversible poisoning/catalyst
inhibition, 70
catalytic process, 51
desulfurization processes, 52
environmental regulations, 52
feeds, 58–59
fluid catalytic cracking, 52
higher value transportation fuels, 51
key process conditions, 70–71
catalyst temperature, 72–73
conversion, 71–72
fresh feed quality, 74–75
LHSV, 74
recycle gas rate, 74
total pressure and hydrogen partial
pressure, 73–74
low-value by-product light cycle
oils, 52
nominal operating conditions, 55
once-through configuration, 55–56
process design, 51
products, 59–61
reaction mechanism and
catalysts, 61–62
hydrocracking reactions, 63–67
hydrotreating reactions, 62–63
reactions, 63–67
refinery configuration, 52–53
separate hydrotreating
hydrocracking, 58
hydrocracking (Continued)

single-stage hydrocracking, 56
Tier 3 gasoline sulfur program, 52
two-stage recycle hydrocracking, 57
typical process designs, 75–77

hydrocracking unit design
conversion, 149
debutanizer first
 flowscheme, 163–166
dual zone stripper
 dual fractionator flow
 scheme, 170–171
 fractionation flow
 scheme, 168–170
fractionation section design, 161
fractionator first flow
 scheme, 161–163
gasoline production, 149
higher molecular weight feeds, 150
hot separator, 158–160
hot separator operating
temperature, 172–174
HPNA rejection, 177–181
hydrogen recovery, 174–175
integrated design, 181–187
LPG recovery, 175–178
single bifunctional amorphous
 cracking catalyst, 150
single-stage hydrocracking reactor
 section, 150–154
stripper first fractionation flow
 scheme, 166–168
two-stage hydrocracking reactor
 section, 155–158
use of flash drums, 160
hydrodearomatization (HDA), 37
hydrodemetallization (HDM), 37
hydrodenitrogenation (HDN), 25
hydrodeoxygenation, 37
hydrodesulfurization, 37–39
hydrogen recovery
 with flash drums, 142, 144
 hydrocracking unit, 140, 174–175
 Joule–Thomson refrigeration, 142
level of impurities, 141
membrane separation, 142
pressure swing adsorption, 142
recoverable hydrogen solution loss v.s. operating pressure, 142
solution loss, 141
steam–methane reforming, 140
without flash drums, 142–143
hydrotreating reactions, 14, 62–63
industrial energy intensity, 426
industrial fired heaters see fired heaters
inlet throttle valve, 366–367
integrimally geared compressors, 358
integrated design
distillate hydrotreating unit design
design for no heater
 operation, 143, 145–147
hydrogen recovery, 140–144
optimum hot separator
temperature, 136–138
use of flash drums, 139–140
hydrocracking unit design
coker-derived feed
 components, 183
distillate product
 maximization, 181–182
energy efficiency/recovery, 184
feed endpoint, 183
feed metals content, 184
feed sulfur and nitrogen
 content, 184
heat exchange configuration, 183
heavy fractionation section, 184, 187
HPNA management, 184
hydrogen management, 184
light fractionation section, 184, 186
product separation, 184
reactor section flow
 scheme, 184–185
reactor size, 182
separator design
considerations, 183
isomerization, 14
Japanese diesel 13 mode cycle, 4
Jet-A, 59
Jet A-1, 59–60
jet fuels, 17–19
Joule–Thomson refrigeration, 142
kerosene, 17
key indicators and targets,
hydrocracking unit
controllers, 465–466
economic evaluation
consistent operation, 460
economic curves, 463
inconsistent operation, 460
normal distribution, 461
operating data, 461
operation performance, 461–462
time series data, 462
variability assessment, 461
energy dashboard, 463–465
naphtha stabilizer section, 456
operation opportunities
furnace operation
optimization, 449–450
heat exchanger fouling
mitigation, 449
reaction and separation
optimization, 448–449
rotating equipment operation, 450
steam letdown valves, 450
turndown operation, 450
problem simplification, 451–452
product fractionation
section, 454–455
reaction section, 452–454
remarks, 456
root cause analysis, 447
set up targets, 456–460
key process conditions, 44–47
Koch correlation, 271
light coker gas oil (LCGO), 26
light cycle oil (LCO), 13, 26, 52
light gas oil (LGO), 29
light straight run (LSR) naphtha, 14
liquefied petroleum gas (LPG), 15–16
liquid hourly space velocity
(LHSV), 51
Lockett’s correlation, 261
low temperature flow test (LTFT), 34
LPG recovery, hydrocracking unit
design, 175–178
lubricity, 34–35
makeup gas compression
API RP 619, 116
capacity control, 117
constraints, 115
reciprocating compressor, 116–117
recycle gas compressor
discharge, 116
single spillback compressor
configuration, 118–119
stagewise compressor spillback
configuration, 118, 120
stepless valve unloading
system, 116–117
make-up hydrogen purity, 46
material balances, 408–409
maximum downcomer velocity, 270
McCabe–Thiele diagram, 253
membrane separation, 142
minimizing recycle, 449
minimum continuous stable flow
(MCSF), 346
minimum pressurization temperature
(MPT), 507
minimum temperature approach, 193,
196
multistage beam type
compressor, 354–356
multistage integrally geared compressors, 356–357
Murphree tray efficiency, 253

naphtha cut point change, 514–515
naphtha isomerization process, 237
naphtha jet fuel, 17
naphtha stabilizer section, 456
natural draft, 311
net positive suction head (NPSH) calculation, 341–343
existing pumps, 344
margin, 343–344
mechanical seal, 341
potential causes and mitigation, 344–345
pump cavitation, 340
vapor bubbles, 340
network pinch definition of, 207–208
illustration of, 207
retrofit design, 212–213
next generation burners, 308
Ni/Mo catalysts, 41–42
noncatalyst metals deposition, 70
normal butane (n-C4), 15
number of separators, distillate
hydrotreating unit design capital and operating cost, 125
cold separator hydrocarbon, 125
cost of hydrogen, 127
fractionation design, 127
hot separator flow scheme, 125–126
hot separator vapor, 125
operating pressure, 127
recycle gas, 123
single separator configuration, 123–124
Nutter correlation, 271

O₂ analyzers, 317
O’Connell correlation, 254, 255
olefin saturation, 37
once-through hydrocracking unit, 55–56
on-site power generation combined gas and steam turbines, 436–437
steam turbines, 436
operating issues

catalyst activation problems, 494–495
catalyst support materials, 494
clean fuels, 493
corrosion, 506–508
feedstock variations and contaminants, 495–496
flow maldistribution, 500–501
HAZOP analysis, 493
heavy polynuclear aromatics, 509–511
incorrect reactor internal installation, 494
management-of-change methodology, 494
operation upsets, 496–497
reactor pressure drop, 504–506
temperature excursion
bed inlet temperature, 502
Boy scouts fire and hydroprocessing reaction triangles, 501
high-rate depressuring, 501
hydrogen consumption, 502
nitrogen, 503
recycle gas compressor failure, 504
simulation, 502
two temperature spike excursion, 503
treating/cracking catalyst deactivation imbalance, 497–500
troubleshooting and resolution, 494
operation opportunities
furnace operation optimization, 449–450
heat exchanger fouling mitigation, 449
reaction and separation optimization, 448–449
rotating equipment operation, 450
steam letdown valves, 450
turndown operation, 450
operation upsets, 496–497
optimum hot separator temperature, 136–138
overall mass balance, 409–410
overall process optimization, distillation system, 481–482
basis, 482–483
current operation assessment, 483
objective function, 485
off-line optimization results, 485–486
online optimization results, 488
optimization implementation, 486–488
simulation, 483–485
sustaining benefits, 488–489
overall site view, 464
overall tower efficiency, 253, 254
overflash, 471
overhead temperature, 472
partial load control, compressor
inlet guide vanes, 365–366
recycle/surge control valve, 364
variable speed control, 364–365
particulate fouling, 380–381
peer energy performance (PEP), 443
pinch design rules, 196, 198
pinching exchanger, 206
pinch point, 196
pollution control devices, 25
polynuclear aromatics (PCAs), 66
polynuclear aromatics (PNA), 6
polythionic acid stress corrosion (PTASCC), 507
positive displacement compressors, 353
pour point, 20
PREDICT-SW®, 105
premixed burners, 308
pressure drop, 85–87
pressure swing adsorption (PSA), 98, 142
process design considerations
catalyst loading, 93–95
graded bed design, 95–98
makeup gas compression, 115–121
reactor design, 81–82
design flux, 82–85
flow regime, 82
number of catalyst beds, 87–89
pressure drop, 85–87
reactor internals
catalyst bed, 91
liquid collection, 89–91
momentum dissipation, 89
quench material between reactor beds, 91–93
recycle gas purity, 98–102
separator design, 107–115
wash water, 102–107
process energy intensity, 427
process integration methodology, 215
catalyst improvement, 230, 231
chemical reaction system, 216
components, 228
definition of, 216–218
design improvement and equipment simplification, 230
single-stripper fractionation scheme, 231, 232, 234, 235
stacked two-stripper fractionation scheme, 235–237
two-stripper fractionation scheme, 231, 233–235
equipment rating analysis, 228–229
process integration methodology
(Continued)
fractionation bottleneck removal, 244–245
goal of, 228
heater bottleneck removal, 244
integrated optimization, 229–230
potential energy efficiency improvements, 246
process heat recovery design, 217
reactor bottleneck removal, 244
sequential process design, 216, 217
process unit view, 464
product fractionation section, 454–455
product selectivity changes
catalyst type change, 515–516
combined feed ratio change, 515
conversion cut point change, 515
naphtha cut point change, 514–515
pumparound, 472
pump assessment
best efficiency point, 337–338
NPSH, 340–345
parallel arrangement, 339–340
process characteristics, 323
process constraints, 323
pump control, 347
pump curve, 333–337
pump head (see pump head)
pump selection and sizing, 347–350
pump selection tasks, 323
reliability operating envelope, 346–347
series arrangement, 338–339
spillback, 345–346
system curve, 332–335
total head, 330–332
pump control, 347
pump curve, 333
brake power, 336–337
design point, 335, 337
head and flow, 335
impeller size, 336
maximum liquid height, 335
pump head vs. flow rate, 335–336
pump speed, 336
shut-off head, 335
zero flow point, 334
pump head
Bernoulli equation, 325–329
calculation, 329–330
differential pressure, 324
specific gravity, 324
suction atmospheric pressure, 324
pump selection and sizing, 347–350
quench distributor and mixing system, 92
radiant heat flux, 304
reaction condition optimization, 448
reaction mechanisms, 36–40
reaction section
developing key indicators for the energy needs, 454
effective measures for the energy needs, 453–454
understanding the energy needs, 452–453
understanding the process, 452
reactor design, 81–82
design flux, 82–85
flow regime, 82
number of catalyst beds, 87–89
pressure drop, 85–87
reactor effluent air cooler
(REAC), 507–508
reactor internals
Bed 4 pretreat catalyst bed temperature, 531
catalyst, 533–534
catalyst bed, 91
deformed first stage outlet collector, 533–534
deformed outlet collector slot, 535
feed/effluent exchanger, 530
liquid collection, 89–91
momentum dissipation, 89
posttreat catalyst, 535
quench material between reactor beds, 91–93
R101 bed 4 bottoms
 temperatures, 531–532
R101 bed 4 mid and top
 temperatures, 533
troubleshooting, 531
vertical slots, 536
reboiled stripper column, 128–129
recycle gas purity, 98–102
recycle gas rate, 46, 74
reduction of undesirable species, 23
refinery complexity, 215, 216
refinery feeds, products, and processes
 alkylation, 14
 ASTM standard for crude characterization, 10–11
 atmospheric distillation, 13
 biofuel, 20–21
 blending, 15
 catalytic reforming, 13–14
 coking, 15
diesel, 19–20
 fluid catalytic cracking, 13
gasoline, 16–17
 hydrocracking, 14
 hydrotreating, 14
 isomerization, 14
jet fuels, 17–19
LPG, 15–16
residue desulfurizing, 14–15
terminologies in crude
 characterization, 12–13
vacuum distillation, 13
reflux ratio, 260, 470–471
reliability operating envelope (ROE), 346–347
renewable biofuels, 20
residue desulfurizing, 14–15
residuum hydrotreating flux values, 84
residuum hydrotreating units, 101
R101 bottom bed inert catalyst balls (ICB), 527
rotating equipment operation, 450
selective catalytic reduction (SCR), 24
separate hydrotreating
 hydrocracking, 58
separation optimization, 448–449
separator design
gas/liquid separation, 108
 horizontal separators, 114–115
 Newton’s law equation, 108
 phase separation, 107
 types of separation, 107
 vertical separators, 109–114
shell-side pressure drop, 383–384
single separator
 configuration, 123–124
single spillback compressor
 configuration, 118–119
single-stage hydrocrackers, 7
single-stage hydrocracking, 56
reactor section
 alternative single-stage recycle
 hydrocracking flow scheme, 153–154
 combined feed ratio and distillate selectivity, 153
 cracking catalyst, 151
 feedstock properties and processing conditions, 150–151
 once-through design, 153
 simplified flow diagram, 150, 152
 wash water, 151
unit processing VGO, 520–523
single-stripper fractionation scheme, 231, 232, 234, 235
skin temperature see tube wall temperature (TWT)
smoke point, 18, 60
solvent deasphaltene unit (SDA), 495
spillback, 345–346
split-shell fractionator (SSF), 510
staged two-stripper fractionation scheme, 235–237
staged air/fuel burners, 308
stagewise compressor spillback configuration, 118, 120
standard gas burners, 308
static dissipater additive (SDA), 34
steam cracking diesel fuels, 28
steam letdown valves, 450
steam–methane reforming (SMR), 140
steam stripped stripper column, 129
stepless valve unloading system, 116–117
straight-through compressor, 357
stress corrosion cracking (SCC), 507
stripper design
corrosion-resistant material, 131
delayed coking, 128
dew point margin, 130
dew point monitor, 131–132
diesel fuel standards, 127–128
distributed control system, 133
endpoint distillation temperature, 128
enthalpy, 129
haze point, 133
n-octane, 133–134
overhead vapor, 131
reboiled stripper column, 128–129
steam stripped stripper column, 129
vaporized liquid, 130
water content of distillate product, 134–135
water dew point, 130
water solubility, 133
stripper first fractionation flows scheme, 166–168
stripping steam, 472
sulfur content, 20, 32
sulfur specification, 30–31
Summers’ correlation, 271
Sundyne type compressor, 356
system factor (SF), for foaming materials, 263
TBP distillation of hot and cold flash liquid, 168
technology energy performance (TEP), 443–444
TEMA types of heat exchangers, 400
temperature excursion
bed inlet temperature, 502
Boy scouts fire and hydroprocessing reaction triangles, 501
high-rate depressuring, 501
hydrogen consumption, 502
nitrogen, 503
recycle gas compressor failure, 504
simulation, 502
two temperature spike excursion, 503
T95 distillation, 6
toluene–ethyl benzene separation, 416–417
total head, 330–332
tower optimization
feed temperature, 472
overflash, 471
overhead temperature, 472
parameter optimization, 473–474
parameter relationship, 472–473
pressure, 471–472
pumparound, 472
reflux ratio, 470–471
soft constraints, 474–475
stripping steam, 472
tray flooding, 258
C-factor, 262
factors affecting, 264
Fair’s correlation, 262, 263
Fair’s flooding limit, 263–264
Lockett’s correlation, 261
system factor, for foaming materials, 263
troubleshooting case analysis
 catalyst deactivation
 balance, 523–526
 catalyst migration, 526–527
 catalyst support issues, 527–530
 reactor internal issues, 530–536
feedstock changes
 catalyst issues, 517–518
 product distribution, 516–517
 single-stage hydrocracking unit
 processing VGO, 520–523
 startup issues, 518–519
 two-stage unit processing
 VGO/CGO, 519
key qualities, 513–514
product selectivity changes
 catalyst type change, 515–516
 combined feed ratio change, 515
 conversion cut point change, 515
 naphtha cut point
 change, 514–515
tube life, fired heaters, 314
tube side pressure drop, 382–383
tube wall temperature (TWT), 312–313
tube wall temperature-limited
 heaters, 322
turndown operation, 450
two-phase packed bed reactor
 system, 82–83
two-stage hydrocrackers, 7
two-stage hydrocracking reactor
 section
 advantages, 155
 cracking catalyst, 158
 disadvantage, 155
 flow scheme, 155–156
 separate hydrotreat hydrocracking
 unit, 155, 157
two-stage recycle hydrocracking, 57
two-stage unit processing
 VGO/CGO, 519
two-stripper fractionation scheme, 231,
 233–235
type I vs. type II hydrotreating
 catalysts, 42
types of process designs, 47–48
typical single-stage hydrocracking
 unit, 451
ultra-low-sulfur diesel (ULSD), 4–8,
 24
ultra-low-sulfur fuel regulations, 24
Unicracking™ process, 75–76
unsupported/bulk transition metal
 sulfide catalysts, 43
US Highway Diesel, 61
utility pinches, 220
U values, heat exchanger, 374
 actual value, 378–379
 clean value, 376–378
 controlling resistance, 380
 design data, 375
 monitoring, 396–397
 overdesign, 379
 reaction air cooler, 375
 required value, 376
vacuum distillation, 13
vapor lift distributor, 89–90
vertical separators
 corrosion allowance, 112
 droplet coalescing effect, 112
 hydrocarbon droplets, 113
 mesh blanket, 109–110
 sizing equation, 109
 Stokes’ law, 110
 surge time, 112
 tangent length, 109
 three-phase separation, 113
 three-phase separator, 113–114
 vapor bubbles, 111
 vertical vapor–liquid separator, 111
 vessel diameter, 111
 vessel tangent line, 112
viscosity, 33
void fraction, 86
volatility, 33

wash water
ammonium bisulfide disassociation curve, 102–103
ammonium bisulfide salt, 106
ammonium chloride disassociation curve, 102, 104
API RP 932-B, 104
chlorine ions, 106
circulation flow scheme, 106–107
erosion corrosion, 103
Piehl's work findings, 103
PREDICT-SW®, 105
stripped sour water, 106

symmetrical piping arrangement, 104–105
weighted average bed temperature (WABT), 88
weir loading, distillation column
guideline, 271
maximum, 272
minimum, 272
minimum downcomer residence time, 272–273
and tray spacing, 272
Worldwide Fuel Charter (WWFC), 6
Worldwide Refinery Process Review, 24

zeolite-containing catalysts, 62
zeolites, 68