Index

Note: Page numbers in **bold** refer to chapters; numbers following indicate page numbers within that chapter.

1-Bit Adder with Carry-Out 1, 22
1 Bit D/A Is Designed to Reproduce 2 Voltage Levels 3, 10
2-Bit Adder with Carry-In and Carry-Out 1
2 Bit Counter 1, 66
3 Bit Counter 1, 68
3G Wireless Networks Provide Wireless Access to Global and Metropolitan Area Data Networks 7, 12
3G Wireless Requirements Specified in International Mobile Telecommunications-2000 (IMT-2000) 7, 12
4G Is Designed to Operate at 50–250 mps 7, 13
4G Supports TV Broadcast and Interoperates with the Wired Internet 7, 13
8 Bit D/A Is Designed to Reproduce 256 Voltage Levels 3, 10
802.11 Wireless LAN Standards with Data Rates of 11, 55, and 100 Mbps 7, 12
802.15 Bluetooth Standard. Local Area Network (LAN) Distance Ranges That Are Within 100 Meters 7, 12

Ability of a Filter to Eliminate Noise 3, 14
Ability to Learn 13, 1
Ability of a Mobile Device to Roam, and Achieve Connectivity 7, 14

Ability of a System to Detect, Locate and Recover from Errors 12, 13
Ability of Wireless Networks to Operate in Multiple Environments 7, 14
Absence of Variable Symbols 17, 11
Abstract Analysis Is Illustrated with an Elevator System 4, 2
Abstract Approach Can Only Be Applied for Marrying Software and Hardware Design 4, 2
Acceptable Mission Duration for the Mobile Device User 16, 16
Acceptable Reliability 12, 19
Acceptable System Reliability 12, 9
Access to the Internet 7, 12
Access Point 15, 12
Access to Different Resources 16,
Accumulated Number of Failures 12, 18
Accumulator 1, 4
Achieving Realism in Testing 4, 22
Achieving Visibility into the Operations of Processing Elements 4, 22
Absolute Ratio Between the Smallest and Largest Possible Values of a Signal 3, 11
Abstractions Difficult to Grasp 17, 3
Accounting for Probability of Occurrence of Response Time 4, 21
Accuracy of Conversion from Analog Input in the A/D Converter to D/A Analog Output 3, 12
Accuracy of Risk Criteria Computations 11, 9
Achieve an Optimal Tradeoff Between Quantizing Error and Cost 3, 14
Achieve Specified Reliability 13, 8
Achieving the Desired Mission Duration 16, 16
Achieving High Reliability 12, 1
Achieving Stabilization 15, 5; 16, 1
Activation Function 13, 1
Activities (e.g., User Access to a Web Server) 17, 3
Activities of Passengers Accessing and Riding in Elevators 17, 3
Activity and Sequence Diagrams Were the Most Useful for Designing the Poisson Failure Model Function in C++ 17, 12
Activity Diagram 17, 2
Activity Diagram Shows Computer Program Control Flows 17, 2
Activity Diagrams Are One Dimensional 17, 9
Actual Change in Voltage Sensor Output Voltage 3, 14
Actual Cumulative Failures 13, 3
Actual Future Time to Failure 11, 9
Actual Hardware-Software Reliability 12, 15
Actual Number of Hardware Failures 12, 14
Actual Number of Remaining Failures 13, 12
Actual Number of Software Failures 12, 14
Actual Number of System Failures 12, 14
Actual Reliability 12, 16; 13, 7; 14, 8
Actual Remaining Failures 13, 13
Actual Time to Failure 13, 15
Adaptable Learning Algorithms 13, 3
Adaptive Microsleep (AMS) 15, 12
Adaptive Procedure 13, 2
Additional Debugging of the Faults 14, 10
Address Bus 1, 4
Adjacent Piconets May Interconnect with Each Other Through Nodes in Overlapping Regions 7, 13
Adjusts the Input to Achieve the Desired Output 13, 2
Adverse Atmospheric Conditions 16, 1
Adverse Channel Conditions 15, 3
Aggregate the Component Errors 3, 12
Aggregate the Weighted Failure Counts 13, 3
All Failures Occurring during Emergency Calls (e.g., 911) Are High Severity 15, 6
Allow the Application to React According to Context 15, 12
Almost All Requirements Are Implicit 16, 10
Alternate Models 17, 18
Alteration of the Original Shape of the Analog Signal 3, 11
Amassing Failure Data and Identifying Its Statistical Distribution 17, 13
Analog Computer Background 3, 1
Analog Computer Display Readout 3, 1
Analog Computer Limitations 3, 5
Analog–Digital Computer Contrast 3, 5
Analog to Digital Converter Circuit 3, 2
Analog to Digital and Digital to Analog Components 3, 2
Analog Signal 3, 5
Analysis of Asynchronous Sequential Circuits 1, 51
Analysis of the Design Alternatives 9, 4
Analysis Highlights the Parts of the Software That Deserve Priority in Testing 16, 12
Analytic Queuing Models and Simulation Models 6, 1
Analyze the Operational Amplifier 3, 13
AND 1, 16
Annoying Messages 10, 8
Another Perspective on Probability of Failure 8, 21
Anti-Malware Software 15, 1
Application Cannot Rely on Remote Servers 15, 12
Application Logic 4, 2
Application State Change 17, 19
Application-Specific Buffering Techniques 15, 14
Applications Can Be Modeled 17, 20
Applications Emerge for Mobile Phones
16, 3
Applications Include Phones, Pagers,
Modems, Headsets, Notebook Computers, Handheld Personal Computers, and Digital Cameras 7, 13
Applications Running during the Failure 15, 5
Applying Mathematical Modeling 17, 12
Applying Object-Oriented Methods 17, 24
Approximate Remaining Failures by Using the Known Remaining Failures 13, 12
Architectural Characteristics of a Web Server 14, 6
Architectural Design 2, 5
Architecture of a Generic Neural Network 13, 2
Architecture Has to Guard Against Disconnections of Remote Sensors 15, 13
Arithmetic Logic Unit (ALU) 1, 3
Arsenal of Software Reliability Tools 13, 12
Ascertain Whether Connectivity, Performance, and Availability Can Be Achieved in a Limited Range Environment 7, 13
Aspects of Mobile Device Development That Cannot Be Quantified 16, 10
Assess the Predictive Validity of the Models 12, 11
Assessing Predictive Validity 12, 14
Assessing Reliability Model Predictive Accuracy 12, 11
Assessments of the Need for Mobile Device Improvement 15, 1
Assigning a Time Slice 10, 10
Assure Quality for Web Applications 14, 11
Asynchronous Circuits 4, 1
Asynchronous Interrupts 4, 23
Automated Failure Data Logger 15, 5
Automatic Change in Program Flow Control 17, 17
Automatic Environment 17, 3
Automatically Identify Code That Should Be Examined 13, 3
Availabilities 8, 4
Availability Analysis 8, 16
Availability Analysis Results 8, 20
Availability is a Function of Reliability and Maintainability 7, 8
Availability Is the Proportion of Operational Time That Maintenance Is Not Being Performed on a Sequence (i.e., the Sequence Is Operating Reliably) 7, 8
Availability Prediction 7
Availability of Sequences Represents the Probability That the Set of Nodes and Links That Comprise a Sequence Will Be Available for Operational Use 7, 8
Availability of the Software 12, 14
Available Processor Bandwidth 15, 13
Avoiding, Coping with, and Recovering from Failures 14, 5
Back Propagation Algorithm 13, 2
Bad Handling by Software of Indexes and Pointers to Objects 15, 15
Bandwidth 15, 13
Based on the Controller Specifications, Develop Software and Hardware Designs 4, 3
Base Station Contains a Transmitter and Antenna for Transmitting Mobile Device Signals 7, 12
Baseline for Judging the Utility of Existing Standards from the User’s Perspective 7, 1
Battery Life 15, 2
Battery Removal Can Clean Up a Permanent Corrupted State 15, 5
Battery Removal Is Mainly Performed When the Phone Freezes 15, 6
Benefit Cost Considerations 12, 6
Benefit-Cost Limit 13, 4
Benefit-Cost Ratio 10, 13
Benefit-Cost Relationship 12, 1
Best Circuit Performance Values 3, 15
Best Customer Strategy Is to Wait for a Response 15, 8
Binomial Distribution 12, 4
Biological Neurons 13, 1
Bit Error Rate of the Wireless Communication 15, 3
Blocking Delay 10, 10
Bluetooth Provides Packet Switching Links 7, 13
Bluetooth Provides Rapid Ad Hoc Connections Without Cable and Without Line-of-Sight Requirement 7, 13
Bluetooth Wireless Network 7, 13
Boundaries among Applications 12, 12
Buffer Is Part of the Domain Name Server 7, 4
Built-In Resources 16, 4
By-Product of the Directed Graph Is a Complexity Metric 17, 20

C++ Program Logic Development Phase 17, 13
Cache Hit Rate 1, 12
Cache Miss Rate 1, 12
Calculate the Desired Output for Any Given Input 13, 2
Can Object Oriented Methods Be Applied to Mathematics? 17, 2
Cell Is a Wireless Geographical Area That Has Access to an Access Point 7, 12
Cell Phone Mobility 15, 14
Cellular Networks and Systems Are Diverse 7, 11
Cellular Networks Have Been Moving from Voice Networks Toward the INTERNET PACKET NETWORK 7, 11
Central Server Monitoring of the Health of the Mobile Device 16, 10
Cellular Systems Are Usually Designed with Maximum Cell Range Exceeding 10 km 7, 12
Challenge of Power Management 15, 2
Challenge to Reliability 14, 1
Changes in Sensor Input and Output Voltages 3, 13
Changing Distances and Locations Between Web Clients and Web Servers 14, 2
Changing the Data Used in the Variables and Parameters 17, 4
Characteristics 1, 74
Characteristics of Models 14, 5
Characteristics of Real-Time Systems Impose Specific Requirements on the Test System 4, 23
Characterize the Reliability of Software Systems 13, 16
Check Denominators for Zero Prior to Division Operations 17, 17
Chip 1, 5
Choosing Reliability Prediction Models 13, 8
Choosing the Most Appropriate Theories and Tools for Different Stages of Development and Different Aspects of the System 4, 1
Claims Are Not Accompanied by a Discussion of Disadvantages 17, 4
Clarity of System States 17, 4
Class 12, 13
Class Diagram Shows the Relationships among Classes, Objects of a Class, and Methods 17, 11
Class of Probability Distributions 17, 8
Classes 9, 4
Classical Reliability Models 12, 12
Client and Server Are Restricted in Obtaining Required Communication Reliability 14, 18
Client Can Move 14, 2
Client Program 14, 2
Client Resolving a Web Server Name to the Corresponding IP Address 14, 4
Client, Server, and Communication Component Reliabilities 14, 16
Client-Server Protocols 12, 12
Client Side Problems 14, 12
Collaborative Mobile Device Visualization 15,
Collecting and Analyzing Reliability and Performance Data 15, 16
Collection of Components Comprising the Application 12, 13
Combination of Methods Is Required to Ensure Adequate Coverage 17, 17
Combinational Circuits 1, 22
Combined Hardware-Software Reliability Analysis 12, 12
Combining Hardware and Software Reliability 12, 12
Communicate with a Microcomputer 3, 7
Communication 2
Communication Channel Error Rate 14, 17
Communication Channels 14, 22
Communication Interface 16, 4
Communication Links 14, 2
Communication Reliability 16, 2
Communication Reliability Analysis 14, 17
Communication Restrictions 15, 12
Communication Systems 16, 4
Communication between User Computers and Web Servers 6, 2
Communication among Web System Elements 14, 17
Comparators 1, 28
Compare O-O Approach with Using Equations and Directed Graph Representations 17, 2
Compare the Performance and Reliability of the Present Internet with a Proposed Internet 16, 1
Compare Reliabilities by Failure Type and Recovery Action Type 16, 11
Comparison of Sequences 4, 23
Comparing Object-Oriented and Mathematical Definition of Terms 17, 6
Comparing the Prediction Accuracy of Various Reliability Models 12, 13
Comparison of Present and Future Wired Internet Performance 6, 56
Compatibility of a Local Network, Wired and Wireless Systems, with the Internet 7, 14
Complex Functional Requirements 4, 2
Competing Web Client Access to Web Servers 14, 2
Complex Hardware and Software 12, 16
Complex Instruction Set Computing 1, 5
Complexity Caused by Interrupts 4, 23
Complexity Contributes a Disproportionate Share of Failures 14, 11
Complexity of Integrated Modeling 12, 12
Complexity of Super Computer Hardware Configurations 14, 6
Complexity of Systems 12, 12
Complexity of the Web Page Increases at an Exponential Rate 14, 16
Component Failure Data 12, 11
Component Models 14, 1
Component Reliability 12, 4
Component Reliability Analysis 12, 7
Component Reliability Prediction 14, 1
Component-Based Reliability Relationships 12, 8
Components 1, 12
Components Intensively Interact with Each Other and with Their Environments 4, 1
Components Reliabilities Can Be Properly Weighted to Produce Total System Reliabilities 14, 22
Components and Their Relationships Are Decided before the System Runs 14, 1
Comprehensive Testing 14, 12
Computation of Weights 13, 4
Computation State 4, 11
Computational and Memory Resources 12, 12
Compute the Failure Rates Required to Bring Components into Conformance with Reliability Requirements 14, 23
Compute the Reliability Improvement Necessary to Achieve the Reliability Goal 14, 23
Computer Outages in HPC Clusters 14, 5
Computer-Algebra Language Mathematics 17, 3
Computing Actual Model Quantities 17, 5
Computing Cyclomatic Complexity Metrics from the Directed Graph 17, 3
Computing the MRE 14, 12
Concentration of Mobile Devices 16, 2
Concurrent System 12, 2
Concurrently Running Applications 15, 14
Conditions 9, 12
Conducting Performance Simulations 4, 23
Confidence in a System Before It Is Deployed 12, 13
Conformance with the Specification 7, 1
Connect to a Hot Spot 16, 24
Connect to a Mobile Network on Demand 16, 10
Connection Available Bandwidth 15, 13
Connections Excite Neurons 13, 1
Connections to Sensors That Are the Most Important 15, 13
Connectivity to Access Points, as Identified by Sending Test Signals 15, 12
Conservative Reliability Predictions 12, 4
Consideration in Real-Time Testing Is Complexity Caused by Interrupts Occurring in an Asynchronous Manner 4, 23
Constant, Increasing, and Decreasing Failure Rate Functions 12, 15
Index

Constraints of Presentation 15, 12
Constructing a Web Page by a Web Server 14, 3
Context of the Application Is Highly Dynamic 15, 17
Context-Architecture 15, 13
Context-Aware Migratory Service 15, 14
Context Aware and Network Aware Mobile Computing 15, 1
Context-Awareness 15, 1
Context of the Mobile Environment 15, 1
Context-Sharing 15, 13
Continuous Operation Requirement 12, 12
Continuously Changeable Aspects of Physical Phenomena 3, 1
Continuously Varying Analog Signal 3, 10
Contribution of Non-Functional Characteristics 14, 1
Control 2, 1; 9, 10
Control Bus 1, 5
Control Commands Are Issued, e.g., by System Controller to Operations 4, 4
Control Functions 4, 4
Control Hazards 1, 9
Control Logic for Decoding (i.e., Identifying) Input Service Requests 4, 16
Control Unit 1, 4
Controls 4, 6
Conversion System Errors 3, 12
Converter Circuit Components 3, 15
Corrected by Servicing the Phone 16, 6
Corrective Action 11, 3; 14, 1
Correctness of Program Execution 17, 13
Correctness Proofs 12, 15
Correctness of the Software Production Process 16, 1
Cost of Achieving Reliability Is Critical 13, 9
Cost Considerations 12, 5
Cost-Effective Predicted Reliability 11, 9
Cost-Effective Way of Engineering Systems 14, 1
Cost Estimation 13, 1
Cost Is Based on Number of Configuration Components 12, 18
Cost per Megabyte 10, 13
Cost and Schedule Overruns 4, 2
Cost of Testing 13, 16
Cost of Testing to Remove Faults 12, 16
Counteract Security Threats 15, 1
Coverage of Each Executable Statement and the Execution Result 13, 3
CPU and Network Intensive 15, 2
Criterion of One Remaining Failure 11, 8
Critical Aspects of Real-Time System Operations, such as Elevator Direction of Travel, May Be Overlooked 4, 1
Critical Faults 2, 7
Critical Performance Factor 15, 15
Crucial Factors Involved in Obtaining Satisfaction in Using Networks 7, 15
Crucial Properties Being Included in Network Standards 7, 1
Cumulative Failures 11, 6
Cumulative Failures during Testing 13, 3
Current Edge of the Network Will Often Be Just One Hop to the Internet 6, 2
Current Mobile Networks Are Unable to Provide Highly Reliable Service 15, 1
Current (Physical) Position of the Mobile Device 15, 13
Current Research Focuses on the Present Internet Configuration 6, 1
Current Service Can Automatically Migrate to a Node 16, 24
Cyclic Redundancy Check 2, 8
Cyclomatic Complexity Analysis of Web System Reliability 14, 2
Cyclomatic Complexity Is a Metric for Evaluating the Relative Quality of Software Systems 17, 17
Cyclomatic Complexity Is the Number of Independent Paths 14, 2
Cyclomatic Complexity Metric: (Number of Edges – Number of Nodes) + 1 in a Directed Graph 17, 2
Cyclomatic Complexity of the Poisson Failure Model 17, 17
D Flip Flop 1, 44
Data: Historical Data 17, 5
Data Base Management System Execution 12, 2
Data Bus 1, 5
Data Can Be Protected by Access Controls and Encryption 17, 4
Data Hazards 1, 9
Data Recorded Against the Hardware and Software 12, 12
De Morgan’s Theorem 1, 20
Deactivated Sensor Cannot Sense Any Information about the Context 15, 12
Deadline Requirements 10, 11
Deadlock Analysis and Prevention 10, 15
Debugging of Client Software and Hardware 14, 17
Decision Analysis State 4, 11
Decision Operations: Control Program Flow 17, 5
Decisions 9, 1
Decoder Logic for Generating Service Request Interrupts 4, 16
Decoders 1, 31
Decompose the System into Its Component Parts 14, 22
Decrease in Performance 15, 14
Decrease in Quality of Communication 14, 2
Decrease of Transmission Speed 14, 2
Decreasing Reliability Necessitates Increasing Test Time 16, 17
Defective Memory 12, 14
Defined by the Device Hardware and Software 15, 13
Defining the Model Objects 17, 8
Definition Depends on the Context of the Application 17, 6
Degradation of the Communication Lines 14, 2
Degrade Exponentially with Operating Time 14, 17
Degree of Interference 7, 13
Delay or Shut Down Would Cause Deadlines to Be Missed 15, 3
Demonstrate Whether the Proposed Internet Is Viable 6, 1
Demultiplexers 1, 38
Design of Binary Counters 1, 49
Design of Complex Real-Time Systems Is Quite Challenging 4, 1
Design Decisions 2, 1
Design Levels 4, 4
Design May Have to Be Heavily and Hurriedly Modified 4, 2
Design Principles 2,
Design Process Elements 4, 5
Design Provides High Speed, e.g., It Is Well Suited to Real-Time Applications That Must Meet Deadlines, but at the Expense of Relatively Complex Programming 4, 3
Design Representations Starts with Generic and Application-Specific System Level Functions and Ends With Integrated Testing and Performance Evaluations 4, 1
Design of Synchronous Sequential Circuits 1, 61
Design Tests of Simulated Performance 4, 19
Designing an Architecture for Mobile Devices 15, 12
Designing in Higher Quality 16, 16
Desirable Properties of Network Performance, Reliability, Maintainability, and Availability 7, 1
Desirable Properties of Network Standards 7, 1
Desirable Properties of a Programming Language 9, 1
Detailed Analysis of a Programming Language 9, 9
Detailed Design 2, 12
Detailed Design Example 9, 13
Detect and Record the Occurrences of Freezes and Reboots 15, 5
Detect the Status of the Phone during a Failure 15, 5
Detecting Faults 12, 5
Detecting Logical Errors 4, 23
Deteriorate Voice Quality 15, 12
Determination of Failure Occurrence 7, 5
Determine How Long to Test 12, 4
Determine How Well the Run-Time Program Will Perform 17, 12
Develop an Integrated and Comprehensive Design Approach with the Objective of Providing Engineers with a Roadmap for Improving Real-Time System Design 4, 1
Develop the Real-Time System Generic Design of a Particular Artifact, such as a State Diagram 4, 1
Develop the Specific Features of the Application 4, 25
Index

Developer Must Test in the Operating Environment of the Mobile Devices 16, 3
Developers Produce for a Mass Mobile Device Market 16, 10
Developing and Analyzing Comprehensive Web System Reliability Models 14, 2
Developing Mathematical Functions 17, 3
Development of Mathematical Software 17, 20
Development of Software for Mobile Computing Devices 16, 3
Device Behavior Is Highly Interactive 16, 3
Device Failure Affecting the Application 16, 2
Device Going Offline 16, 2
Device Identification 15, 13
Device Mobility 15, 3
Device Type 15, 13
Devices Are Highly Resource Constrained 16, 3
Devices Are Increasingly Being Used in Multimedia Streaming Type Applications 15, 2
Devices Constantly Accept Activations from Users 16, 3
Devices Less Dependent on Particular Locations and Resources 15, 3
Devices May Challenge Traditional Understanding of Network Topology 6, 2
Devices Will Be Able to Connect Directly into the Internet 6, 1
Devices Would Be Assigned Permanent IP Addresses 6, 2
Diagrams Portray the Sequence of Activities in the Code 17, 12
Difference Between Number of Correct Modules and Number of Failed Modules 16, 8
Difference in Failure Behavior Between Hardware and Software 12, 13
Different Failure Properties for Web Client, Web Server, and the Interconnected Communication Channels 14, 22
Difference That Exists Between Correct Modules and Failed Modules 16, 9
Differential Equations 3, 2
Differences for Throughput 4, 23

Digital to Analog (D/A) Conversion 3, 9
Digital to Analog Converter 3, 1
Digital Cellular Networks 15, 4
Digital Computer Floating-Point Calculations 3, 6
Digital Data Is Ready for Transmission on the Data Lines 3, 7
Digital Logic 1, 74
Digital Signal Comprised of Discrete Binary 3, 10
Diminishing Returns in Finding and Correcting Faults 13, 8
Directed Graph Can Be Used to Represent a Computer Program 17, 1
Directed Graph of the Program Logic 17, 13
Directed Graph Representation of a System 14, 2
Directed Graph Representation of the Mathematical Model 17, 3
Directed Graph Will Serve as the Vehicle for Expressing C++ Program Logic 17, 13
Discontinuity of Network Connections 15, 12
Discover Potential Bottlenecks 15, 15
Disk Systems 12, 6
Dispatcher 10, 6
Displays Need to Be on at All Times 15, 2
Disrupt an Entire Network 15, 2
Disrupting the Wireless Connection 15, 3
Disruption Caused by Software Incompatibilities 7, 9
Disruption Due to Failure 15, 4
Distance Between Clients and Servers 14, 2
Distortion 3, 11
Distortion Can Be Minimized by Using an Adequate Number of Bits in the Digital Representation of the Analog Signal 3, 11
Distortion Is Measured by the Difference Between the Correct Signal Change in Adjacent Values and the Actual Change in Adjacent Values 3, 11
Distributed Operating Systems 10, 19
Distributed Web Services in an Internet Setting 14, 1
Distribution of Errors Is Usually Non-Uniform 14, 17
Distribution of Failures and Recovery Actions 15, 6
Distribution of Failures over Time 16, 11
Distribution of Faults in the Hardware and Software 12, 13
Diversity of Mobile Devices Reduces the Reusability of Test Cases 16, 3
DNS Look Up Accesses 14, 16
DNS Lookup Failures 14, 16
Domain Controller 14, 4
Domain Name Server (DNS) 6, 2
Domain Name System (DNS): Present System 6, 30
Dominant Cause of TCP Connection Failures 14, 16
Dramatic Reduction in System Failure Rate 14, 12
Drastic Reductions in Failure Rate by Eliminating Software Faults 16, 12
Duty Cycles 8, 4
Dwelling on Speed Is Certainly Not the Whole Story in Assessing Network Standards 7, 15
Dynamic Nature of Web Surfing 14, 2
Dynamic Part That Can Respond to Changing Operating Conditions 16, 3
Dynamic Range 3, 5
Dynamic Range, Phase Distortion, and Signal Representation 3, 12
Dynamically Configured Web Services 14, 1

Each Component and the System Satisfy the Reliability Requirement 14, 22
Each Component Can Be Thoroughly Tested 14, 1
Each Facet of the Failure Model Is Defined and Analyzed 17, 6
Each Mobile Device Moves in an Arbitrary Manner 15, 3
Each Statement in a Program Could Potentially Cause One or More Exceptions to Be Raised 17, 17
Early Stages of Testing 13, 8
Edges (Transfer Control, Iteration Control, and Return) 17, 13
Effective Criterion 13, 7
Effects of Additional Faults 12, 13
Effects of Faults 12, 13
Efficiency Test 7, 2
Efficient Implementation Is Obtained by the Objects Failure Count and Failure Time Feeding the Object Failure Rate 17, 12
Efficient Resource Allocation in Different Operational Scenarios Is Required 4, 1
Efforts to Reduce Faults and Subsequent Failures 12, 16
Electric Grid Network 15, 16
Electric Power Grids 15,
Electric Signal 14, 2
Electric Utility Mobile Device Senses Power Outage 15, 14
Electric Utility and Customer Mobile Electric Meter Reading Devices 16, 24
Electrical Equivalent of a Physical System 3, 1
Electromagnetic Interferences (EMI) 15, 3
Electronic Analog Computers 3, 1
Electronic Digital System Uses Two Voltage Levels to Represent Binary Numbers 3, 6
Elements of a Requirement 17, 4
Elevator Software Design 5,
Elevator System Is Used as the Design Example Because It Has Interesting Properties, such as Interruptible Floor Traversal Sequences 4, 1
Eliminating the Need for Name to IP address Translation 6, 2
Emphasis in the Design Process Is on Hardware Design, but Not Neglecting the Mapping Between Hardware and Software Designs 4, 16
Empirical Failure Probability 16, 7
Emulate the Operational Environment 16, 3
Enable Global Roaming 7, 12
Encapsulation Is the Inclusion Within a Program Object of all the Resources Needed for the Object to Function 17, 2
Encoders 1, 34
End-to-End Transmission and Processing of Data in a Network Is Comprised of Subsets of the Total End-to-End Chain Called Sequences 7, 5
Engineer Charged With Designing Networks Should Include Crucial Factors in the Specifications and Establish a Test System 7, 15
Entity’s Normal Behavior 15, 2
Entity’s Observed Behavior Deviates Significantly from Its Profile 15, 2
Environmental Conditions 16, 2
Equation: Mathematical Implementation of a Function 17, 5
Equation as an Object 17, 3
Equations and Directed Graphs Are a Model for Writing Code 17, 20
Equations Do Just Fine Because They Are the Models of Mathematics 17, 20
Equations Have Variables and Parameters That Can Be Made Extensible 17, 4
Equations Provide an Excellent View of Its Implemented Software 17, 4
Erroneous Bits Received per Bits Transmitted 14, 17
Error Between the Prediction Models and the Historical Reliability Data 12, 11
Error Conditions in System and Application Modules 15, 5
Error of Conversion 3, 6
Error Rate 14, 16
Error in the Software 12, 1
Errors That Could Arise in Each Component, Whether A/D or D/A 3, 12
Estimate the Feedback Control Signal 16, 8
Estimate Latency during Performance Testing 16, 3
Estimate the Location of a Mobile Station 15, 12
Estimating Model Parameters 13, 5; 17, 5
Estimating the Number of Failures 7, 6
Estimation of Failure Rate 7, 5
Ethernet, also Known as IEEE 802.3 7, 10
Evaluate Actions to Recover from a Device Failure 15, 4
Evaluate the Cost of Testing 11, 5
Evaluate More Than One Model 13, 8
Evaluate the Reliability of the Software Design 17, 20
Evaluate Results in the Context of the Application 13, 9
Evaluating the Behavior and Performance of Complex Systems 12, 13
Evaluation of Programming Languages 9, 1
Event-Driven Software Style Has Evolved Largely to Deal with Complexity 4, 8
Event Order and Time of Occurrence Are Crucial in Determining System Performance 4, 15
Event Sequence: Series of State Transitions 4, 6
Example of Comparing Object-Oriented with Mathematical Approaches 17, 24
Exception Will Cause an Automatic Change in Control Flow 17, 17
Excessive Activation of Wireless Communication Links by the User 16, 7
Excessive Cost of Testing 11, 9
Excessive Number of Web Page Operations Is Bad News for Reliability 14, 17
Exclusive NOR (XNOR) 1, 17
Exclusive OR (XOR) 1, 18
Exclusive Use of Abstract Representations Is Unwise Because It Is Important to Consider the Physical Properties of the Real-World System 4, 1
Execute the Programs on a Computer 17, 19
Executing Test Scenarios 9, 9
Execution Time 4, 3
Existing Standards 7, 1
Expected Fractional Value 7, 6
Expected (Mean) System Response Time 4, 19
Expected Number of Failed Modules of Failure Type 16, 8
Expected Number of Failed Modules of Recovery Type 16, 9
Expected Number of Failures 15, 6; 16, 11
Expected Number of Failures and Failure Rate 16, 11
Expected Number of Failures and Failure Rates Corresponding to the Recovery Action Categories 15, 6
Expected Recovery Action Is a Probabilistic Function of the Failure Types 16, 9
Expected Reliability 11, 10
Expected Value 7, 6
Expected Value of Predicted Time to Failure 13, 16
Explicit and Implied Requirements 16, 10
Exploding of Internet Connectivity 15, 1
Exponential Decay Error Rate 14, 17
Index

Exponential Decrease in Reliability 14, 16
Exponential Distribution 14, 17; 16
Exponentially Decreasing Reliability 14, 16
Exponentially Distributed Failure Times 16, 11
Exponentially Distributed Operating Times 17, 6
Exponentially Distributed Pattern of Failure Data 14, 7
Exponentially Distributed Time Between Failures 12, 3
Expose Confidential Data and Risk Attacks 15, 1
Extensibility 15, 12
Extensive Error Analysis 3, 15
Facets of Conversion Logic 3
Factoring in Probability of State Transitions 14, 9
Fading 15, 3
Failure Count at Test or Operating Time 17, 6
Failure Count Data 17, 10
Failure Count Interval 13, 6
Failure Data 15, 1
Failure Data Identification Phase 17, 15
Failure Data used in Parameter Estimation 13, 4
Failure Is Considered to Be of High Severity When Recovery Requires the Assistance of Service Personnel 16, 6
Failure Is Considered to Be of Low Severity If the Device Operation Can Be Reestablished by Repeating the Action or Waiting for a Certain Amount of Time 16, 6
Failure Is Considered to Be of Medium Severity When the Recovery Requires Reboot or Battery Removal 16, 6
Failure Is Firmware-Related 15, 4
Failure Occurrences Can Be Associated with the User Activity at the Time of the Failure 16, 6
Failure Phenomena of Web Server Systems 14, 11
Failure Rate 11, 3; 12, 1; 15, 3; 17, 6
Failure Rate Decreases After Installation 16, 1
Failure Rate Decreases After Installation, Eventually Reaching a Steady State 15, 3
Failure Rate and Failure Counts 8, 8
Failure Rate λ Is Computed 17, 12
Failure Rate Must Be Estimated 7, 5
Failure Rate Parameters 13, 4
Failure Rate Required to Achieve Specified Reliability 12, 16
Failure Rate of a System Grows Proportional to the Number of Processors in the System 14, 6
Failure Rate Varies Considerably Across Servers and Clients 14, 6
Failure Rate of Web Servers 14, 11
Failure Rates 16, 11
Failure and Recovery Action Data 16, 1
Failure Scenarios 11, 10
Failure Severity Code 13, 4
Failure Severity Is Classified According to the User Perspective 15, 5; 16, 6
Failure Severity Is Reflected in the Model According to the Severity Codes 16, 8
Failure of a Single Processor 12, 4
Failure Time 12, 15
Failure Types 15, 4; 16, 54
Failure Type and Recovery Action Type Results 16, 16
Failure Type Estimation Results 16, 10
Failure Type Testing Takes More Time 16, 17
Failure Types Below the Limit Should Be Investigated to Identify the Cause of Excessive Failures 16, 16
Failure in Web Page Processing by the Web Server 14, 3
Failures 7, 3
Failures and Degradation of the Communication Links 14, 2
Failures Can Be Traced to Domain Name Server (DNS) Problems 14, 16
Failures Caused by Noise in the Communications Network 16, 17
Failures Creating, Sending, and Receiving Text Messages 15, 6
Failures in the Disk Storage Unit Nodes 14, 4
Failures Due to Environmental Problems (Power Outage) 14, 5
Failures Due to Operator Error 14, 5
Failures Occur According to a Poisson Distribution 15, 6
Failures Occur during Voice Calls 15, 6
Failures in Storage Systems 14, 5
Failures Using Bluetooth 15, 6
Fairness 10, 6
Fault Detection and Correction 2, 8
Fault and Failure Correction 8, 4
Fault and Failure Correction Analysis Results 8, 18
Fault Injection 12, 13
Fault Localization 13, 2
Fault Removal 14
Fault Tolerance of Mobile Computing Systems 15, 5
Fault Tolerant Web Systems 14, 2
Faults 11, 1
Faults Can Be Dependent 12, 4
Faults and Failures Corrected 8, 5
Faults Removed 12, 4
Faults, such as Garbled Data on a Link, Attributed to a Noisy Communication Channel, Cause
Features Can Be Disabled 15, 12
Feedback during the Development Stage 12, 13
Feedback Used to Revise Mobile Device Requirements 16, 8
Feed-Forward Structure 13, 3
Field Failure Data Analysis 15, 5
Figures Do Provide a Base Line for Starting Development Process 17, 18
Find Other Devices to Execute the Mobile Programs 15, 14
Firmware Update 15, 5
First Interval of Test Failure Data 13, 5
Fixed Information Perimeter 15, 1
Flexible Failure Function 12, 15
Flip Flops and Latches 1, 40
Focus on Failure Type 16, 7
Focus on Recovery Action Type 16, 8
Form of Design Presentation 9, 2
Formal Methods 12, 13
Formulate Equations from Problem Specifications 17, 2
Formulation of Test Time May Understate the Time Required to Identify All Mobile Device Hazards 16, 14
Fraction of Failures 15, 7
Freeze (Lock-Up or a Halting Failure) 15, 4; 16, 5
Freezes Are More Annoying Than Output Failures 15, 6
Freezes Are Usually Recovered by Pulling Out the Battery 15, 6; 16, 7
Frequency Response 3, 5
Frequency Spectrum 7, 11
Frequency with Which Errors or Noise Are Introduced into Communication Channels 14, 17
Function 12, 1
Function Associates a Single Output to Each Input Element 17, 6
Function Is the Task the Object Must Achieve 17, 5
Functional Decomposition Method 12, 12
Functional Logic 12, 2
Functional and Non-Functional Specifications 12, 2
Functional Oriented vs. Data Oriented Design 9, 2
Functionality Information 12, 12
Functions 1, 3; 9, 2
Functions of a Computer System 12, 12
Functions That Are Performed in a System 12, 2
Fundamental Properties as Predictions of Reliability, Maintainability, and Availability 7, 1
Gain 3, 5
Gain of the Microcomputer-Controlled Operational Amplifier 3, 12
General Packet Radio Service (GPRS) 16, 4
General Registers 1, 4
Generating System Reliabilities 12, 8
Generation of Failures 12, 16
Given the Erratic Channel Conditions, Reliability Should Be Predicted Under These Conditions to Have a Useful Standard 7, 12
Global Positioning System (GPS) 15, 13
Goal Is to Develop Mathematical Software 17, 20
Good Test Strategy Is to Exercise the Independent Paths in Debugging 17, 17
GPRS Mobile Device 16, 4
GPRS Requirements Being Translated to Software Code Compatible for Operating with a Communications Carrier 16, 4
Gradient Descent (Ascent) Learning Rule 13, 2
Great Deal of Functionality Squeezed into a Small Memory Space 16, 3
Great Variation in Both Hardware and Software Failure Counts 12, 15
Greater the Relative Difference Between Specified and Predicted Reliabilities the Greater the Risk 13, 9
Grid Computing 16, 24
Handheld Computing Device with a Short-Range Radio Link, such as IEEE 802.11b or Bluetooth 16, 3
Hard Disk Access Rate 1, 12
Hardware Configurations Are Very Complex 14, 11
Hardware Description Language 1, 74
Hardware Failures 14
Hardware Function, Software Function, and Some Form of Interaction 12, 12
Hardware Functions 4, 11
Hardware Level 4, 5
Hardware-Oriented Design Has to Deal with More Problems Than Software-Based Design, Especially the Progression of Time 4, 16
Hardware Redundancy 12, 12
Hardware Reliability 12, 3
Hardware and Software Failure Rates 12, 15
Hardware and Software Failure Relationships 12, 13
Hardware-Software Models 12, 12
Hardware-Software Predictive Reliability 12, 15
Hardware and System Reliability 12, 15
Having Power When the Device Is Turned On 16, 10
Hazard Functions 14, 6
Heavy Traffic Load in the Local Network 7, 9
Heterogeneous Mobile Devices 16, 24
Hierarchy: Divide System into Modules That Are Easier to Understand Than the Complete System 4, 4
High Expectations for the Reliability of the Software on Mobile Devices 16, 2
High Failure Rate, Unstable Behavior Failures 15, 9
High Latency Wireless Networks 16, 1
High-Performance Computing (HPC) Installations 14, 5
High Probability of Short Node and Link Times and Low Probability of Long Times 7, 6
High Reliability at Low Risk 13, 9
High Severity Types of Failures 15, 9
High Severity When Recovery Requires the Assistance of Service Personnel 15, 6
Higher Complexity Software Has Lower Quality 17, 17
Higher Probability of Small Message Size 14, 17
Higher Quality That Is Required in Voice and Other Real-Time Applications 7, 11
Higher Speed Can Result in Failures Occurring at a Higher Rate 7, 6
Highly Compact Functionality Must Be Reflected in the Testing Strategy 16, 3
Highly Unlikely That There Would Be Failure Free Service 15, 7
Historical Computed Reliability 12, 11
Historical Error Rate of n Errors per Web Page Operation 14, 16
Historical Failure Data 14, 8; 17, 5
How Long a System Can Be Operated at Specified Values of Reliability 12, 18
How Long to Test 12, 4
How Long to Test Components 12, 4
HTTP Protocol 14
Identification of Coding Details Flow More Naturally from Mathematical Expressions 17, 13
Identification of System Elements 2, 2
Identifier 15, 15
Identify the Best Customer Strategy 15, 8
Identify the Key Paths to Test Based on the Cyclomatic Complexity Metric 17, 13
Identify a Mobile Device Technology with a Relatively Low Reliability Rating 16, 4
Identify the Number of Failure Counts That Occur at Test Time 17, 13
Identify the Number of Web Page Operations That Cause Reliability Degradation 14, 23
Identify Possible Low Sequence Reliability Values That Would Be Indicative of Low Values of Node and Link Reliabilities 7, 6
Identify States and State Transition Probabilities 14, 22
Identify the Services the Objects Are to Perform 17, 13
Identify the Several Phases and Steps in Program Implementation 17, 13
Identifying and Defining the Performance and Reliability 6, 1
Identifying Independent Paths and Evaluating Program Test Coverage 17, 17
Identifying the Initial Search Location 14, 4
Identify Web Page Operations 14, 22
IEEE 802 Family of Standards 7, 11
IEEE 802 Wireless Networks 7, 10, 12
IEEE 802.11 Power Saving Schemes 15, 12
If the Reliability Test Fails, the Failure Is Reported to the Maintenance Activity 7, 14
Illuminate the Various Perspectives That the Diagrams Provide 17, 8
Impacting the User Experience 15, 2
Implementation Elements 4, 1; 5
Implementing Cohesion and Coupling 9, 9
Implementing Software, Using the NASA Space Shuttle Flight Software, as an Example 17, 13
Importance of Quality of Service 14, 2
Importance of Web Systems in Contemporary Society 14, 1
Important Characteristic of Mobile Devices Is That a Given Device May Communicate with More Than One Communications Carrier 16, 4
Important Concepts about Devices That Interconnect with Digital Computers 3, 15
Important to Have a Close Relationship Between the User System and the System Control Functions 4, 5
Important Network Requirements 7, 14
Important to See Whether the Computation Results Appear to Be Reasonable 17, 17
Important That the Test Bed Be Automated 7, 14
Important Variable Types 9, 13
Improve Quality of Service, Reliability, etc. on the Existing Platform 6, 2
Improve the Signal to Noise Ratio 16, 10
Improved Power Management Is Needed in Mobile Devices to Increase Their Utilization 15, 5
Improvement in Reliability 15, 7
Improvements in Both Hardware and Software Reliability 15, 16
Improvements That Would Make Standards More Valuable for the User 7, 9
Improving the Design and Implementation of a System 12, 13
In C++, a Function Is a Named, Independent Section of Code 17, 5
In Failure Type Testing, the Tester Is at the Mercy of the Operating Environment of the Mobile Device 16, 17
In Order to Provide Increased Security of Data, Every User Computer and Mobile Device Would Have Its Own IP Address 62
In Programming Languages, a Function Is a Subroutine That Can, If Required, Return a Single Value to the Caller 17, 5
In Real-Time Programs, the Time of Occurrence of Events Rather Than the Order of Events Is Crucial in Determining the Outcome of a Computation 4, 15
Inability of Real-Time Software to Meet Its Primary Nonfunctional Requirements 4, 2
Inability to Transmit Data Between Two Nodes 7, 3
Inaccurate Assessments of the Conditions for Safe Missions 11, 9
Incorrect Management of Buffer Sizes 15, 6
Incorrect Use of the Device Resources 15, 6
Increase in System Reliability Necessary to Achieve the Reliability Goal 14, 18
Increasing Functions of Cumulative Failures and Reliability 13, 12
Increasing the Signal to Noise Ratio Will Increase the Range of the Wireless System 7, 13
Increasing User Productivity in Their Use of Computer Networks 7, 1
Independence of Faults That Cause Failures 12, 4
Independent Path Is One That Cannot Be Formed by Combining Other Paths in the Directed Graph 17, 2
Indicates That There Is More Noise Than Signal and That the Recovery Method Is Dysfunctional 16, 8
Industry Is Developing a Software Defined Device That Can Be Dynamically Defined in Real-Time 16, 3
Information Hiding: A Software Design Technique That “Hides” System Details 17, 2
Information Hiding and Modular Design 17, 4
Information about the User’s Environment 15, 12
Ingredients of Other Infrastructures 15, 13
Inheritance: A Property of Object Oriented Design That Allows an Object to Acquire the Properties of Its Class 17, 1
Inheritance Makes O-O Systems More Extensible 17, 4
Inhibit Neuron Output 13, 1
Injection of Faults and Failures Is Simulated by Randomly Selecting Links and Nodes to Be Injected 7, 3
Input Connections 13, 1
Input Data 9, 4
Input Data Component Execution 12, 2
Input Driven Software Models 16, 1
Input Failure 15, 4; 16
Input Failure Counts 13, 7
Input Failures Are High Severity 15; 16, 6
Input Processing State 4, 11
Input Request to the Internet, Provides the Basis for Computing the Performance and Reliability of the Present and Proposed Internets 6, 1
Insight into How Real-Time Systems Must Function 4, 2
Instruction Register 1, 4
Insufficient to Limit Verification of the Correctness of Program Output to the Identification of Independent Paths and the Associated Test Strategy 17, 17
Integer Number of Failures Would Occur over the Nodes and Links 7, 6
Integrate Component Reliabilities into Total System Reliability Predictions 14, 23
Integrated (the Various Parts Fit Together to Form a Coherent Whole) 17, 4
Integrated and Comprehensive Design Approach 4, 25
Integrated Software–Hardware Design 4, 6
Integrated Software–Hardware Design Is Achieved by Mapping Between Software and Hardware Designs 4, 16
Integrated Software–Hardware Design Methodology 4, 8
Integrates the Varying Analog Input Signal Voltage 3, 1
Integration of Mobile Devices and Environmental Infrastructures 15, 14
Integrative Analysis to Produce Total System Reliability Predictions 14, 22
Intelligent Control 13, 1
Intelligent Mobile Meter Readers 16, 24
Interaction Between an A/D Converter and Microcomputer 3, 7
Interaction Between a User Application and a Migratory Service Can Continue Uninterrupted 16, 24
Interaction of People with Computerized 17, 19
Interaction of Software and Hardware during Program Execution 4, 1
Interactions among Components 12, 15; 14, 1
Interchange of Commands Between Converter and Microcomputer 3, 7
Interface Between a Mobile Device and a Mobile Network 16, 4
Interface Between Modules Rather Than in Modules 17, 2
Interfaces Have Been a Major Source of Failures in Computer Systems 16, 4
Interfaces May Not Easily Interconnect Because Inputs May Arrive at Unpredictable Times 4, 4
Interfaces Represent the Major Software Modules to Be Developed by the Mobile Device Process 16, 4
Interfaces with Objects and between Objects 17, 11
Internet Data Traffic 6, 70
Internet Protocol (IP) 6, 2
Internet Reliability Analysis 6, 59
Internet Router 6, 2
Internet Router: Present Wired System 6, 30
Internet Web Sites 15, 15
Internet’s Ability to Adapt to Improved Performance and Reliability Requirements 6, 2
Internet will Connect Vast Numbers of Tiny Devices Integrated into Cell Phones and Other Mobile Devices 6, 3
Interoperability of Mobile Devices with Other Computing Infrastructures 15, 13
Interoperability with Other Mobile Devices and Electric Grid Infrastructure Will Be Improved 16, 24
Interprocess Communication 12, 12
Interrupt Handling 1, 15
Interrupt Processing 3, 7
Interrupt Signal Generated by Hardware Triggers Software Interrupt Processing Routines 4, 6
Interrupted by a Request 4, 23
Interruptible Event Sequence Causing State Transition 4, 6
Interruptible Sequence of Operations Causing Interrupts to Be Processed Out of Sequence 4, 4
Interrupts 4, 6
Intrusion Detection 15, 1
Inverse of the Signal to Noise Ratio 16, 8
Invest in Higher Reliability Communication Facilities 14, 18
Invocations of Web Service Operations Are Independent 14, 3
Invokes Backup Power Supply 15, 14
I/O Channels Must Have Sufficient Transfer Rate 4, 5
I/O Channels Must Have Sufficient Transfer Rate to Satisfy Elevator System Response Time Requirements 4, 6
I/O Channels with Sufficient Transfer Rate to Keep Up with Real-Time Transaction Input Rate 4, 11
IPv6 Does Not Provide Any Better (Or Worse) Support for Quality of Service Than IPv4 6, 2
Iteration: Repetition of an Operation 17, 5
Iteration in O-O Defined as: An Operation That Permits All Parts of an Object to Be Accessed in a Well-Defined Order 17, 3
JK Flip Flop 1, 47
Joining of Disparate Components of a System Is a Complex Process 16, 4
Karnaugh Maps 1, 20
Key Indicator of Acceptable Performance Is That Response Time Is Satisfied 4, 23
Key Issue in Providing Multimedia Services over a Wireless Network Is the Quality-Of-Service (QoS) Support in the Presence of Changing Network Connectivity 7, 12
Key to Maintaining Wireless Communication 15, 3
Large Gains in Noise Reduction Would Be Achieved Through Testing If the Number of Correct Modules, Due to Eliminating Failures, Is Already Small 16, 13
Large Gains in Noise Reduction Would Be Achieved Through Testing If the Number of Correct Modules, Due to Recovery Action, Is Already Small 16, 13
Large Obstructions 15, 3
Large Scale Signal Path Loss 15, 3
Larger the Failure Rate, the Shorter the Mission Duration 16, 12
Latency Is Defined as the Time Required for the Data Signal to Be Transmitted Through the Communications Medium 16, 3
Latency Is the Reciprocal of Data Rate 16, 3
Later Stages of Testing 13, 8
Learn Rules 13, 1
Learn the Input-Output Relationship 13, 3
Learning Algorithm 13, 1
Left Shift Register 3, 1
Length of Time Slice for Switch Action 10, 9
Level of Detail That Is Compatible with the Phase and View 17, 18
Lightweight Encryption 15, 1
Lightweightness 15
Likelihood of the Abort of a Connection 15, 13
Likelihood of Processor Failure 12, 4
Likelihood of Statement Bugs 13, 3
Limit: Constraint Imposed on a Function 17, 5
Limit Value 13, 3
Limited Computational Resources of These Devices 16, 3
Limited Range Wireless Network 7, 13
Linear Text Format 14, 3
Link Delay Times 6
Links Between Distributed Databases 12, 13
List of Running Applications 15, 5
Little Understanding of How and Why Mobile Phones Fail 15, 5
Local Area Network 12, 15
Local Network 6, 2
Local Network: Present Wired System 6, 30
Local Network Components Have Smaller Sizes That Are the Primary Driver of Maintenance Actions 7, 9
Local Network Components Operate Faster Than Internet Components 7, 6
Local Network Processing Times 6, 44
Local Network Router 6, 3
Local Network Router: Present Wired System 6, 42
Local Network Router Server Queue 7, 9
Local Network Sequences Would Be Subject to Further Testing to Discover and Remove Additional Faults 7, 9
Local Network Server Queue 7, 8
Local Network Wait Time in System 6, 44
Localizing Faults 13, 2
Locate the IP Phone 15, 15
Location Awareness 15, 12
Logic of Time Slicing 10, 11
Logical Operators 9, 13
Longest Stabilization Time of the Various Recovery Actions 15, 9
Long-Running Application 12, 4
Long-Term Scheduler 10, 6
Loss of Data in Mobile Device Memory 16, 6
Loss or Degradation of Wireless Connections 16, 1
Loss of Memory Data 15, 6
Low Failure Rate, Input Failures 15, 9
Low Operating Times 16, 12
Low Pass Filter 3, 4
Low Pass Filter Subject to Error 3, 14
Low Power Sleep State 15, 12
Low Quality Connections 16, 1
Low Severity 15
Low Value of Probability of Detection 12, 11
Lower Probability of Large Message Size 14, 17
Lower S/N Means Higher Noise 16, 16
Main Memory Hit Rate 1, 12
Main Memory Miss Rate 1, 12
Main Power Consuming Components 15, 2
Main Processing Task 3, 7
Maintainability 7, 1
Maintainability Prediction 7, 8
Maintainability Will Be Formulated as a Ratio of the Quantity of Data Processed by a Given Sequence of Nodes and Associated Links 7, 8
Maintainability Will also Be Predicted Using Sequences 7, 8
Major Issue in Software Reliability Assessment 13, 9
Major Limitation of Portable Devices 15, 2
Major Noise Contributors: Unstable Behavior and Self-Shutdown 16, 10
Major Risks Posed by Mobile Devices 15, 1
Majority of OS Kernel Failures Are Due to Memory Access Violation Errors 15, 4
Making a Requirement Understandable Required Response Time 4, 17
Manipulating Clock Rate to Achieve Required Response Time 4, 3
Manipulating Images 15, 6
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many Values of Reliability in a Sequence—</td>
<td>7, 6</td>
</tr>
<tr>
<td>One for Each Node or Link</td>
<td>7</td>
</tr>
<tr>
<td>Mapping Failures to Their Causes</td>
<td>11, 9</td>
</tr>
<tr>
<td>Mapping Real World Objects to the O-O Model</td>
<td>17, 5</td>
</tr>
<tr>
<td>Marginal Benefit Equals Marginal Cost</td>
<td>13, 4</td>
</tr>
<tr>
<td>Marginal Increase in Test Time</td>
<td>13, 3</td>
</tr>
<tr>
<td>Marginal Reduction in Failures and Faults</td>
<td>13, 3</td>
</tr>
<tr>
<td>Masked Fault</td>
<td>12, 4</td>
</tr>
<tr>
<td>Master Reset</td>
<td>15, 5</td>
</tr>
<tr>
<td>Mathematical Concept of a Function</td>
<td>17, 8</td>
</tr>
<tr>
<td>Expresses Dependence Between Two or More Quantities</td>
<td></td>
</tr>
<tr>
<td>Mathematical Modeling Approach:</td>
<td>17, 12</td>
</tr>
<tr>
<td>Equations Suggest the Steps to Implement the Program</td>
<td></td>
</tr>
<tr>
<td>Mathematical Modeling Approach Has an Advantage</td>
<td>17, 12</td>
</tr>
<tr>
<td>Mathematical Modeling Design Approach Example</td>
<td>17, 13</td>
</tr>
<tr>
<td>Mathematical Modeling of Physical Objects</td>
<td>17, 3</td>
</tr>
<tr>
<td>Mathematical Software Reliability</td>
<td>17, 3</td>
</tr>
<tr>
<td>Mathematical Symbols for the Poisson Distribution</td>
<td>17, 11</td>
</tr>
<tr>
<td>Mathematical Terms Could Be Cast in the Context of Developing a Failure Model</td>
<td>17, 6</td>
</tr>
<tr>
<td>Mathematics for Software Reliability Models</td>
<td>17, 2</td>
</tr>
<tr>
<td>Maximum Actual Reliability</td>
<td>13, 7</td>
</tr>
<tr>
<td>Maximum Bandwidth</td>
<td>14, 17</td>
</tr>
<tr>
<td>Maximum Likelihood Estimation (MLE) Method of Parameter Estimation</td>
<td>13, 6</td>
</tr>
<tr>
<td>Maximum Operating Times That Can Achieved at Specified Values of Reliability</td>
<td>12, 17</td>
</tr>
<tr>
<td>Maximum Permissible Response Time</td>
<td>4, 2</td>
</tr>
<tr>
<td>Maximum Response Time Service Request</td>
<td>4, 19</td>
</tr>
<tr>
<td>Maximum Response Time That Occurs Due to Resource Limitation</td>
<td>4, 23</td>
</tr>
<tr>
<td>Maximum Sampling Frequency</td>
<td>3, 11</td>
</tr>
<tr>
<td>Maximum Speed at Which the D/A (or A/D) Circuity Must Operate to</td>
<td>3, 11</td>
</tr>
<tr>
<td>Reproduce the Correct Output</td>
<td></td>
</tr>
<tr>
<td>Maximum Value of the Severity Code</td>
<td>13, 4</td>
</tr>
<tr>
<td>McCabe Test Strategy Does Not Provide Complete Coverage of All Code</td>
<td>17, 17</td>
</tr>
<tr>
<td>Mealy and Moore Machines</td>
<td>1, 57</td>
</tr>
<tr>
<td>Mean Access Point Processing Time in the Download Direction</td>
<td>6, 24</td>
</tr>
<tr>
<td>Mean Access Point Processing Time in the Upload Direction</td>
<td>6, 24</td>
</tr>
<tr>
<td>Mean Access Point Queue Wait Time in the Download Direction</td>
<td>6, 25</td>
</tr>
<tr>
<td>Mean Access Point Queue Wait Time in the Upload Direction</td>
<td>6, 24</td>
</tr>
<tr>
<td>Mean Difference Between Required and Achieved Response Times</td>
<td>4, 23</td>
</tr>
<tr>
<td>Mean Download Processing Time</td>
<td>6, 9</td>
</tr>
<tr>
<td>Mean Download Service Time</td>
<td>6, 66</td>
</tr>
<tr>
<td>Mean Download Web Page Processing Time</td>
<td>6, 6</td>
</tr>
<tr>
<td>Mean Error Rate</td>
<td>14, 17</td>
</tr>
<tr>
<td>Mean Number of Bits Being Processed in the Download Direction</td>
<td>6, 67</td>
</tr>
<tr>
<td>Mean Number of Bits Being Processed in the Upload Direction</td>
<td>6, 66</td>
</tr>
<tr>
<td>Mean Number of Bits Waiting for Processing in the Download Direction</td>
<td>6, 67</td>
</tr>
<tr>
<td>Mean Number of Bits Waiting for Processing in the Upload Direction</td>
<td>6, 66</td>
</tr>
<tr>
<td>Mean Number of Packet Bits Being Processed for Name Translation</td>
<td>6, 17</td>
</tr>
<tr>
<td>Mean Number of Packet Bits Being Processed for Upload Routing</td>
<td>6, 15</td>
</tr>
<tr>
<td>Mean Number of Packet Bits Being Processed in the Upload Direction</td>
<td>6, 13</td>
</tr>
<tr>
<td>Mean Number of Packet Bits Being Processed in the Upload Direction</td>
<td>6, 13</td>
</tr>
<tr>
<td>Mean Number of Packet Bits Waiting for Name Translation</td>
<td>6, 17</td>
</tr>
<tr>
<td>Mean Number of Packet Bits Waiting to Be Processed for Routing in the Upload Direction</td>
<td>6, 13</td>
</tr>
<tr>
<td>Mean Number of Packet Bits Waiting to Be Processed in the Upload Direction</td>
<td>6, 12</td>
</tr>
<tr>
<td>Mean Number of Packet Bits Waiting to Be Processed in the Download Direction</td>
<td>6, 11</td>
</tr>
<tr>
<td>Mean Number of Web Page Bits Being Processed in the Download Direction</td>
<td>6, 11</td>
</tr>
</tbody>
</table>
Mean Number of Web Page Bits Being Processed in the Download Direction by the Access Point 6, 25
Mean Number of Web Page Bits Being Processed in the Download Direction by the Internet Router 6, 28
Mean Number of Web Page Bits Being Processed for Download Routing 6, 15
Mean Number of Web Page Bits Being Processed in the Upload Direction 6, 36
Mean Number of Web Page Bits Waiting to Be Processed in the Download Direction 6, 11, 69
Mean Number of Web Page Bits Waiting to Be Processed in the Download Direction by the Access Point 6, 26
Mean Number of Web Page Bits Waiting to Be Processed for Routing in the Download Direction 6, 13
Mean Number of Web Page Bits Waiting to Be Processed in the Upload Direction 6, 68
Mean Number of Web Page Bits Waiting for Routing in the Download Direction by the Internet Router 6, 28
Mean Number of Wireless Packet Bits Being Processed in the Upload Direction by the Access Point 6, 25
Mean Number of Wireless Packet Bits Being Routed in the Upload Direction 6, 28
Mean Number of Wireless Packet Bits Processed for Translation by the DNS 6, 30
Mean Number of Wireless Packet Bits Waiting for Routing in the Upload Direction by the Internet Router 6, 28
Mean Number of Wireless Packet Bits Waiting to Be Processed in the Upload Direction by the Access Point 6, 25
Mean Number of Wireless Packet Bits Waiting for Translation by the DNS 6, 30
Mean Packet Upload Time 6, 8
Mean Processing Time 6, 16
Mean Processing Time for the DNS to Translate a Wireless Packet Name to an IP Address 6, 29
Mean Relative Error (MRE) 11, 9; 14, 89
Mean Response Time Difference 4, 19
Mean Sequence Reliability Values 7, 6
Mean Square Error Between the Actual and Predicted Cumulative Failures 13, 6
Mean Squared Error (MSE) Between Actual (Historical) and Predicted Reliability 12, 13
Mean Time a Web Page Requested by a Wireless Packet Spends Being Processed for Routing by the Internet Router in the Download Direction 6, 27
Mean Time a Wireless Packet Must Wait in the DNS Queue Prior to Name to IP Address Translation 6, 29
Mean Time a Wireless Packet Spends Being Processed for Routing by the Internet Router in the Upload Direction 6, 26
Mean Time a Wireless Packet Spends Waiting to Be Processed for Routing by the Internet Router in the Download Direction 6, 27
Mean Time a Wireless Packet Spends Waiting to Be Processed for Routing by the Internet Router in the Upload Direction 6, 27
Mean Time to Failure (MTTF) 13, 16
Mean Upload Packet Processing Time 6, 67
Mean Upload Packet Time 6, 65
Mean Upload Processing Time 6, 9
Mean Upload Service Time 6, 66
Mean Upload Time from Buffer of Wireless Packet to DNS 6, 29
Mean Upload Wait Time 6, 9
Mean Value of Failure Rates 12, 16
Mean Value of Parameter 12, 17
Mean Wait Time 6, 16
Mean Web Page Download Time 6, 8
Mean Web Page Upload Wait Time 6, 68
Mean Wireless Packet Upload Time 6, 23
Measurable Increase in Reliability 14, 1
Measured by the Difference Between the Correct Value and the Value Realized by D/A Conversion 3, 11
Measures for Predicting Reliability 14, 3
Measuring Current Risk 11, 9
Measuring Prediction Accuracy 8, 22
Mechanical Analog Computers 3, 1
Mechanism for Sharing Context Information 15, 13
Medium Severity When the Recovery Requires Reboot or Battery Removal 15, 6
Memory 1, 3
Memory Capacity 16, 3
Memory Enable Control Line 1, 11
Memory Failure 12, 14
Memory Management 10, 1
Memory Management Problems 15, 4
Memory-Mapping the RAM 1, 14
Memory System Performance 1, 12
Memory Violations Are the Cause of the Majority of Failures 15, 7
Message Logging Algorithms 15, 5
Message Processing Design 1, 64
Message Transmission Rate as Queue Arrival Rate 16, 3
Method: Operation on an Object That Is Part of the Declaration of a Class 17, 11
Method for Analyzing Computer Program Reliability 9, 5
Method of I/O Communication 3, 7
Methods for Improving Reliability 8, 23
Metropolitan Area Network (MAN) Distance Ranges Are 3–8 km 7, 12
Microcomputer Clock Rate 10, 9
Microcomputer Input-Output (I/O) Applications 3, 7
Microprocessor Design 1, 3
Microprocessor with Sufficient Speed (Clock Rate) to Satisfy Response Time Requirement 4, 11
Mid-Term Scheduler 10, 7
Migratory Service Incorporates All the State Information 16, 24
Minimization of States 1, 57
Minimum Acceptable Level of Coverage 17, 17
Minimum Link Capacity 15, 14
Minimum Data Rates of: 144 kbps in Vehicular Environment, 384 kbps in Pedestrian Environment, and 2 Mbps in Indoor Office Environment 7, 13
Minimum Rate of Change over Successive Test Intervals 13, 4
Minimum Response Time Service Request 4, 19
Minimum Test Time 11, 8
Mission Critical Application 12, 6
Mission Critical Application Where The Reliability Must Be High 13, 9
Mission Duration 11, 2; 16, 11
Mission Duration Where Predicted Reliability No Longer Achieves Specified Reliability 13, 8
Mission Reliability Requirement 12, 16
Mission Success 11, 10
Mission Threatening Failures 11, 10
Mitigate the Risk of Software Failure 12, 12
Mix of Abstraction and Operational Detail Views 4, 2
Mobile Ad Hoc Networks 15, 1
Mobile Device 6, 2
Mobile Device Context Awareness 15, 12
Mobile Device Empirical Probabilities of Failure and Recovery 16, 7
Mobile Device Failure 15, 5
Mobile Device Failure Characteristics 16, 6
Mobile Device Is Subject to an Input Failure 16, 16
Mobile Device Manufacturers Should Improve the Quality of Their Recovery Action Software 16, 16
Mobile Device Model Must Account for Context and Migration 16, 24
Mobile Device Operating Time 16, 11
Mobile Device Performance 15, 1
Mobile Device Reliability 15, 3; 16, 1
Mobile Device Reliability Is Only Satisfactory for the First Few Months of Operation 15, 16
Mobile Device Reliability Model 16, 7
Mobile Device Scenario 15, 12
Mobile Device Software Development Process 16, 16
Mobile Device Software Reliability 15, 1
Mobile Device Software Reliability and Testing 16, 1
Mobile Device Tasks Are Susceptible to Errors 16, 3
Mobile Device Testing Effectiveness 16, 12
Mobile Devices Are Multimedia-Enabled 15, 14
Mobile Devices Did Not, in General, Meet Requirements 16, 17
Mobile Devices Have Unique Characteristics 16, 3
Mobile Devices Need Improved Reliability Even After Responding to a Failure 16, 16
Mobile Devices Operate in a Hostile Communications Environment 16, 1
Mobile Devices Should Be Improved so That They Are Really Usable by Customers 16, 17
Mobile Environment Involves Many Software and Hardware Components and Technologies 15, 1
Mobile Memory Cache 15, 18
Mobile Meter Reader Can Be Automatically Connected to an Operational Sub Station 16, 24
Mobile Network Data 15, 15
Mobile Network Reliability, Performance, and Context and Network Awareness 15, 1
Mobile Network Stability 15, 1
Mobile Networks Can Adapt to Changing Conditions 15, 16
Mobile Networks Could Respond to Changes in Both Context and Network Awareness 15, 1
Mobile Phone Failure Data 15, 1
Mobile Phone Failure Data Reported 16, 1
Mobile Phone Performance Assessment 15, 15
Mobile Phone Software 15, 15
Mobile Process Can Involve Context Aware Migratory Tasks 16, 12
Mobile Scenarios 15, 12
Mobile vs. Non-Mobile Applications 15, 12
Mobility-Related Reliability 16, 1
Model (e.g., Poisson Failure Model) 17, 12
Model: Representation of Objects, Functions, Limits, Parameters, Variables, and Equations 17, 5
Model-Based Software Development Has Been Shown to Be a Promising Approach to Real-Time Design Problems 4, 2
Model Capable of Representing Both Sequential and Concurrent Interactions Between Objects 17, 3
Model Combines Hardware, Software, and Their Interactions 12, 13
Model Development 8, 6
Model Is Provided for Developing Test Strategies 17, 20
Model Limitations 16, 10
Model the Problem Being Solved 3, 1
Model of Reliability Based on the Signal to Noise Ratio 16, 7
Model the Reliability of Web Systems 14, 1
Model States, Events, Actions, and State Transitions 17, 10
Model Tasks 8, 2
Model Uses Multiple Executing Servers, Each Processing User Requests Concurrently 6, 2
Modeled Using Equations 3, 1
Modeling Method Has Two Major Components 17, 12
Modeling Path Maintainability and Availability 9, 8
Modeling Reliability and Testing 16, 3
Modeling Various Failure Rate Patterns 12
Models Are Built to Seek an Understanding of the Requirements or to Specify the Systems to Be Built 17, 4
Models Are Evolved by Learning 13, 1
Models of Interconnection Structure 13, 1
Models of Neurons 13, 1
Modularity: Produce Modules That Have Well-Defined Functions and Interfaces That Can Easily Interconnect 4, 4
Modularize Complex Programs and Make the Maintenance and Understanding of such Programs Easier 17, 5
Module Device Failure Data Generated from Test Results 16, 12
Module Failed 15, 5
Modules with Failure Types Associated with Negative Feedback Should Receive Priority Attention 16, 10
Monitor the Environment 15, 12
Monitoring Risk Status 11, 9
Monotonicity 3, 11
More Active Users lead to Fewer Available Communication Timeslots 16, 4
Most Important Factor Is the Quality of the Personnel Developing the Software 17, 19
Movement Away from the Servers
Currently in Use, and Toward New Ones 16, 3
MTTF Is Well Understood in the Software Industry 13, 16
Multimedia Services 7, 12
Multiple Access Contention 15, 3
Multiple Applications Are Concurrently Executed 15, 14
Multiple Cell Phone Users at Various Locations 15, 6
Multiple Output Combinational Circuits 1, 24
Multiple Processors 12, 4
Multiple Threads of Control Caused by Concurrent Inputs 4, 4
Multiplexers 1, 36; 3, 1
Multiplexing Data and Address Signals 1, 13
Multiplying Component Reliabilities 12, 4
Multi-Processor Technology 12, 7
Myriad of Failures 14, 3
N Number of Operations on the Web Page 14, 16
NAND 1, 15
NASA Space Shuttle Flight Software OI6 Failure Data 17, 13
NASA Space Shuttle Operational Increment 11, 3
NASA Space Shuttle Software System 13, 5
Nature of Web Service Client 14, 3
Negative Feedback Is Needed to Correct Modules 16, 10
Negative Reliability 16, 10
Network Application 5, 4
Network Architecture 5, 1
Network-Aware Applications 15, 14
Network Awareness Approach 15, 16
Network Connections 15, 12
Network Connection Types of the Device 15, 13
Network Connectivity and Locations 16, 3
Network Efficiency 7, 1
Network Failures 14, 5
Network Firewall 15, 1
Network Is Trained 13, 3
Network Metrics 8, 1
Network Performance Evaluation Model 7, 2
Network Performance Parameters Data 5, 13
Network Performance Variations 15, 14
Network Standards Do Not Address the Software Compatibility Issue 7, 9
Network Standards Should Focus on Local Networks 7, 6
Network Times 8, 3
Network Usage Data 6, 3
Network Users Must Insist on Receiving Compatibility Information 7, 9
Networked Data Storage Facilities 15, 15
Networking Interfaces 15, 15
Networks Learning from a Teacher 13, 18
Neural Network and Parameter Evaluation Methods 13, 9
Neural Network Criterion 13, 11
Neural Network Criterion Limit 13, 5
Neural Network Criterion Method Involves Lower Reliability Risk at Higher Values of Reliability 13, 9
Neural Network Learning 13, 2
Neural Network Prediction Criterion 13, 18
Neural Networks 13, 1
Neural Networks Applied to Fault Localization 13, 3
Neural Networks Applied to Software Reliability Assessment 13, 3
New Critical Applications Emerge for Mobile Phones 15, 3
New Requirements Could Introduce Performance Problems 15, 15
New Security Threats 15, 1
New Specifications to Provide More Bandwidth or QoS-Related Parameters and Interfaces 7, 12
No Comparable Features of the O-O Approach 17, 3
No One Size Fits All Solution to the Problem of Selecting the Appropriate Software Development Paradigm 17, 18
No Test Strategy Is Perfect, Including McCabe’s 17, 17
Node and Link Operating Times 8, 7
Node and Link Sequences Consistency 7, 9
Node and Link System Reliability 14, 9
Node Probability of Being Busy 5, 10
Nodes (Program Functions While, If, Else, Set, Read, Write, Store, and Compute) 17, 13
Nodes and Links 8, 2
Nodes and Their Associated Links Process the Same Quantity of Data 7, 8
Noise 3, 5
Noise (# of Failed Modules) 16, 7
Noise Could Be Represented by Number of Unsuccessful Web Search Results 16, 10
Noise Suppression Process 16, 10
Non-Compatibility Result Is Recorded If the Signal Is Not Received 7, 14
Non-Functional Properties 14, 2
Nonlinearity Distortion 3, 12
NOR 1, 17
NOT 1, 15
Not Capable of Properly Representing Concurrent Interactions 17, 3
Novel Signal to Noise Ratio 15, 1
Number of Components in a System 12, 4
Number of Components That Do Not Fail 12, 8
Number of Correct Modules (Signal) 16, 8
Number of Correct Modules Based on Recovery Action 16, 9
Number of Correct Software Modules 16, 1
Number of Days Since the Software Was Released by the Contractor to NASA 17, 13
Number of Edges (Branches) and Number Of Nodes (Statements) in the Directed Graph Representation of a Program 17, 17
Number of Encoding Bits 3, 6
Number of Errors on a Web Page 14, 16
Number of Failed Components 12, 9
Number of Failed Modules (Noise) 16, 1
Number of Failed Software Modules 16, 8
Number of Failure Counts 12, 15
Number of Failures 11, 6; 12, 11
Number of Failures Expected in Node or Link 7, 5
Number of Failures in Test Interval 13, 12
Number of Failures Remaining 11, 8
Number of Hard Disk Accesses 1, 12
Number of Independent Paths in a Computer Program 17, 2
Number of Independent Paths Interconnecting Web Clients with Web Servers 14, 2
Number of Instructions Executed 10, 9
Number of Page Transfers from Secondary Storage 10, 13
Number of Possible Output Levels the D/A Is Designed to Reproduce 3, 10
Number of Processors 12, 4
Number of Processors That Do Not Fail 12, 5
Number of Programs Allocated Time Slices 10, 4
Number of Responses to Service Requests Required in Operational Time 4, 19
Number of Sessions 14, 11
Number of User Web Sessions 14, 11
Number of Ways Web Clients and Servers Could Fail 14, 22
N-Version Redundancy Model for Web Services 14, 2
Nyquist–Shannon Sampling Theorem 3, 11
Object 12, 13
Object: In a Computer Program, Any Entity That Can Execute in a Computer 17, 1
Object: The Focus of Attention 17, 5
Object-Based Design Is Suitable for Distributed, Parallel, or Sequential Implementation 17, 4
Object Interrupt Processing Would Include Instructions for Processing an Interrupt 17, 2
Object-Math, Which Is a High-Level Programming Environment with a Modeling Language 17, 3
Object Math Focuses on Mathematical Modeling Rather Than Object-Oriented Programming 17, 3
Object Math Language Augments Mathematica with Classes and Other Object-Oriented Language Constructs 17, 3
Object-Oriented Analysis and Design Is Quite Appropriate 17, 19
Object-Oriented Approach vs. Mathematics 17, 3
Object-Oriented Design 9, 4
Object-Oriented Diagrams Are Useful for Providing High-Level Visibility of Computer Program Structure 17, 1
Objects 9, 4
Objects Correspond More Closely to the Products and Processes in the Conceptual Worlds of the Designer and User 17, 4
Objects Failure Count, Failure Time, and Failure Rate 17, 12
Objects Have Two Characteristics: State and Behavior 17, 8
Objects in the Elevator System Are User, System Controller, System Storage, Operations, and Error Control 4, 3
Objects also Possess Attributes 17, 8
Observed Failure Count 13, 15
Observed Failure Data 13, 4
Observing How an Elevator Operates (e.g., Processing Service Requests) 4, 2
On-Demand Movie Streaming and Video Conferencing 15, 2
Only One Failure Type – Input – Has Acceptable Reliability 16, 12
O-O Approach: Sequence Diagram Can Be Used to Identify Program Steps 17, 12
O-O Approach Is Compatible with Developing an Elevator System or Web Site 17, 3
O-O Approach Will Be Used to Model Facets of Software Reliability Models 17, 3
O-O Can Be Effective for Reengineering 17, 4
O-O Can Be Used for Transforming the States of Legacy Software to O-O Software 17, 4
O-O Concepts Applied to Poisson Failure Model 17, 8
O-O Is Highly Abstract 17, 3
O-O Paradigm: Data Is Sometimes Relegated to an Obscure Role That Has Nothing to Do with the Collection and Processing of Raw Data 17, 13
O-O Provides Various Views of a Software System That Are Useful for Understanding and Maintaining Code 17, 4
O-O Representation of the Poisson Failure Model 17, 8
Open Standards Are More Popular Than Proprietary Ones 7, 10
Open Standards Are Useful for Helping to Mitigate the Problem of Software Compatibility 7, 10
Operate Faster, More Reliably, and with Improved Security 6, 1
Operate in Multiple Environments 7, 13
Operating Characteristics of a Component 12, 2
Operating Context (OC) 15, 13
Operating Environmental Conditions 13, 1
Operating and Security System Property 17, 4
Operating System 1, 10
Operating System Architecture 10, 1
Operating System Characteristics 10, 6
Operating System Issues 10, 1
Operating System Performance Evaluation 10, 4
Operating System Reliability Evaluation 10, 5
Operating Time 12, 3; 14, 11
Operating Time during Which a Specified Reliability Requirement Is Achieved 15, 3
Operating Time during Which a Specified Reliability Requirement Is to Be Achieved 16, 11
Operating Times 12, 9
Operational Amplifier 3, 3
Operational Amplifier Amplification Capability 3, 5
Operational Amplifier May Fail to Produce a Correct Amplification of the Signal Produced by the Sensor Output 3, 13
Operational Mode 12, 2
Operational Phase 12, 3
Operational Requirement 12, 4
Operational Time 4, 19; 15, 1
Operational Usage 11, 2
Operations in the Real World Network 7, 6
Operations Schedule 4, 3
Operations That Must Meet Deadlines 4, 1
Opportunities to Improve Personalized Applications 15, 12
Optimal Amount of Test Time 13, 7
Optimal Combination of Methods 17, 19
Optimal for Terminating Testing and Releasing the Software System 13, 5
Optimal Web Service 14, 1
Optimistic Message Logging Has a Lower Failure-Free Operation Cost 15, 5
Optimize the Performance and Cost According to Different Requirements 7, 11
OR 1, 16
Output Data 9, 4
Output Failure 15, 4; 16, 6
Output Failures Are Low Severity 15, 6; 16, 6
Output Failures Are Often Due to a Temporary Software Corrupted State 15, 6; 16, 7
Output Processing State 4, 11
Outputs 13, 1
Outputs That Result from Each Step 17, 19
Overall Failure Rate 14, 16
Overall Sequence Reliability Metric 7, 1
Overhead of Algorithms 12, 13
Overhead Induced by a Multiplicity of Protocols, Intermediate Networks, and Interfaces 6, 1
Packet Bits Translated from Name to IP Address by the DNS and Waiting for Translation 6, 49
Packet Length Bits Being Routed and Waiting for Routing by Local Network Router 6, 45
Packet Lengths Being Processed and Waiting for Processing by Local Network 6, 44
Page Cost 10, 13
Page Transfer Time 10, 13
Paging Rate 10, 13
Paradigm Transforms the Internet 14, 1
Paradigm of Web Services 14, 1
Parallel and Combined Series-Parallel Reliability Models 12, 15
Parallel Component 12, 1
Parallel Hardware Redundancy 12, 12
Parallel Multi-Processor-Memory Systems 12, 7
Parallel Redundancy 12, 5
Parameter: A Model Numerical Factor Estimated from Data 17, 5
Parameter Can Be Tuned 15, 15
Parameter Estimation Methods 13, 4
Parameters 12, 15
Parameters of Network Quality 15, 14
Parameters of the Prediction Model 13, 4
Parameters of the Weibull Distribution 14, 7
Parity Error Detection 2, 8
Path 8, 2
Pattern Recognition 13, 1
Patterns of Failure Data 14, 6
Patterns of Probability of Failure Across Systems 14, 6
Peak Data Rates May Only Be Realized in Favorable Channel Conditions 7, 12
Perfect Mathematical Programming Environment Would Automatically Transform Systems of Equations into Efficient Symbolic and Numerical Programs 17, 2
Perform Tests Designed to Ensure the Networks Adhere to Proposed and Existing Standards 7, 14
Performance 1, 6; 15, 1
Performance Analysis of Proposed Future Wired Internet 6, 65
Performance Assessment 15, 15
Performance Attribute of a Mobile Network 15, 15
Performance Evaluation 14, 1
Performance Is an Important Quality Attribute of a Software System 15, 15
Performance Methodology 7, 13
Performance Metrics 4, 23
Performance and Reliability of Present and Proposed Internets 6, 1
Performance of Web Browsing 14, 4
Performs Ancillary Services on Behalf of the Web Server 14, 4
Period Is the Duration of One Cycle in a Repeating Event 3, 11
Period Is the Reciprocal of the Frequency 3, 11
Periodic Real-Time Independent Tasks with Known Periods and Worst Case Execution Times 4, 3
Periods of Operation and Execution Times That Are Driven Asynchronously by Inputs That Occur at Unpredictable Times 4, 3
Permanent Connections Are Not Guaranteed 15, 12
Permanent Hardware Failure 12, 14
Personal Area Network (PAN) Distance Ranges Are 10 Meters 7, 12
Personal Mobile Devices Will Become Ingredients of Other Infrastructures, such as the Electric Grid 16, 24
Personnel Management Risks 11, 2
Phase of Development 17, 18
Phase Distortion 3, 11
Phase Distortion Is Measured by the Difference Between the Correct Phase and the Phase That Is Reproduced at the Output of the D/A Converter 3, 11
Phase of the Voltage Sine Wave Sensed in the A/D Converter May Not Be Faithfully Reproduced at the Output of the D/A Converter 3, 11
Phone Failure Affecting the Application 15, 3
Phone Freezes Are Medium Severity 15, 6
Phone Freezes Are Medium Severity 16, 6
Phone Often Does Not Respond to the Power On/Off Button 15, 5
Phone’s Activity 15, 5
Phones Are Discarded Every 18 Months 15, 7
Physical Mobile Device System 16, 1
Piconet Consists of One Master Node and up to 7 Slave Nodes 7, 13
Pipeline Efficiency 1, 9
Pipeline System Delay 1, 9
Pipelined Systems 1, 8
Planned Mission Duration 11, 4
Planned Risk 11, 9
Platform-Independent Design 4, 2
Plot of the Output Signal vs. the Input Signal Is Not a Straight Line 3, 11
Pointer to the First Interrupt Processing Instruction in Memory 17, 2
Poisson Failure Count Model 12, 4
Poisson Failure Model Class Diagram 17, 11
Poisson Failure Model Object Is Executed (State) 17, 8
Poisson Failure Model Process Activity Diagram 17, 19
Poisson Failure Occurrence Model and Its Associated Function, Reliability 17, 6
Poisson Probability of Failure 12, 9
Poor Reliability and Performance 15, 3
Position of Clients and Servers 14, 2
Possibilities for Saving Power 15, 2
Power Loss 15, 2
Power Monitoring 15, 2
Power Disruptions 3, 9
Power Saving on Mobile VOIP Devices 15, 12
Power Requirements, Distance Ranges, Data Rates, and Carrier Frequencies 7, 11
Power Usage Reported at the Failed Sub Station Before It Failed 16, 24
Practical Methods for Designing and Evaluating Network Standards 7, 1
Practice of Postponing All Consideration of So-Called “Platform Issues” Until the Application Logic of the Software Has Been Satisfactorily Designed 4, 2
Precise Description and Common Understanding of the Semantics, as well as the Relations Between the Various UML Diagrams for the Description of Software Systems, Is Missing 17, 4
Precision of a Digital Computer 3, 6
Precision of the Readout Equipment 3, 6
Predict Component Reliabilities 14, 22
Predict the Operating Time-Oriented Reliability of Software, Hardware, and System 14, 12
Predict Reliability at the End of the Mission Duration 13, 8
Predict Reliability over a Specified Operating Time of the Mobile Device 16, 11
Predict Reliability Risk 13, 13
Predict the Required Failure Rate That Is Necessary to Achieve Required Reliability 14, 11
Predict Software Reliability 17, 1
Predict the Test Time Required to Achieve Specified Reliability 13, 10
Predict Total Web System Reliability 14, 4
| Predicted Cumulative Failures | 13, 3 |
| Predicted Quantity | 13, 12 |
| Predicted Reliabilities into Conformance with Required Reliability | 14, 12 |
| Predicted Reliability | 11, 1 |
| Predicted System Reliability | 12, 15 |
| Predicted Time to Failure | 11, 2 |
| Predicted Value Is Less Than the Mission Duration | 13, 15 |
| Predicting Client Side Probability of Failure | 14, 3 |
| Predicting Cumulative Failures | 13, 5 |
| Predicting the Duration of Operating Time | 12, 4 |
| Predicting Sequence Storage Capacity Requirements | 7, 9 |
| Predicting Total Web System Reliability | 14, 4 |
| Prediction Accuracy | 13, 6 |
| Prediction Accuracy of Software, Hardware, and System | 14, 10 |
| Prediction Error | 12, 16; 13, 13 |
| Prediction Less Than the Mission Duration Poses a Risk | 13, 15 |
| Prediction Lower Error | 13, 8 |
| Prediction Results | 11, 8 |
| Predictions as a Function of Web Server Operating Time | 14, 11 |
| Predictive Validity | 12, 11 |
| Principles of Real-Time System Design | 4, 25 |
| Present Internet Wired Logic Sequences for Upload and Download | 6, 8 |
| Present Internet Wireless Backbone | 6, 23 |
| Present Wired Internet System | 6, 62 |
| Present Wireless Internet System | 6, 63 |
| Prime Implicant | 1, 21 |
| Prioritize the Components for Reliability Improvement | 14, 18 |
| Probabilities | 8, 4 |
| Probabilities of Failure | 8, 8 |
| Probabilities of a Recovery Action, Given a Failure Type, Are Independent | 16, 7 |
| Probabilities of State Transitions | 14, 9 |
| Probability of Access Point Being Busy | 6, 24 |
| Probability of Additional Failures | 12, 19 |
| Probability of Being Busy | 6, 66 |
| Probability of Completing Service Request | 4 |
| Probability Density Function | 17, 5 |
| Probability of Domain Name System Being Busy | 6, 16 |
| Probability of Failure | 12, 4; 15, 6 |
| Probability of Failure Across the Failure Types | 16, 8 |
| Probability of Failure Analysis Results | 8, 18 |
| Probability of Failure Has Stabilized | 14, 11 |
| Probability of Failure Metric | 12, 18 |
| Probability of Failure Model | 14, 16 |
| Probability of Failure of Web Server Systems | 14, 11 |
| Probability of Failures Occurring | 12, 4 |
| Probability of Internet Router Being Busy | 6, 13 |
| Probability of Internet Router Being Busy Processing Wireless Packet | 6, 26 |
| Probability of Local Network Router Being Busy | 6, 11 |
| Probability of Multiple Component Failures | 12, 9 |
| Probability of Multiple Failed Components | 12, 9 |
| Probability of the Next State in a Process Is Only Dependent on the Present State | 15, 6 |
| Probability of One or More Failures | 15, 7 |
| Probability of Queue Being Busy | 6, 8 |
| Probability of Recovery Action | 16, 7 |
| Probability of a Specified Number of Failures Occurring | 12, 11 |
| Probability Was the Ratio of the Quantity of Data Processed by a Given Link or Node to the Total Quantity of Data Processed at All Links and Nodes in the Network | 7, 8 |
| Probability of Web Server Being Busy | 6, 30 |
| Problem of Maintaining Adequate Power in a Mobile Network | 15, 1 |
| Problem Occurs When, e.g., a 1 Volt Difference in the A/D Converter Does Not Result in a 1 Bit Problem Occurs When the Original Phase of a Signal in the Input of The A/D Converter Is Not Faithfully Reproduced in the Output of the D/A Converter | 3, 11 |
| Difference in the Digital Encoding | 3, 11 |
Quantizing Analog Signal 3, 5
Quantizing Error Is the Inverse of the A/D
Quantizing Error 3, 11
Quantizing Errors 3, 5
Quantizing Step Size for Analog to Digital
Conversion 3, 6
Question the Utility of Existing Standards 7, 1
Queue Efficiency 6, 49
Queuing Model (Present Internet System) 6, 6
Quickly Develop and Deploy Web
Applications 14, 1
Quine McCluskey Method 1, 21
Radio Frequency (RF) Interference 15, 3
Random Access Memory 1, 10
Random Hardware and Software Failures 12, 1
Random Number Generator 14, 9
Range 7, 1
Range of Access Points 15, 12
Range Limitations 3, 5
Range Required by Mobile Device in
Wireless Network 7, 14
Range Where the Converted Voltage Is
Either Too High or Too Low 3, 12
Rank Quality for the Purpose Prioritizing
the Test Effort 17, 17
Rapid Development 17, 4
Rate of Change of Actual Cumulative
Failures Is Minimum 13, 5
Rate of Change Between Reliability and
Test Time 13, 2
Rate of Change of a Function 13, 2
Rate of Change Is Minimum 13, 2
Rate of Change of Reliability 14, 16
Rate of Change of Web Client and Server
Predicted Reliability 14, 25
Rate of Data Transfer 15, 14
Ratio of the Change in Noise (Number of
Corrected Failed Modules) to the Total
Number of Modules 16, 12
Ratio of Reliability (Signal) to Unreliability
(Noise) 15, 15
RC Circuit 3, 4
Read Failure Count 17, 11
Read Only Memory 1, 10
Read/Write Control Line 1, 11
Real-Time Control Hardware and Software
Has Been Applied to a Wide Variety of
Real-World Systems 4, 1
Real-Time Module Topology Is Essentially
Flat 4, 4
Real-Time Operational Mode 12, 13
Real-Time Scheduler Scheduling Efficiency
10, 10
Real-Time Software Has to Satisfy a Set of
Stringent Nonfunctional Requirements 4, 2
Real-Time Software Is Particularly Difficult
to Design 4, 2
Real-Time System 12, 12
Real-Time System Hierarchies Are Rare Or
Non-Existent 4, 4
Real-Time System Properties 4, 1; 5
Real-Time System Requirements 4, 5
Real-Time System Scheduling 10, 10
Real-Time Systems Are Comprised of
Heterogeneous Components Including
Sensors, Microprocessors, and Actuators
4, 1
Real-Time Systems Are One-of-a-Kind;
They Are Not Mass Produced 4, 4
Real-Time Systems Do Not Have the
Luxury of Inputting Data When
Convenient for the Microprocessor 4, 12
Real-World Failure Data 14, 1
Reboot 15, 5; 16, 5
Rebooting Occurs Only in 2.36% of the
Freeze Failures 16, 6
Reboots Are an Effective Way to Recover
from Output Failures 15, 6; 16, 7
Received Signal Strength (RSS) 15, 12; 16, 1
Receiver Sensitivity in the Phone 15, 15
Recover from Faults 12, 5
Recover the Message from the Centralized
Mobile Station 15, 5
Recovered by Simply Waiting for the Phone
to Respond 15, 6
Recovering from Faults 12, 5
Recovery Action 15, 1
Recovery Action Characteristics 16, 5
Recovery Action Reliability Lags the Input
Failure Reliability 16, 16
Recovery Action Testing Takes Less Time
Than Failure Type Testing 16, 17
Index

585

Recovery Action Types Below The Limit
Need Attention to Identify Why the
Recovery Software Is Not Able to
Provide Effective Recovery 16, 8
Recovery Actions Are Deficient 16, 16
Recovery Actions Produce the Highest
Reliability 16, 9
Recovery Type Testing Is Based on Test
Cases Under the Control of the Tester
16, 17
Reduce the Failure Rate to a Value That
Will Achieve the Required Reliability
14, 11
Reduced Failure Rates 14, 12
Reduced Instruction Set Computing 1, 6
Reduced Instruction Set Computing (RISC)
Architecture Requires Several Operations
to Execute a Single Instruction 4, 1
Reduced Noise Accomplished Through
Testing of Failure Type 16, 12
Reduced Number of Failed Modules 16, 12
Reducing the S/N of the Wireless
Communications 15, 3
Reduction in Number of Failed Modules
16, 14
Reduction in Web Server Faults 14, 12
Redundancy 12, 1
Refining Predictions 11, 9
Register 1, 1
Regularity: Find Modules with Common
Functions (i.e., Interchangeable Parts) 4, 4
Relationship Between Failures, Recovery
Actions, and Reliability 16, 7
Relationship among Inputs, Flip-Flops, and
Output States 1, 54
Relationship Between Inputs and Outputs
13, 2
Relationship Between Objects Must Be
Designed with Great Care 17, 12
Relationship Between O-O Attributes and
the Modeling of Physical Systems 17, 1
Relationship Is Not Obvious for Modeling
Mathematical Software 17, 1
Relevance of Search Results 14, 20
Reliabilities 8, 4
Reliability 2, 4; 6, 1; 7, 1; 11, 1; 13, 1; 14, 1; 15, 1
Reliability Activation Function 13, 7
Reliability Analysis Based on Web Systems
14, 10
Reliability Analysis of GPRS Has General
Applicability 16, 4
Reliability Analysis Results 8, 20; 12, 1
Reliability Based on Recovery Action Type
16, 9
Reliability Benefit-Cost Ratio 12, 1
Reliability Calculations 15, 6
Reliability of the Connection and the
Performance of the Device 16, 3
Reliability Criterion Limit 13, 7
Reliability Decreasing with Operating Time
16, 11
Reliability, Derived from the Poisson
Failure Model, Is Reasonable Based on
the Software That the Model Represents
17, 17
Reliability Estimation 13, 1
Reliability Evaluation 12, 9; 13, 7
Reliability as a Function of Module Count
16, 11
Reliability as a Function of Recovery
Action Type 16, 9
Reliability Goal 11, 1; 12, 16; 11, 1; 14, 1
Reliability Growth 16, 11
Reliability Has Been Predicted Using
Network Entities Called Sequences 7, 8
Reliability of Individual Components 12, 5;
14, 18
Reliability Is Assessed Following a
Successful Time Test by Using Test
Software That Computes the Required
Reliability 7, 13
Reliability Is Based on the Sequence
Failure Rate and the Node or Link Times
7, 6
Reliability Is Not an Additive Function 13, 7
Reliability Is the Primary Metric 14, 7
Reliability Limit Criterion 13, 7
Reliability Logic 12, 2
Reliability, Maintainability, and Availability
That Are Not Quantified in Existing
Standards 7, 15
Reliability of a Mobile Device 16, 7
Reliability of a Mobile Device Will
Decrease Nonlinearly with the Amount of
Interactive Processing 16, 10
Reliability Model Based on the Signal to Noise Ratio 16, 8
Reliability Model Parameter Estimation Method 13, 18
Reliability Model for Worst Case Analysis 16, 4
Reliability Modeling 12, 12
Reliability Models for Assessing Mobile Network Reliability 15, 1
Reliability Models Can Be Refined 12, 13
Reliability Objective 13, 4
Reliability of a Parallel Configuration 12, 12
Reliability Parameter 13, 7
Reliability Performance 14, 18
Reliability Prediction 7; 13, 3
Reliability Prediction Models for Assessing the Software, Hardware, and System Quality of a Web System 14, 2
Reliability Prediction Process 7, 3
Reliability Predictions Influence the Selection of Test Cases 16, 12
Reliability Required to Achieve the Mission Duration 13, 9
Reliability Requirement 11, 4
Reliability Risk 13, 9
Reliability Risk Criteria 11, 4
Reliability of a Series Configuration 12, 3
Reliability of Web Services 14, 1
Reliability of Web System Communication and the Interconnected Components 14, 2
Reliability When n Out of N Components Fail 12, 4
Reliable Application Software 16, 3
Reliable Messaging Technology of Web Services 14, 2
Remaining Failures 11, 1; 13, 12
Remaining Failures Analysis Results 8, 20
Remaining Failures Criterion 11, 8
Remaining Failures Is a Decreasing Function 13, 12
Remaining Failures Requirement 11, 9
Remaining Failures Risk 11, 8
Removing Faults and Failures 8, 5
Remove Battery 15, 5; 16, 6
Remove Faults 14, 11
Repeat the Action 15, 5; 16, 6
Repeat the Execution of an Equation 17, 3
Repeating the Action Is Often Sufficient to Restore a Correct Device Operation 15, 6; 16, 6
Reported Failure Data 15, 3
Repository of Data 14, 1
Repository of Services 14, 1
Represent Failure Severity in the Computation of Expected Number of Failed Modules 16, 9
Represent the Generic View of the Application Design 4, 25
Representative Failure Data 14, 5
Representative of the Web Environment 14, 5
Requests for Web Pages 7, 9
Required Changes Are Localized 17, 4
Required Failure Rate Reduction 12, 16
Required Reliability 11, 2; 14, 11
Required Reliability at a Reasonable Cost 12, 16
Required Reliability Is Satisfied for Only a Limited Range of Operating Time 14, 18
Required Response Time 4, 19
Required Sampling Frequency Is the Desired Signal Frequency Emanating from the Input Analog Voltage 3, 14
Requirement Implementation 17, 5
Requirement Management Risks 11, 2
Requirements 11, 4
Requirements for an Architecture to Support Context-Awareness 15, 12
Requirements such as Reliability Specifications and the Means for Testing Reliability, Are Largely Absent from Current Standards 4, 1
Residual Failures 11, 3
Residual Faults 11, 2
Residual Problems 13, 12
Resolution 3, 10
Resolution Error Is Determined by the Smallest Change That Can Be Detected at the Sensor Output 3, 13
Resource Usage and Performance Risks 11, 2
Resource Utilization Is Increased 15, 14
Resources Needed for the Object to Function 17, 2
Response Time 10, 6
Response Time: Difference in Time Between Completion of Request and Initiation of Request 4, 3
Response Time Computation and Display 4, 16
Response Time Error Control Function 4, 16
Response Time Difference 4, 19
Response Time of Service Request 4, 19
Restrictions on Limited Processing Power 15, 12
Result Is Stored (Behavior) 17, 8
Results Based on Failure Rate Analysis 16, 12
Results of Digital Computation (Analog to Digital Voltage Conversion) 3, 10
Results That the Equations Must Achieve 17, 20
Resume the Interaction with the User When the Migration to a Different Node Has Completed 16, 24
Retrained to Deal with Minor Change 13, 1
Return Address of the Instruction 17, 2
Reusability Characterization 13
Revising Probabilities of Remaining Failures Based on Fault And Failure Correction 8, 15
Revising Reliabilities Based on Fault And Failure Correction 8, 18
Rigorous Reliability Testing 14, 1
Risk Analysis 13, 1
Risk-Based Reliability Prediction 11, 4
Risk of Carrying Viruses and Other Malware 15, 1
Risk Control 11, 9
Risk Control and Mitigation 11, 9
Risk Criterion Metric 13, 15
Risk Evaluation 11, 1
Risk Function 13, 15
Risk Goal 11, 5
Risk of Mission Failure 11, 3
Risk of Power Loss 15, 2
Risk Trends Positive 13, 13
Risks of Operating Mobile Devices 15, 1
Risky Requirements 11, 4
Roadmap for Improving Real-Time System Design 4, 25
Robustness 15, 13
Routes Are Subject to Frequent Breakage 15, 3
Rule of Considering Real-World Operational Details during Abstract Design 4, 3
R-S Flip Flop 1, 42
Run Realistic Tests That Stress the Hardware and Software to Fail 16, 14
S/N Can Be Used to Rank the Reliability of Mobile Device Software 16, 10
S/N Can Be Used to Prioritize Software Modules for Testing 16, 13
S/N Influences Test Effectiveness 16, 1
S/N Limit 16, 16
S/N Ratio Is Computed and Test Software is Used to Compare the Required Ratio with the Ratio Actually Generated in the Network 7, 14
Safe Mission 11, 3
Safer, Lower Risk Alternative 13, 15
Safety Against Cost 11, 5
Safety of the Mission 11, 2
Sample Data 13, 1
Sample and Hold Circuit 3, 4
Sample and Hold Circuit Must Sample Input at a Rate at Least Twice the Frequency of the Input in Order to Produce the Desired Output 3, 14
Satisfy All the Functional Requirements and Timeliness Demands 4, 1
Satisfy Response Time Requirements 4, 25
Save Energy 15, 12
Schedule Test Time 13, 4
Scheduled Operating Times 12, 2
Scheduling Algorithms 10, 6
Scheduling Efficiency 10, 7
Scheduling Policy 10, 11
Scheduling and Timing Risks 11, 2
Schneidewind Software Reliability Model 11, 3; 13, 4
Secondary Storage Component 15, 15
Security 15, 1
Security Breach on the Device 15, 1
Select Personnel by Evaluating the Results for Accuracy, Reliability, and Quality of Design Documentation 17, 19
Select Solution Routines That Have Good Convergence Properties for the Given Problem 17, 2
Self-Shutdown 16, 5
Self-Shutdown (Silent Failure) 15, 4
Self-Shutdown and Unstable Behavior Are Considered to Be High-Severity Failures 16, 6
Self-Shutdown and Unstable Behavior Are High-Severity Failures 15, 6
Send Responses Back for the User 16, 3
Sense All Context Information 15, 13
Sensitivity Can Be Interpreted as Sensor Error 3, 12
Sensor Attached to Access Point Records the Range Between the Mobile Device and the Access Point 7, 14
Sensor Error Occurs When the Input Range Exceeds the Output Range 3, 13
Sensor Is a Device That Receives and Responds to a Signal 3, 12
Sensor’s Sensitivity Indicates How Much the Sensor’s Output Changes When the Measured Quantity Changes 3, 12
Separation of Application Concerns and Implementation 4, 2
Sequence Analysis 2, 10
Sequence Diagram Is an Interaction Diagram That Shows How Software Processes Operate with One Another and in What Order 17, 2
Sequence Diagrams Are Capable of Representing Sequential Interactions (e.g., Only a Single Elevator Floor Request at a Time) 17, 3
Sequence Diagrams Provide Both the Sequence of Model Operations on Data and the Sequence of Steps That Implement the Model Operations 17, 9
Sequence Diagrams Show the Sequence of Operations Between Objects and the Sequence of Program Steps That Are Required to Implement a Model 17, 9
Sequence Failure Rate 2, 11; 7, 5
Sequence of Fault and Failure Injection 7, 5
Sequence Input Rate 7, 9
Sequence of Interactions 14, 4
Sequence of Operations 12, 13
Sequence of Operations on the Network 6, 1
Sequence Probability 2, 10
Sequence Probability and Sequence Response Time Predictions and Analysis 2, 10
Sequence of the Reliability Simulation 7, 5
Sequence Relationships 2, 10
Sequence Response Time 2, 10
Sequences Associated with Local Network Components 7, 6
Sequential Circuits 1, 39
Sequential System 12, 2
Series Component 12, 2
Series Configuration 12, 3
Series-Parallel Configuration 12, 5
Series System Reliability 12, 3
Server Component Is the First in Line for Reliability Improvement 14, 18
Server Consists of Multiple Single-Threaded Processes, Each of Which Handles One Request at a Time 6, 2
Server-Side Problems 14, 16
Server Uses the Error Control Function to Increase the Clock Rate 4, 17
Service Performance 14
Service the Phone 15, 5; 16, 5
Service Requirements Impose Ordering on the Invocation of Operations 14, 3
Session and Presentation Layer Services 5, 7
Several Metrics of Real-Time System Performance Are Modeled and Evaluated 4, 1
Severe Reliability Problem Will Prevail Short of 18 Months 16, 17
Severity Levels Corresponding to the Difficulty of the Recovery Action(s) 15, 6; 16, 4
Severity Reflects Both Failure Type and Recovery Type 16, 9
Shape Parameter 12, 15
Shape of the Reliability Function 12, 15
Shared Data Areas Are Protected, Reducing the Possibility of Unexpected Modifications 17, 4
Shared, Noisy, Highly Variable, and Limited Wireless Communication Links 7, 12
Software Defined Device Provides Needed Functionality (e.g., Short Range to Long Range Communication) 16, 4
Software Demonstrating the Lowest Probability of Failure 14, 11
Software Developers Can Incorporate Compatibility into Standards 7, 10
Software Development Cycle 11, 4
Software Development Models for Mobile Devices to Communicate with the Electric Grid in a Collaborative Processing Mode 16, 24
Software Development Process 17, 19
Software Dimension 8, 2
Software, Due to Its Complexity, Has Caused More Problems Than Hardware 7, 9
Software Evolves and These Changes Can Negatively Affect Performance 15, 15
Software Failures 14, 5
Software Compatibility Standards Issue 7, 9
Software for Controlling a Nuclear Reactor 17, 1
Software Functions 4, 11
Software Has the Best Prediction Accuracy 14, 10
Software Inoperable 12
Software Is First Modeled Abstractly without Considering Its Execution Platform 4, 2
Software Is in Need of Significant Software Development Process Improvement to Reduce Failures 16, 8
Software Is Released 13, 4
Software Level 4, 5
Software Management Requiring Traceability among Software Products and the Process Steps That Produce Them 17, 4
Software Mobile Network Products 15, 3
Software Models That Deal with Mobile Devices 16, 1
Software Portability 15, 14
Software Product Logic 17, 19
Software Redundancy 12, 18
Software Reliability (Object) Must Achieve Its Specification (Task) during Test and Operating Time) 17, 5
Software Reliability Assessment Problem 13, 18
Software Reliability Improvement 13, 3
Software Reliability Prediction Metrics 13, 18
Software Reliability Profile Implementation 11, 3
Software Reliability Results 13, 11
Software Reliability Results Cannot Be Considered Representative 16, 10
Software Reuse and Support of Various Tools 17, 3
Software System Could Be Operated Safely 13, 15
Software System Designed with Procedures to an O-O Perspective 17, 4
Software Written in Event-Driven Style Typically Waits for an Event to Occur 4, 6
Software Would Never Be Able to Achieve a Specified Reliability 17, 18
Source of Failure Data 11, 3
Specified Critical Value 11
Specified Network Hardware and Software 7, 13
Specified Number of Failures 13, 15
Specified Number of Remaining Failures 13, 13
Specified Reliability 11, 1; 12, 4; 15, 1
Specified Reliability Requirement 16, 11
Specified Reliability Values 15, 1
Specifying a Requirement, While Neglecting to Provide a Rationale 7, 13
Spectrum Considerations 7, 13
SR Latch 1, 40
Stabilization Time 16, 3; 16, 1
Stabilization Time Is the Operating Time during Which Specified Reliability Is Achieved 15, 3
Stack 1, 4
Standard Communication Protocols 14, 2
Standard for Hardwired Networks 7, 10
Standard for the Recovery of Failed Web Services 14, 2
Standard Internet Protocols 14, 1
Standardization Simplifies Interoperability 14, 2
State Diagram: Diagram That Shows States and Transitions Between States 17, 2
State Diagrams Are Effective for Representing This Environment
State Machines to Model the Order of Web Service Operations
State of an Object Represents the Results of Its Behavior
State Transition Connects Two States
State Transition Probabilities
State Transition That Causes a Web Server to become Active
StateTransitions
State Transitions That Must Be Tested
Statement Execution Result
States and State Transitions Form the Core Processes
Static Part of the Mobile Device Is Its Hardware
Stationary Service Always Executes on the Same Node
Statistical Metrics to Compute and Predict Reliability for Illustrative Web Servers
Statistical Modeling Theory for the Evaluation of Web-Based System Reliability
Statistical Routine
Statistical Testing and Reliability Analysis
Steady State Reliability
Steps Necessary to Define the Components of the Model
Steps in Real-Time System Design
Storage
Storage (Digital Data Stored in Database)
Storage Architecture
Storage Capabilities
Storage Capacity Prediction
Storage Requirement Test Is Conducted with Test Software by Comparing the Database Capacity with the Web Page Storage Requirement
Storage Requirements Must Be Predicted
Storage System with Sufficient Capacity to Support the Input, Storage, and Output of Real-Time Transactions
Strategy Does a Good Job of Exercising Many, but Not All, of the Paths
Strength of Functions Lies in the Fact That They Are Programs within a Program
Stress to Identify Both Hardware and Software Failures
Strong Partitioning
Strong Partitioning of Applications
Structural Hazards
Structure
Structure of Reliability Equations
Structure of a Software Application
Study the Effects of Increasing Bandwidth and Operating Time on Communication Channel Reliability
Subcontracting Risks
Subject the System to Increasing Values of Mission Duration
Success of HPC Computing Will Depend on the Ability to Provide High Reliability
Success of the Input Received Function
Successful Execution
Successful Intrusion Increases the Noise in a Mobile Network
Successful Operation Between a Pair of Nodes
Sudden Jumps in Hazard Function
Sudden Need for the Mobile Device to Move with the user (Context Aware)
Sum Failure Count State
Sum of Correct Modules and Failed Modules
Summary of Queuing Model Computations for Present and Proposed Internets
Summary of Simulation Model Computations
Summary of Software Development Approaches
Summation of Link Delay, Processing Time, and Wait Time
Summing the Node and Link Times
Super Computer
Superiority of Neural Network Criterion
Superiority of Neural Network Reliability Criterion Limit 13, 8
Support Multimedia Services 7, 13
Support Requirements 9, 11
Synchronized Program Development Activities 17, 13
Synchronous and Asynchronous Communication among Components 12, 13
Syntax Oriented (e.g., Emphasis on UML Diagramming Techniques) 17, 3
System Bus with Sufficient Bandwidth to Accommodate Expected Data Transfer Requirements 4, 14
System Changes Will Only Affect the Interface 17, 2
System Clock of the Mobile Device 15, 13
System Configuration Descriptions 14, 3
System Decomposition Into Components 9, 2
System Error 4, 19
System Error Feedback Correction 4, 19
System Failures Include User and Computer Operator Errors 14, 10
System Functionality Risks 11, 2
System Identification 13, 1
System Level 4, 5
System Must Be Capable of Detecting Logical as Well as Timing Errors in the Design 4, 23
System Must Respond to Asynchronous Events 4, 8
System Queues Are Used to Store Backlog of User Requests 4, 4
System Reliability 12, 2
System Reliability Model 12, 1
System Resources, such as Microprocessor Cycles, Communication Bandwidth, and Storage Memory Are Restricted 4, 1
System, Software, and Hardware Failure Rates 14, 11
System Storage 4, 6
System Validation 12, 13
System View That Is Desired 17
System Workload Is Desired 16, 10

TCP Connection to the Web Server 14, 4
TCP/IP Is a Protocol That Interfaces with Local Network Protocols such as Ethernet 7, 10
TCP/IP Is a Protocol That Operates at the Transport Layer of the Seven Layer Network 7, 10
Teaching Neural Networks 13, 2
Telecom Service Providers 7, 12
Template for Using Various Objects (Probability Functions) and Their Attributes (Variables and Parameters) in the Same Probability Distribution Class 17, 11
Test Bed for Testing Networks 7, 14
Test Case Selection Is Designed to Provide Adequate Coverage of System Components by Deriving Test Cases from Software Designs 4, 22
Test Cases Are Based on Recovery Action (e.g., Remove Battery) 16, 17
Test Cases Are Based on Type of Failure (e.g., Freeze) 16, 17
Test Data Design 2, 8
Test Duration Serves as a Test Stopping Rule 16, 14
Test Effectiveness Can Be Used to Prioritize Modules for Testing 16, 13
Test Effectiveness of Failure Type 16, 17
Test Effectiveness Increases with Lower Signal to Noise Ratio 16, 16
Test Effectiveness Is the Duration of Test Necessary to Achieve That Effectiveness 16, 14
Test the Interaction in Terms of Performance Results 4, 22
Test Interval 13, 4
Test Measurements Are Instrumented 7, 14
Test Paths Associated with the Program Input Variables 17, 17
Test Paths Used to Debug the C++ Program 17, 13
Test Plan 2, 7
Test Plan Support Functions 2, 7
Test Plans Must Recognize Constraints 16, 3
Test Results Reflect Realistic Operating Conditions 16, 3

T Flip Flop 1, 49
Target User 15, 13
Test Software Compares the Actual Range with the Received Range 7, 14
Test Software Computes Required Time and Compares It with Clock Time 7, 14
Test Software Records a Compatibility Result If the Signal Is Received 7, 14
Test Strategies 2, 6
Test Time 11, 2; 13, 2; 16, 14
Test Time Increases with Decreasing Signal to Noise Ratio (i.e., Many Failed Modules Compared with the Number of Correct Modules) 16, 17
Test Time Is Equal to Number of Failed Modules That Are Corrected Divided by the Failure Rate 16, 14
Test Time Is Modeled as a Two Phase Sequence 16, 17
Testing 12, 1; 14, 1
Testing for All Possible Exceptions in all Possible Places Where an Exception Could Be Raised Is Impractical 17, 17
Testing Approach Must Be Highly Non-Intrusive 16, 3
Testing Challenge Is to Include the Number of Active Users Connected to Mobile Networks 16, 3
Testing Challenges 16, 2
Testing of Mobile Devices Is Difficult Because the Environment Is Complex 16, 2
Testing Must Be Performed in the Constrained Memory of the Mobile Device 16, 3
Testing Problems 16, 1
Testing and Reliability Have a Synergistic Relationship 16, 12
Testing under Simulated Operational Conditions 11, 4
Testing for a Time to Assure High Reliability 12, 12
Text Message Was Being Received 15, 5
Text Messaging 15, 15
Thorough Testing of Real-Time Systems 4, 22
Thread-Based Architecture 6, 2
Throughput 4, 21; 10, 6; 15, 14
Throughput per User 16, 3
Time 7, 1; 15, 1
Time-Based Reliability Model 16
Time of Completion of Service Request 4, 19
Time-Driven Software Design Style Corresponds to Using Cyclic Activities, Triggered by Time 4, 7
Time to Failure 11, 2
Time to Failure Risk 11, 6
time to Failure across Various Time Intervals 13, 15
Time of Failure Occurrence 17, 6
Time to Let the Device Deliver the Expected Service 15, 5
Time to Next Failure 11, 6; 13, 15
Time Required to Request a Web page from Web Server 7, 14
Time of Service Request 4, 6, 19
Time Slice Length Strategy 10, 8
Time of Switch Action 10, 13
Time in System 6, 45
Time of Testing Software 13, 2
Times When the Failures Occurred 17, 12
Timing Constraints Are Addressed in Analyzing Real-Time System Performance 4, 2
Today, Many Computer Systems Are Being Used to Measure and Control Real-World Processes 4, 2
To Minimize Low Pass Filter Error, Maximize the Signal to Noise Ratio S/N 3, 14
To Minimize Operational Amplifier Error, Ensure That the Output/Input Ratio = Amplification Factor 3, 14
To Minimize Voltage Sensor Error, the Sensor Should Produce an Output Change to Input Change Ratio = 1 3, 14
To Prevent Sample and Hold Circuit Error, Ensure That the Circuit Can Sample at a Frequency fSH > Desired Frequency fI 3, 14
Too Little Memory Space Allocated to Buffers, Resulting in Buffer Overflow 16, 7
Topology 2, 2
Total Expected Operational Time 4, 21
Total Number of Failures 16, 7
Total Number of Failures Reported at the Scheduled Test Time Interval 13, 12
Total Number of Mobile Device Modules 16, 9
Total Number of Modules in a Mobile Device 16, 6
Total Paging Time 10, 13
Total Quantity of Data Processed at all Nodes and Associated Links in a Network 7, 8
Total Scheduled Test Time 13, 7
Total System Reliability Analysis 14, 1
Total System Reliability Models 14, 18
Traceability of Product and Process 17, 4
Track the Hazard Function Produced by Web Servers 14, 10
Tracked by Using User and Computer Operator Logs 14, 10
Traditional System 14, 1
Traditional Testing Methods 4, 21
Trained to Operate in a Specific Environment 13, 1
Transfer the Process to this Device 16, 24
Transfer Program Control 15
Transformed to a Software Design Model on the Target Platform 4, 2
Transition Information 14, 3
Transmission Control Protocol (TCP) Connection to the Remote Web Server 14, 10
Traverse All Links and Nodes to the Web SERVER 7, 9
Tree Structure 14, 3
Trend to Connect More Devices Will also Accelerate, Facilitated by the Increasing Installation of Internet Protocol version 6 (IPv6) 6, 2
Trigger (Event) for the Poisson Failure Model (Object) to Store the Failure Count (Action) 17, 10
Triggered by Sensing an Intrusion 15, 14
Triggering of Flip-flops 1, 3
Turnaround 10, 6
Type of Failure and Category of Failure Recovery Action 15, 1
Type of Failure Recovery Action 16, 1
Types of Failures 14, 3; 16
Types of Failures and Responses to the Failures 15, 1
Types of Synchronous Sequential Circuits 1, 57
Unacceptable Mission Duration at the Specified Reliability 16, 16
Unambiguous (Meaning Is Clearly Expressed) 17, 4
Ultimately, the Particular Characteristics of the Application Must Be Considered 4, 25
Unexpected Interactions with other Program Modules Are Unlikely 17, 4
Unified Hardware-Software Reliability Model 12, 13
Unified Modeling Language: Standardized Notation and Set of Diagrams 17, 2
Unified Modeling Language (UML) Diagrams Can Be Used to Model the Elements 17, 8
Unified System That Includes A/ D Conversion 3, 9
Units 9, 11
Unreliability 15, 7
Unreliable and Unmaintainable Code 4, 2
Unstable Behavior (Erratic Failure) 15, 4; 16, 6
Unweighted Probability 14, 9
Upload Direction (i.e., Request for Web page) and Download Direction (i.e., Delivery of Web Page) 6, 1
Upon Failure Detection, the Logger Gathers Useful Information 15, 5
Usage Scenarios Are Difficult to Automate 16, 3
Use of Compatible Interfaces 7, 14
Use the Generic Design to Guide the Development of the Application-Specific Design 4, 1
Use of Low Power Enables Longer Battery Life Applications such as a Personal Data Assistant 7, 13
Use Standardized Interfaces 7, 12
Useful for Debugging 17, 4
User Computers and Mobile Devices Would Access a Web Server by Providing a Universal Resource Locator (URL) (Web Site Address) to the Internet Service Provider 6, 2
User-Defined Functions Are Functions That Programmers Create for Specialized Tasks 17, 5
User of the Device 15, 13
User Having to Restart the Application 15, 4
User-Initiated Actions to Recover from a Device Failure 16, 5
User-Injected Errors 15, 12
User Interface 16, 4
User Is Switched to Other Access Points 15, 12
User of a Mobile Device Seldom Changes 15, 12
User Mobility 7, 12
User Perceived Application Response Times Are Often Poor 15, 14
User-Perceived Reliability and Availability Data 12, 13
User Perceived Response Time 15, 14
User System Requests Must Be Queued Because the System Controller Is Unable to Respond to All Requests Immediately 44
User Turns Off the Device and Then Turns It On to Restore the Correct Operation 15, 5
User Will Interact with the System, Supplying Information to Help It Choose the Right Algorithms and Transformations 17, 3
Users Experience a Failure (Freeze or Self Shutdown) 15, 4
Users’ Requests Can Be Supported by a Proxy 14, 5
Users Should Not Have to Wait for a Response in Order to Recover from a Failure 16, 16
Using the Successful Time Obtained from the Previous Test, and Compares It with the Specified Reliability 7, 14
Utility of the Prediction Is to Delineate The Maximum Storage Requirement 7, 9
Utilization of Resources 15, 14
Validating Real-Time Systems 12, 13
Validation of Computer System Reliability 12, 13
Validity Checks on Memory Access 15, 7
Validity of Equation 13, 4
Validity of the Neural Network Criterion Limit 13, 5
Validity of Reliability Predictions 14, 8
Valuable for Portraying the Process That Develops the Product 17, 19
Value of Total Web Services 14, 18
Value-Added Total Web Services 14, 18
Variable: A Model Predictor Specified in a Function (e.g., Predictor of Software Reliability) 17, 5
Variable Assumes Values Based on a Function 17, 6
Variable Number of Active Users 16, 3
Variance Between Actual and Predicted Values 12, 13
Vendors Should Provide Better Protection Against Memory Violations 15, 7
Verification Error Can Be Minimized 4, 22
Verification Step 17, 17
Verifying That the Specifications Can Be Achieved 7, 15
Very High Reliability Software And Hardware Components 12, 19
Virtual Operating Systems 10, 18
Visual Language Alternative 9, 19
Voice and Data in Wired Networks Increasingly Converge to Use the Internet 7, 11
Voice over Internet Protocol (VoIP) 15, 12
Voltage Regulation 3, 10
Voltage Regulator of the Electric Distribution System 3, 9
Voltage Sensor 3, 12
Voting Mechanism 14, 2
Wait an Amount of Time 15, 5
Wait for a Response 16, 6
Wait Time 6, 9
Waiting for the Phone to Respond 16, 7
Weak Spots in Component and System Reliability 14, 1
Web Client 14, 2
Web Client and Server Interactions 14, 9
Web Client Directly Accessing the Web Server to Obtain a Page 14, 4
Web Client Meets the Reliability Requirement 14, 17
Web Client Reliability Analysis 14, 16