# Contents

*Preface*  
xii  
*Sources*  
xiv  

## 1 The Transportation Planning Process

1.1 Why are highways so important?  
1.2 The administration of highway schemes  
1.3 Sources of funding  
1.4 Highway planning  
1.4.1 Introduction  
1.4.2 Travel data  
1.4.3 Highway planning strategies  
1.4.4 Transportation studies  
1.5 The decision-making process in highway and transport planning  
1.5.1 Introduction  
1.5.2 Economic assessment  
1.5.3 Environmental assessment  
1.5.4 Public consultation  
1.6 Summary  
1.7 References  

## 2 Forecasting Future Traffic Flows

2.1 Basic principles of traffic demand analysis  
2.2 Demand modelling  
2.3 Land-use models  
2.4 Trip generation  
2.5 Trip distribution  
2.5.1 Introduction  
2.5.2 The gravity model  
2.5.3 Growth factor models  
2.5.4 The Furness method (Furness, 1965)  
2.6 Modal split  
2.7 Traffic assignment  
2.8 A full example of the four-stage transportation modelling process  
2.8.1 Trip production  
2.8.2 Trip distribution
## Contents

2.8.3 Modal split 49
2.8.4 Trip assignment 51
2.9 Concluding comments 52
2.10 References 52

3 Scheme Appraisal for Highway Projects 53
3.1 Introduction 53
3.2 Economic appraisal of highway schemes 54
3.3 CBA 55
3.3.1 Introduction 55
3.3.2 Identifying the main project options 55
3.3.3 Identifying all relevant costs and benefits 57
3.3.4 Economic life, residual value and the discount rate 59
3.3.5 Use of economic indicators to assess basic economic viability 60
3.3.6 Highway CBA worked example 62
3.3.7 COBA 65
3.3.8 Advantages and disadvantages of CBA 67
3.4 Payback analysis 68
3.5 Environmental appraisal of highway schemes 70
3.6 The New Approach to Appraisal 76
3.6.1 Environment 77
3.7 NATA Refresh (Department for Transport, 2008) 82
3.8 Summary 83
3.9 References 84

4 Basic Elements of Highway Traffic Analysis 85
4.1 Introduction 85
4.2 Surveying road traffic 85
4.2.1 Introduction 85
4.2.2 Vehicle surveys 86
4.2.3 Speed surveys 87
4.2.4 Delay/queuing surveys 88
4.2.5 Area-wide surveys 89
4.3 Journey speed and travel time surveys 91
4.3.1 Introduction 91
4.3.2 The moving observer method 91
4.4 Speed, flow and density of a stream of traffic 96
4.4.1 Speed–density relationship 96
4.4.2 Flow–density relationship 98
4.4.3 Speed–flow relationship 99
4.5 Headway distributions in highway traffic flow 103
4.5.1 Introduction 103
4.5.2 Negative exponential headway distribution 104
4.5.3 Limitations of Poisson system for modelling headway 108
4.6  Queuing analysis 109
   4.6.1  Introduction 109
   4.6.2  The D/D/1 queuing model 109
   4.6.3  The M/D/1 queuing model 113
   4.6.4  The M/M/1 queuing model 114
   4.6.5  The M/M/N queuing model 115

4.7  References 119

5  Determining the Capacity of a Highway 120
5.1  Introduction 120
5.2  The ‘level of service’ approach using Transportation Research Board (1994) 120
   5.2.1  Introduction 120
   5.2.2  Some definitions 122
   5.2.3  Maximum service flow rates for multilane highways 123
   5.2.4  Maximum service flow rates for two-lane highways 128
   5.2.5  Sizing a road using the Highway Capacity Manual approach (TRB, 1994) 132
5.3  Methodology for analysing the capacity and level of service of highways within Transportation Research Board (2010) 134
   5.3.1  Introduction 134
   5.3.2  Capacity and level of service of multilane highways 134
   5.3.3  Capacity and level of service of two-lane highways 142
5.4  The UK approach for rural roads 159
   5.4.1  Introduction 159
   5.4.2  Estimation of AADT for a rural road in its year of opening 160
5.5  The UK approach for urban roads 162
   5.5.1  Introduction 162
   5.5.2  Forecast flows on urban roads 165
5.6  Expansion of 12- and 16-h traffic counts into AADT flows 165
5.7  Concluding comments 167
5.8  References 168

6  The Design of Highway Intersections 169
6.1  Introduction 169
6.2  Deriving DRFs from baseline traffic figures 170
   6.2.1  Existing junctions 170
   6.2.2  New junctions 170
   6.2.3  Short-term variations in flow 171
   6.2.4  Conversion of AADT to highest hourly flows 171
6.3  Major/minor priority intersections 171
   6.3.1  Introduction 171
   6.3.2  Equations for determining capacities and delays 176
   6.3.3  Geometric layout details 183
### 6.4 Roundabout intersections
- 6.4.1 Introduction
- 6.4.2 Types of roundabout
- 6.4.3 Traffic capacity at roundabouts
- 6.4.4 Geometric details

### 6.5 Basics of traffic signal control: Optimisation and delays
- 6.5.1 Introduction
- 6.5.2 Phasing at a signalised intersection
- 6.5.3 Saturation flow
- 6.5.4 Effective green time
- 6.5.5 Optimum cycle time
- 6.5.6 Average vehicle delays at the approach to a signalised intersection
- 6.5.7 Average queue lengths at the approach to a signalised intersection
- 6.5.8 Signal linkage

### 6.6 Concluding remarks

### 6.7 References

---

### 7 Geometric Alignment and Design
- 7.1 Basic physical elements of a highway
  - 7.1.1 Main carriageway
  - 7.1.2 Central reservation
  - 7.1.3 Hard shoulders/hard strips/verges
- 7.2 Design speed and stopping and overtaking sight distances
  - 7.2.1 Introduction
  - 7.2.2 Urban roads
  - 7.2.3 Rural roads
- 7.3 Geometric parameters dependent on design speed
  - 7.3.1 Relaxesations
  - 7.3.2 Departures
- 7.4 Sight distances
  - 7.4.1 Introduction
  - 7.4.2 Stopping sight distance
  - 7.4.3 Overtaking sight distance
- 7.5 Horizontal alignment
  - 7.5.1 General
  - 7.5.2 Deriving the minimum radius equation
  - 7.5.3 Horizontal curves and sight distances
  - 7.5.4 Transitions
- 7.6 Vertical alignment
  - 7.6.1 General
  - 7.6.2 K values
7.6.3 Visibility and comfort criteria 249
7.6.4 Parabolic formula 250
7.6.5 Crossfalls 253
7.6.6 Vertical crest curve design and sight distance requirements 253
7.6.7 Vertical sag curve design and sight distance requirements 259

7.7 References 262

8 Highway Pavement Materials and Loading 263

8.1 Introduction 263
8.1.1 Foundation 264
8.1.2 Base 264
8.1.3 Surfacing 264
8.2 Soils at subformation level 265
8.2.1 General 265
8.2.2 CBR test 265
8.2.3 Determination of CBR using plasticity index 268
8.3 Traffic loading 270
8.4 Materials within flexible pavements 275
8.4.1 Bitumen 275
8.4.2 Asphalt concrete (coated macadams) 278
8.4.3 Hot rolled asphalt 278
8.4.4 Aggregates 278
8.4.5 Surface dressing and modified binders 279
8.4.6 Construction of bituminous road surfacings 280
8.5 Materials in rigid pavements 282
8.5.1 General 282
8.5.2 Concrete slab and joint details 283
8.5.3 Reinforcement 284
8.6 References 286

9 Structural Design of Highway Pavements 287

9.1 Introduction 287
9.2 Pavement components: Terminology 288
9.3 Foundation design 290
9.3.1 Restricted foundation design method 292
9.3.2 Performance design method 295
9.3.3 Drainage and frost 300
9.4 Pavement design 301
9.4.1 Introduction 301
9.4.2 Flexible pavements 301
9.4.3 Materials in flexible pavements 301
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.4</td>
<td>Design of flexible pavements</td>
<td>303</td>
</tr>
<tr>
<td>9.4.5</td>
<td>Rigid pavements</td>
<td>306</td>
</tr>
<tr>
<td>9.4.6</td>
<td>Design of rigid pavements</td>
<td>308</td>
</tr>
<tr>
<td>9.4.7</td>
<td>Continuously reinforced concrete</td>
<td>310</td>
</tr>
<tr>
<td>9.4.8</td>
<td>Jointed concrete pavements</td>
<td>311</td>
</tr>
<tr>
<td>9.5</td>
<td>References</td>
<td>313</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>315</td>
</tr>
<tr>
<td>10.2</td>
<td>Pavement deterioration</td>
<td>316</td>
</tr>
<tr>
<td>10.3</td>
<td>Compiling information on the pavement's condition</td>
<td>317</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Introduction</td>
<td>317</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Traffic-speed condition surveys</td>
<td>318</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Sideway-force coefficient routine investigation machine</td>
<td>319</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Visual condition surveys</td>
<td>322</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Deflectograph</td>
<td>323</td>
</tr>
<tr>
<td>10.3.6</td>
<td>Ground-penetrating radar (GPR)</td>
<td>324</td>
</tr>
<tr>
<td>10.3.7</td>
<td>Falling weight deflectometer (FWD)</td>
<td>325</td>
</tr>
<tr>
<td>10.3.8</td>
<td>Cores</td>
<td>326</td>
</tr>
<tr>
<td>10.3.9</td>
<td>Dynamic cone penetrometer</td>
<td>327</td>
</tr>
<tr>
<td>10.4</td>
<td>Forms of maintenance</td>
<td>328</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Flexible pavements</td>
<td>328</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Rigid pavements</td>
<td>330</td>
</tr>
<tr>
<td>10.5</td>
<td>References</td>
<td>332</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>334</td>
</tr>
<tr>
<td>11.2</td>
<td>Transport assessments</td>
<td>335</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Introduction</td>
<td>335</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Identifying the need for an assessment</td>
<td>336</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Preparing a TA</td>
<td>337</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Final comment</td>
<td>340</td>
</tr>
<tr>
<td>11.3</td>
<td>Travel plans</td>
<td>341</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Introduction</td>
<td>341</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Thresholds</td>
<td>341</td>
</tr>
<tr>
<td>11.3.3</td>
<td>When is a travel plan required?</td>
<td>342</td>
</tr>
<tr>
<td>11.3.4</td>
<td>What information should be included within a travel plan?</td>
<td>343</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Mobility Management Plans in Ireland</td>
<td>345</td>
</tr>
<tr>
<td>11.4</td>
<td>Road Safety Audits</td>
<td>346</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Principles underlying the Road Safety Audit process</td>
<td>346</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Definition of Road Safety Audit</td>
<td>349</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Stages within Road Safety Audits</td>
<td>349</td>
</tr>
<tr>
<td>11.4.4</td>
<td>Road Safety Audit Response Report</td>
<td>350</td>
</tr>
<tr>
<td>11.4.5</td>
<td>Checklists for use within the RSA process</td>
<td>351</td>
</tr>
</tbody>
</table>
11.4.6 Risk analysis
11.4.7 Conclusions
11.5 References

12 Defining Sustainability in Transportation Engineering
12.1 Introduction
12.2 Social sustainability
12.3 Environmental sustainability
12.4 Economic sustainability
12.5 The four pillars of sustainable transport planning
  12.5.1 Put appropriate governance in place
  12.5.2 Provide efficient long-term finance
  12.5.3 Make strategic investments in major infrastructure
  12.5.4 Support investments through local design
  12.5.5 Concluding comments
12.6 How will urban areas adapt to the need for increased sustainability?
12.7 The role of the street in sustainable transport planning
  12.7.1 Street classification system
  12.7.2 Designing an individual street
  12.7.3 The pedestrian and cycling environment
  12.7.4 Carriageway widths
  12.7.5 Surfaces
  12.7.6 Junction design in an urban setting
  12.7.7 Forward visibility/visibility splays
12.8 Public transport
  12.8.1 Bus and rail services in cities
  12.8.2 Design of street network to accommodate bus services
12.9 Using performance indicators to ensure a more balanced transport policy
  12.9.1 The traditional approach
  12.9.2 Using LOS to measure the quality of pedestrian facilities
  12.9.3 Using LOS to measure the quality of cycling facilities
  12.9.4 Measuring the quality of public transport using LOS
12.10 A sustainable parking policy
  12.10.1 Introduction
  12.10.2 Seminal work of Donald Shoup in the United States
  12.10.3 The pioneering ABC Location Policy in the Netherlands
  12.10.4 Possible future sustainable parking strategies
12.11 References

Index