Index

Page numbers in italics refer to figures; page numbers in bold refer to tables.

AADT (annual average daily traffic) 132–133, 160–162, 165–167, 170, 171
ABC Location Policy 394–395
AC (asphalt concrete) 278, 289, 301–303, 304–306
access-point density adjustment factors 137, 138, 145, 147
accident reduction 59 see also Road Safety Audits
administration of highway schemes 1–2
aggregates 278, 320
alignment, horizontal 183, 236–248
alignment, vertical 184, 248–261
alignment constraint 227–228, 229
‘all-or-nothing’ traffic assignment method 41–42
annual average daily traffic (AADT) 132–133, 160–162, 165–167, 170, 171
appraisal processes 10, 53–54
economic assessment 10–11, 54–70
environmental impact assessment (EIA) 10, 11–13, 70–76
NATA (new approach to appraisal) 76–83
payback analysis 68–70
rational planning context 9–10, 53–54
appraisal summary tables (AST) 76–81, 82
arterial streets 362, 363, 364, 365, 367, 368
asphalt concrete (AC) 278, 289, 301–303, 304–306
asphalt materials, designation 301–303
AST (appraisal summary tables) 76–81, 82
ATS (average travel speed) 143, 145–146, 148–149
average pedestrian space 377
average travel speed (ATS) 143, 145–146, 148–149
basecourses see binder courses
bases 264, 289
BCR (benefit–cost ratio) 54–55, 61, 83
bendiness 228
benefit–cost ratio (BCR) 54–55, 61, 83
benefits, identifying see cost–benefit analysis (CBA)
Benkelman beam 323–324
bicycles see cycling facilities
binder courses 264, 289
bitumen 275–277, 279–280
bituminous emulsions 279–280
bituminous road surfacings, construction of 280–282
brainstorming phase (planning) 56
bridges, clearance from 260
bus services 372–373, 385–392
California bearing ratio (CBR) 292–293
direct test 265–268
using plasticity index 268–270
camber 253
capacities, highway
levels of service (LOS) approach 120–123
multilane highways (HCM 1994) 123–128
multilane highways (HCM 2010) 134–142
rural roads (UK) 159–162
sizing a new road using HCM 1994 132–134
two-lane highways (HCM 1994) 128–132
two-lane highways (HCM 2010) 142–159
urban roads (UK) 162–165

© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/rogers/highway_engineering
capacities, intersection
 priority intersections 176–178
 roundabouts 191–197
 signalised intersections 201–205

capping 289, 293

car–centred planning strategies 7

carpooling 7

carriageway widths 220–221, 347, 366–368
category analysis (trip generation) 22–23
CBA see cost–benefit analysis
central reservations (median strips) 221
chippings 280, 282, 320
circulatory carriageway 198
clearance from structures on sag curves 260
coated macadams see asphalt concrete
COBA computer program 11, 65–66
comfort criteria (vertical curves) 249, 259
commercial vehicle classification 270, 271
cement see rigid pavements
cone penetrometer test 268
congestion
 and design flow 171
effect on route choice (modelling) 42–45
 identifying causes (journey speed/time surveys) 88
construction joints 284, 285
continuously reinforced concrete (CRC) 283, 289, 307–311, 323
continuously reinforced concrete base (CRCB) 289, 307–309
continuously reinforced concrete pavement (CRCP) 289, 307–309, 323
contraction joints 283–284, 313
core sampling 326–327
cost–benefit analysis (CBA) 10–11, 55–68
 advantages and disadvantages 67–68
 COBA 11, 65–66
discount rate 60, 61, 62
 identifying costs and benefits 57–59
 identifying feasible options 55–57
 life of project 59–60
 residual value 60
 use of economic indicators 60–62
 worked example 62–65
crack and seal 331
 cracking 316, 318, 331
 crazing 316
CRC see continuously reinforced concrete
crest curves 249, 253–259
crossfalls 253, 254
crossroads (priority junctions) 172
C32/40 concrete 283
current level of traffic 6
cutback bitumen 279
cycle time (signal systems) 206–209
cycling facilities 361, 366–367, 380–384
DBFO (design–build–finance–operate) 3
DCP (dynamic cone penetrometer) tests 327
D/D/1 queuing model 109–113
DDHV (directional design hour volume) 133
decision-making
 in planning process 9–14
 of travellers 17–18, 35–45
defects see pavement maintenance
deflection 289
deflection bowls 326, 327
deflectograph surveys 323–324, 329–330
deflection 289, 306, 316
delays
 priority intersections 178–183
 queuing models 109–118
 queuing surveys 88–89
 signalised intersections 209–213
demand for travel 4–6 see also transport demand modelling
demand management planning strategies 6–7
demographic factors in traffic demand 2, 4–5
dense bitumen macadam 302
departure from design standards 221, 232
design–build–finance–operate (DBFO) 3
design hourly volume (DHV) 132–133
Design Manual for Roads and Bridges (DMRB) 72, 75
design reference flows (DRF) 169–171, 193
design speed 222, 225–231, 362–364
design traffic 270–275
design traffic flows 163–164
Index 399

design year 6
DHV (design hourly volume) 132–133
directional design hour volume (DDHV) 133
directional split adjustment factors 129
discount rate 60, 61, 62
DMRB see Design Manual for Roads and Bridges
do-minimum option 56–57, 75
do-nothing option 56–57, 75
double roundabouts 188, 189
drainage 74, 78, 249, 300
DRF (design reference flows) 169–171, 193
driver comfort (vertical curves) 249, 259
driver population adjustment factors 126, 140
dynamic cone penetrometer (DCP) tests 327
economic assessments 10–11, 54–70
economic factors in traffic demand 16–17
economic sustainability 358
E-factors (AADT estimation) 165, 166
effective green time 205–206
effective red time 212
EIA (environmental impact assessments) 10, 11–13, 70–76
EIT (environmental impact tables) 75–76
EME2 (enrobé à module élevé) 302–303
entry angle 192, 193, 197
entry deflection 198
entry radius 192, 193, 197–198
entry width 197
environmental impact assessments (EIA) 10, 11–13, 70–76
environmental impact tables (EIT) 75–76
environmental sustainability 7, 288, 357–358
European Union Directive 85/337/EEC 12, 71
expansion joints 283, 284, 285
falling weight deflectometers (FWD) 325–326, 327
fatting-up 316
flexible composite pavements 289, 301, 304, 304, 305–306
flexible pavements
components (terminology) 288, 289
deterioration 306, 316
maintenance 322, 325–326, 328–330
materials 264, 275–282, 301–303
structure and design 264, 288, 289, 301–306
flow–density relationship 98–99
footpaths 364–366, 365, 374–380
footways 364–365
forecasting see transport demand modelling
formation 289
forward visibility 370–371
FOSD (full overtaking sight distances) 234–236
foundation classes 290–291
foundations 264, 289
design principles 290–292
dynamic cone penetrometer (DCP) tests 327
performance foundation design
method 295–300
restricted foundation design method 292–295
foundation surface modulus 291, 297–300, 332
free-flow pedestrian walking speed 377
free-flow speed 97
multilane highways 134–136, 137–138
two-lane highways 144–145
fretting 316
frost 300
full overtaking sight distances (FOSD) 234–236
funding of highway schemes 2–3, 359–360
Furness method (trip distribution) 31–35
FWD (falling weight deflectometers) 325–326, 327
generated traffic 6
geometric design
carriageway widths 220–221, 347, 366–368
central reservations (median strips) 221
crossfalls 253, 254
design speed 222, 225–231, 362–364
hard shoulders/strips 221–222
horizontal alignment 183, 236–248
overtaking sight distances 234–236
vertical alignment 184, 248–261
ghost island junctions 173, 174, 184, 185
government, role of 1–2, 3, 4, 359
GPR (ground-penetrating radar) 324–325
gradients
desirable maximum 248–249
PCE values for different terrain classes 125, 126, 130
priority intersections 184
signalised intersections 201
grass verges 221–222
gravity model (trip distribution) 25–30
grip testers 321, 322
ground-penetrating radar (GPR) 324–325
growth factor models (trip distribution) 30–35

hard shoulders/strips 221–222, 309, 311
hard shoulder width adjustment factors 147
harmonic mean visibility (VISI) 227–228
HBM (hydraulically bound mixture) 264–265, 289, 303, 305–306, 316
headway distributions 103–109
heavy-duty macadam 302
heavy vehicle adjustment factors 125–126, 130, 139, 146, 164
highest hourly flows 171
High-Speed Road Monitor (HRM) see traffic-speed condition surveys (TRACS)
LOS levels defined 121–122
multilane highways 123–128
sizing a road 132–134
two-lane highways 128–132
multilane highways 134–142	
two-lane highways 142–159
highway demand analysis see transport demand modelling
highway environment adjustment factors 126, 128
highway maintenance see pavement maintenance
highway planning see planning process
Highways Agency Visual Survey (HVS) 322
Highways England 1
horizontal alignment 183, 236–248
hot rolled asphalt (HRA) 278, 302
hourly volume 122
HRA (hot rolled asphalt) 278, 302
HVS (Highways Agency Visual Survey) 322
hydraulically bound mixture (HBM) 264–265, 289, 303, 305–306, 316

inscribed circle diameter (ICD) 198
inspections, maintenance see pavement maintenance
intercept surveys 8
intergreen period 207
internal rate of return (IRR) 54, 61, 62
intersections
design in urban setting 367, 369–370
design reference flow (DRF) 169–171
see also priority intersections; roundabouts; signalised intersections
Interstate and Defense Highways Act 1956 3
IRR (internal rate of return) 54, 61, 62
jam density 97
jointed reinforced concrete (JRC) 283, 307, 309, 311–313
journey speed and travel time surveys 88, 91–95
JRC (jointed reinforced concrete) 283, 307, 309, 311–313
junctions see intersections; priority intersections; roundabouts; signalised intersections
key intersection 213
K factor (design traffic volumes) 132–133
K values (vertical curves) 249, 250
land-use models 19–20
land-use planning strategies 6, 359
lane width adjustment factors 124, 125, 129, 147
lane widths 220–221, 347, 348, 367
layout constraint 227, 229
lean concrete see hydraulically bound mixture (HBM)
levels of service (cyclists) 380–384
levels of service (drivers) 120–123
multilane highways (HCM 1994) 123–128
multilane highways (HCM 2010) 134–142
sizing a new road using HCM 1994 132–134
two-lane highways (HCM 1994) 128–132
two-lane highways (HCM 2010) 142–159
levels of service (pedestrians) 374–380
levels of service (public transport) 385–392
life of the project 59–60
light rail services 372–373
link performance functions (LPF) 42–45
link streets 362, 363, 364, 365, 367, 368
liquid limit (LL) 268, 269
local streets 362, 363, 364, 365, 367, 368
longitudinal joints 283, 284
lost time 206, 207
LPF (link performance functions) 42–45
macadams see asphalt concrete (AC)
macro-texture 320
main carriageway widths 220–221
main central island 198
maintenance see pavement maintenance
maximum service flow rates
 multilane highways 123–128
 two-lane highways 128–132
M/D/1 queuing model 113–114
measures of worth 54–55
median strips (central reservations) 221
median type total adjustment factors 137, 138
M-factors (AADT estimation) 166, 167
micro-texture 320
minimum radius equation 236–239
mini-roundabouts 187, 188, 191–193, 370
M/M/1 queuing model 114–115
M/M/N queuing model 115–118
Mobility Management Plans (MMPs) 341–346
modal splits 8–9, 35–40, 49–51, 344
modelling see transport demand modelling
moving observer method 91–95
multicriteria evaluations see environmental impact assessments

NATA (new approach to appraisal) 76–83
NATA Refresh (2008) 81–83
National Environmental Policy Act (NEPA) 1969 11, 71
National Road Traffic Forecast (NRTF) 274
negative exponential headway distribution 104–109
net present value (NPV) 54, 55, 61
new approach to appraisal (NATA) 76–83
New Roads and Street Works Act 1991 2
noise reduction measures 303
non-user benefits 57
no-passing zones 130, 150, 152
normal roundabouts 187–188, 191–193
normal traffic growth 6
NPV (net present value) 54, 55, 61
NRTF (National Road Traffic Forecast) 274

optimum cycle time 206–209
origin and destination (O&D) surveys 8, 89–90
origin-destination matrix 25
OSCADY computer program 213
overtaking sight distances 234–236
PA (porous asphalt) 303, 308
parabolic formula (vertical alignment) 250–253
parking policies 392–395
passenger car equivalents (PCE) 125–126, 130, 139, 148, 151, 203
patching flexible pavements 328
pavement (definition) 289
pavement condition ratings 382
pavement deterioration 306, 316
pavement maintenance 315, 317–318, 328
causes of deterioration 316
condition categories 319
cores 326–327
deflectograph surveys 323–324, 329–330
dynamic cone penetrometer (DCP) tests 327
falling weight deflectometer (FWD) 325–326, 327
flexible pavements 322, 325–326, 328–330
ground-penetrating radar (GPR) 324–325
pavement condition ratings 382
rigid pavements 322–323, 325, 330–332
sideway-force coefficient routine investigation machine (SCRIM) 319–321, 322
Surface Condition Assessment of the National Network of Roads (SCANNER) 319
traffic-speed condition surveys (TRACS) 318–319
visual condition surveys 322–323
pavement materials 264, 289
flexible pavements 264, 275–282, 301–303
foundations 294
rigid pavements 264, 282–286
pavement structure and design 263–265, 287–288
components (terminology) 264–265, 288–290
construction of bituminous road surfacings 280–282
design criteria 290, 301
design guidance and standards 287–288, 301
flexible pavements 264, 288, 289, 301–306
foundation 264, 290–300
performance foundation design method 295–300
restricted foundation design method 292–295
rigid pavements 264, 288, 289, 306–313
thickness 287, 301, 304–306, 307, 310, 311–313
Index

payback analysis 68–70
PCE (passenger car equivalents) 125–126, 130, 139, 148, 151, 203
peak-hour factor (PHF) 122, 139
peak-hour flows 163–164
pedestrian crossings 366
pedestrian facilities 361, 364–366, 369, 374–380
penetration test 276, 277
percent of free-flow speed (PFFS) 143
percent time spent following (PTSF) 143, 149
performance foundation design method 295–300
PFFS (percent of free-flow speed) 143
phasing of traffic signals 200–201
PHF (peak-hour factor) 122, 139
planning process 3–4, 9–10, 334–335
decision-making process 9–14
public consultation 13–14
Road Safety Audits 346–355
strategies 6–7
transport assessments (TAs) 335–341
transportation studies 4, 7–9
tavel data 4–6
tavel plans (Mobility Management Plans) 341–346
see also cost–benefit analysis (CBA);
environmental impact assessments (EIA);
sustainable transport planning
plasticity index (PI) 268–270
plastic limit (PL) 268–269
plucking 316
Poisson model of headway distribution 104–109
polished stone value (PSV) 320
porous asphalt (PA) 303, 308
priority intersections 171–176
delay/queuing surveys 88–89
equations for determining capacities and delays 176–183
geometric layout details 183–185
safety considerations 347
short-term variations in flow 171
urban areas 369
private finance initiative (PFI) 3
project life 59–60
PSV (polished stone value) 320
PTSF (percent time spent following) 143, 149
public consultation 13–14
public transport 7, 344, 361, 371–373, 385–392
see also modal splits
queues
priority intersections 178–183
signalised intersections 211–213
queuing models 109–118
queuing surveys 88–89
rail services 372–373
rational planning process 9–10, 53–54
ratio of flow to capacity (RFC) 178
ravelling 316
reasoned choice (rational planning) process 9–10, 53–54
reflection cracks 316, 331
registration plate surveys 90, 91
relaxation of design standards 221, 232
residual value 60
restricted foundation design method 292–295
resurfacing flexible pavements 328–330
RFC (ratio of flow to capacity) 178
right-turning lanes 184–185
rigid pavements
components (terminology) 288, 289
deterioration 316
maintenance 322–323, 325, 330–332
materials 264, 282–286
structure and design 264, 288, 289, 306–313
risk assessments see Road Safety Audits
Rivers and Harbours Act 1902 11
roadbases see bases
Road Safety Audits (RSA) 346–355
roadside interview surveys 89–90
roadway widths 220–222, 223, 224, 225, 347, 366–367
roundabouts 185–186
capacity 191–197
delay/queuing surveys 88–89
geometric layout 192, 193, 197–198
safety considerations 347
short-term variations in flow 171
types of 187–191
urban areas 370
route choice (by trip makers) 40–45
RSA (Road Safety Audits) 346–355
rural roads
capacities 159–162
design speed 226–231
dimensions 220–222, 221, 223, 224, 225
rutting 316
safety considerations 346–355
sag curves 249, 259–261
salvage value 60
sand patch test 282, 320
saturation flow 201–205
savings in time 58
SCANNER (Surface Condition Assessment of the National Network of Roads) 319
SCOOT computer program 217–218
SCRIM (sideway-force coefficient routine investigation machines) 319–321, 322
seasonality index (SI) 165, 166, 167
self-completion forms (traffic surveys) 90
service flow (SF) 123
short-term variations in flow 171
shoulders/strips 221–222, 309, 311
shoulder width adjustment factors 147
sideway-force coefficient routine investigation machines (SCRIM) 319–321, 322
sight distances 232–236
crest curves 249, 253–259
horizontal curves 240–243
priority intersections 184
sag curves 249, 259–261
urban streets 370–371
signalised intersections 198–200
average queue lengths 211–213
average vehicle delays 209–211
delay/queuing surveys 88–89
effective green time 205–206
optimum cycle time 206–209
phasing 200–201
versus roundabouts 186
saturation flow 201–205
signal linkage 213–218
urban areas 369
signal linkage 213–218
simple junctions 172, 173, 174
single-lane dualling 173, 174
skidding resistance 316, 319–321
SMA (stone mastic asphalt) 302
social sustainability 357
socioeconomic factors in traffic demand 2, 4–5
softening point test 276–277
soils see subgrades
space mean speed 88, 96
spalling 316
speed-density relationship 96–98
speed limits and design speed 226
speed surveys 87–88, 91–95
spot speed surveys 87–88
SSD see stopping sight distances
staggered junctions see priority intersections
standards, departure from versus relaxation of 221, 232
standard wheel load 291
stationary observer method 91
stiffness modulus (E) 269–270, 289
stone mastic asphalt (SMA) 302
stopping sight distances (SSD) 232–234
crest curves 249, 253–259
horizontal curves 240–243
priority intersections 184
sag curves 249, 259–261
urban streets 370–371
street classification 362, 363
street design 361–364
strips (footpaths) 365–366
strips (roads) see shoulders/strips
subbases 289
subformation 289
subgrades 263, 264, 265–270, 289
subgrade surface modulus 292–293
superelevation 236–239
Surface Condition Assessment of the National Network of Roads (SCANNER) 319
surface courses 264, 289, 303
surface dressing 279–280, 328, 331
surface texture 319–320
surfacings 264–265, 288, 289
construction of bituminous 280–282
for low-speed environments 368–369
surveys 85–86
delay/queuing 88–89
journey speed and travel time 88, 91–95
origin and destination (O&D) 8, 89–90
speed 87–88, 91–95
transportation 8
vehicle 86–87
sustainable development 288, 357–358
sustainable transport planning
aspirations for urban areas 360–361
carriageway surfaces 368–369
carriageway widths 366–368
cycling facilities 361, 366–376, 380–384
sustainable transport planning (cont’d)
 forward visibility 370–371
 four pillars of 358–360
 junction design 369–370
 levels of service (LOS) approach 374–392
 parking policies 392–395
 pedestrian facilities 361, 364–366, 369, 374–380
 public transport 7, 344, 361, 371–373, 385–392
 street design 361–364

TA (transport assessments) 335–341
T-charts 56–57
terrain classification 125, 139
time mean speed 87–88
time savings 58
T-junctions see priority intersections
toll charges 2, 3, 6–7, 68–70
total lateral clearance adjustment factors 137, 138
TRACS (traffic-speed condition surveys) 318–319
traffic analysis 85
delay/queueing surveys 88–89
flow–density relationship 98–99
headway distributions 103–109
moving observer method 91–95
origin and destination (O&D) surveys 8, 89–90
queueing analysis 109–118
speed–density relationship 96–98
speed–flow relationship 99–103
speed surveys 87–88, 91–95
stationary observer method 91
survey types and purpose 85–86
traffic density 96–99
traffic flow 96
travel time surveys 91–95
vehicle surveys 86–87
Traffic Appraisal Manual 171
traffic assignment 8–9, 40–45, 51
traffic demand analysis see transport demand modelling
traffic density 96–99
traffic flow 96
traffic growth, factors influencing 2, 4–6
traffic growth forecasts 160–161
traffic loading 270–275
traffic signals see signalised intersections
traffic-speed condition surveys (TRACS) 318–319
transition curves 243–248

transport assessments (TAs) 335–341
transportation planning see planning process
transportation studies 4, 7–9
transportation surveys 8
transport demand modelling 8–9, 16–19
land-use models 19–20
modal split 35–40, 49–51
traffic assignment 40–45, 51
trip distribution 24–35, 47–49, 340
trip generation 20–24, 46–47, 339–340
worked example 46–51
transverse joints 283–284, 313
TRANSYT computer program 217–218
travel data 4–6
travel plans 341–346
travel time surveys 91–95
tried-and-tested designs 56–57
trip distribution 8–9, 24–25, 340
 Furness method 31–35
 gravity model 25–30, 47–49
 growth factor models 30–31
 trip generation 8–9, 20–24, 46–47, 339–340
 trip parameters 16
 trip utility 16–17, 35–36
two-lane highways, HCM classification 142
uncontrolled intersections 369
uninterrupted flow highways 134
US Federal Highway Administration 2
unreinforced concrete (URC) 283, 307, 309, 311–313
urban roads and streets
capacities 162–165
design speed 226, 362–364
dimensions 220–221, 221, 222, 223, 224, 225
see also sustainable transport planning
URC (unreinforced concrete) 283, 307, 309, 311–313
user benefits 57–59
utilisation ratio 113
utility of a trip 16–17, 35–36
value for money classifications 83
vehicle-operating cost (VOC) reductions 58
vehicle surveys 86–87
verges 221–222, 365
vertical alignment 184, 248–261
VISI (harmonic mean visibility) 227–228
<table>
<thead>
<tr>
<th>Visibility see sight distances</th>
<th>Wear factors 274, 275</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual condition surveys 322–323</td>
<td>Wearing courses see surface courses</td>
</tr>
<tr>
<td>Vulnerable road users 347, 369</td>
<td>Wet skidding resistance 316, 319–321</td>
</tr>
<tr>
<td>Wardrop's first principle 41</td>
<td>Widths of carriageways and roadways 220–222, 223, 224, 225, 347, 366–367</td>
</tr>
<tr>
<td>Warping joints 284, 285</td>
<td>Without project scenario see do-nothing option</td>
</tr>
</tbody>
</table>
