Index

Accelerograms 105–16, 141, 196, 452
 as design earthquakes 114
 of real earthquakes 114
 and response spectra, sources of 111
 scaling of 112
 simulated 111
 synthetic 115–6
Accelerograph 72, 452
Acceptable risk 5, 105
Added mass of soil 155, 162
Adobe 416, 444
Advocacy 10
Aftershock
 epidemic-type (ETAS) 69
 power-law decay of 66
Alaska 1964 earthquake, Great 31, 147, 257
Allowable bearing pressure on soils 315
Alluvium see Soil
Amplification (in soil) 138, 147, 257
 See also Topographical effects
Analysis, method of, for structures,
 selection of method of 193–6
 see also Seismic analysis
Anatolian fault zone 63
Architectural detailing 475–83
Arias intensity 74
Asperities 70–1
Attenuation
 of displacement 102
 of ground motions 91–5, 97–8
 in interplate regions 96–8
in intraplate regions 99–100
model 91, 119
in volcanic regions 100–1
within soil 144, 150
Available ductility for reinforced concrete
 members 320–7
Averaged response spectra 95
Banco Central, Managua 116
Bar bending 389
Base isolation 293
 see also Isolation, seismic
Basin edge effects 104
Basins (geological) 47
 see also Sedimentary basins
Bauschinger effect 172
Bay of Plenty, NZ, 1914 earthquake 62
Beam-column joints 304, 362–4, 397–9
Beam-hinging failure mechanisms 284–5
Beams
 reinforced concrete 397
 shear strength 369, 395–6
 steel 347–351
Bedrock
 depth to 28, 35, 140
 effective (equivalent) 35
 motion 141
Benioff zone 16
Bhuj, India, 2001 earthquake 287
Bilinear (hysteresis) model 177–8
Body wave magnitude 21
Bolting 343, 365
Borah Peak, Idaho, 1983 earthquake 31
Braced frames 289–91, 304–5, 356–60, 441
Branching renewal processes 69
Brick, pure 214–5, 217
Bridges 296, 300–1
Brittle materials 194, 416, 429, 455, 457–8, 480
Bucharest 1977 earthquake 62
Buckling of steel columns 354–5
Buffer plates (tectonic) 19
Buildability 274–5
Buller 1929 earthquake 87, 92
Business interruption 253–6
reduction of 255–6
upstream effects 253
Caissons 316
Cantilever walls (concrete) 290, 379–81
bending strength 379–81
ductility 381
shear strength 384
Capacity design 285–342
see also Failure mode control
Caracas 1967 earthquake 28, 39, 150, 378
Casualties 3–5, 237–40
capacity design and 251
daytime 250–1
estimation by risk modelling 249–53
night time 250
Ceilings, suspended 482–3
Chiba-ken Chubu, Japan, 1980 earthquake 143
Chilean earthquakes
1985 275
1960 62
Chimneys 210–2, 433, 465
Chinese earthquake catalogue 120
Cladding 406, 410, 480
Clay 30, 77–9, 315
sensitive (quick) 27, 314
Cleats 365
Clyde Dam, New Zealand 117
Cohesionless soils 321, 324, 333
Cold formed sections 345
 Columns
reinforced concrete 393–6
steel 352–6
Compaction
degree of 36, 40
dynamic 326
grouting 326
piles 327
Complete Quadratic Combination (CQC) 192
Composite construction 366
Compressive underthrust faults 50–1
Compressive overthrust faults 50–1
Concentrically braced frames 290, 304–5, 356–8
Concrete blocks, hollow 416–27
Concrete quality see Quality
Concrete structures 367–410
available ductility 370–7
doubly reinforced sections 372–3
effect of confinement of ductility 374–7
flexure and axial load 377
singly reinforced sections 371–2
in situ concrete design and detailing 387–92
required ductility (robustness) 370
Cone penetrometer tests (CPT) 36
Configuration of construction see Structural form
Confined masonry 444
Confinement
effect on ductility 374–7
reinforcing (columns) 393–5
see also Transverse steel
Connections
in precast concrete 399–410
in steelwork 361–5
in timber construction 441–3
Consequences of earthquakes 3–6
Construction materials, choice of 282–3
Corner frequency 72
Corruption, effect on losses 261, 306
Cost
of construction 9, 10, 270, 298
of damage 8, 206, 209
directly due to ground shaking 246–7
due to earthquake-induced fires 247–8
using structural response parameters 248–9
of earthquake resistance 9, 10
of retrofitting 486
Coulomb theory 330–3
Coupled walls 384–5
Coupling beams 385–7
Critical structures 274
Crossing active faults 117–8, 496
Crustal strain 45–7
Crustal waveguide effects 103–4
Curtain walls 480
glass panels 481
Cyclic loading behaviour see Hysteresis
Cyclic mobility 147
Cyclic torsional shear test 43
Cyclic triaxial test 40–2

Damage Avoidance Design 224, 304–6
Damage costs see Cost of damage
Damage function, building 223–4
Damage models, ground motion measures and 223–4
Damage ratio 206–13
for buildings and contents 213–20
damage costs directly due to ground shaking 246–7
definition 206
mean 209–13
probability distribution 208–9, 211–2
Damage states 205–6
Damageability 177
Dampers 295–303
Damping 132, 135–8
adding 461, 499
effective 165
equivalent viscous 136, 142, 167–8
hysteretic 160, 295–6, 302–3
material 135
radiation 135–8, 165
ratios for structures 177–9
soil-structure system 165–6
timber 431–2
Dams, large 117
Deaths see Casualties
Deformation
control (in isolated structures) 295, 298
ductility factor 196, 298
see also Deformation control; Drift
Deformation control 281
see also Deformation control; Drift
Densification of soils 326
See also Differential settlement
Density, mass 133
Design
aims 6
events 109–11
seismic, of prestressed concrete, recommendations 411–2
Design brief 265–6
Design displacement spectra 340, 342
Design earthquakes 105–9
Design procedures using dynamic analysis 456–7
using equivalent-static analysis 457–62
earthquake risk management in 259–61
Development (anchorage of reinforcing) 389
Diagonal braces 356–60
Diaphragms, timber horizontal 437–8
Differential settlement 241–2, 288
Direct integration 192–3
Directivity see Near source directivity
Displacement spectra see Design displacement spectra
Distributed seismicity 111, 112, 118
Distribution in time of damaging earthquakes 63–70
Doors 481–2
Drift (inter-storey) 269, 282, 296, 476
see also Deflection control;
Deformation control; Lateral drift
Ductility
adequate 345, 367, 441
cantilever walls (concrete) 379–84
Ductility (continued)
casualties and 251
column (steel) 353–4
demand 164, 370
effect of axial load 415
factors 338–9
limited 194, 345
notch (of steel) 346
prestressed concrete 413
ratio, section 370
required 370
Duhamel integral 185–6
Ductwork 469–70
Duration
effective 73–5
of loading, effect (on timber) 429–32
of strong motion 73–5
Dutch cone 36
Duty of care 13
Dynamic analysis 184–93
soil models for 151–63
of soil-structure systems 151
Dynamic compaction 326
Dynamic properties of soil 131–8
Dynamic site response analysis, two- and three-dimensional 144
Dynamic yield stress 344
Earthquake
distribution in time and size 63–70
EEPAS model 69
forecasting 70
prediction see Earthquake forecasting processes, model of 66–70
source models 70–2
see also Seismic response
Earthquake risk modelling
business interruption 253–6
casualty estimation 237–40, 249–53
earthquake insurance see Insurance
impediments to earthquake risk
reduction 10–3, 261–2
material damage costs 245–9
planning for earthquakes 256–9
Earthquake risk reduction potential 236–9
Earthquakes and Megacities Initiative (EMI) 261
Eccentrically braced frames 290–1, 358–60
Economic consequences of earthquakes 7–9
Effective length of steel columns 354
El Centro 1940 ground motions 171, 187–8, 196
Elastic continuum analysis of single piles 318
Elastic homogeneous half-space 158
Elastic response spectra 32, 80, 96–7, 110–3, 186–8
Elastic seismic response of structures 169–72
Elastoplastic hysteresis model 178
Electrical equipment see Equipment
Embedment
effects in soil-structure systems 168
of footings 162
Energy
absorption 175
dissipation 175, 180, 292, 304, 466–7
dissipators 291–305
isolating devices 293–301
(strain) release 46, 62–4
Epicentre 60–1, 86, 110
Epidemic-type aftershock (ETAS) 69
Equipment 451–72
base-mounted free-standing 458–62
brittle 462
code seismic coefficients 462–3
design requirement 453–4
material behaviour in 455–6
mounted in buildings 454–5
on suspended floors 460–1
retrofitting of 503–4
rigidly mounted 464–6
seismic protection of 462–73
vulnerability of 217–20
Equivalent radius (of footings) 137–8
Equivalent static force analysis 183–8
European Macroseismic Scale 81
Exit requirements (from buildings) 482
Extensional faults 50–1
Failure modes 265–6, 281, 284–6, 344–5, 368, 390, 419, 439
of piles 317
Failure mode control 284–8
see also Capacity design
Faulting see Faults
Fausts
activity, degree of 51–7
displacements, probability of 116–8
earthquake magnitude and 57–9
location of active 49–50
movements, designing for 117–8, 496
planning for 256–8
rupture dimensions 57–9
system, Nevis-Cardrona, New Zealand 52–5
trace 51–2, 110
types 51
see also Focal mechanism
Felt intensity 21, 83
Field determination
of fundamental period of soil 39
of shear wave velocity 36–9
Field-tests for soil properties 34
Finite element analysis 162–3
Fire
earthquake induced, cost of 247–8
resistance of timber construction 443
Flow liquefaction see Liquefaction
Focal depth, effect of 62, 148
Focal mechanism 88, 98–9
Focus 20, 85–6
Folds (geological) 47
Foundation(s)
column bases and pile caps 392
concrete 392
construction, damage to housing and 227–235
damping 165–6
dashpot 152–4, 157–62
deep box 313–4
in liquefiable ground 325–8
microzoning and 225–35
modelling, finite elements 162–3
piled 288, 298–9
reinforced concrete see Concrete
shallow 312–3
spring stiffness 153–7
tie-beams 392
timber structures 433–5
see also Substructure
Fourier amplitude spectrum 72
Fragility functions 223–5
Framed tube structures 289
Franki method (ground improvement) 326–7
Free-field motion 150–1
Frequency
content 79–81
domain 143–4, 163
Friction angles for foundations 313
Fundamental period
effective 164–5
for soil deposits 140
see also Period of vibration
Gediz, Turkey, 1970 earthquake 150
Geology 15, 228
local 27–31
Glass panels 481
Grabens 47–8
Gravity retaining walls 333–4
Gravity walls 331–2
Ground classes
Ground motions
attenuation 91, 99–100
characteristics 72–84
spatial patterns 84–91
Ground oscillations during liquefaction 147
Groundwater
conditions 34, 36, 40
discharge 31
Grouting
of masonry 423
of soil 326–7
Half-space
elastic 136, 154
layered 154, 161
theory, limitations of 136–7
viscoelastic 158–9
Hammering 278, 477, 482–3
see also Pounding
Hanging wall effects 103
Hawke’s Bay, NZ, 1931, earthquake 4, 85, 205–7, 225–7, 237, 253
Hazard
definition 1
functions 67–8
Heritage structures 500
Household contents, damage to 211, 216, 218, 232, 235, 238
Houses, retrofitting of 502
Hybrid structural systems 291
Hyogo-ken Nanbu 1995 earthquake see Kobe
Hypocentre 20, 85–6
Hysteresis 135–6, 176, 303, 340–1
damping see Damping
monotonic behaviour 347–53, 374, 429
pinched loops 177, 432

Imperial Valley 1940 earthquake see El Centro 1940 ground motions
Inangahua New Zealand 1968 earthquake 208–18, 227–35
Inelastic response spectra 113–4
Infill, masonry, reinforced concrete
buildings with 500
Infill panels
effect on member forces 182–3
effect on seismic response 180–2
interaction of frames and 180–3
non-structural 286–7, 476–9
Infill walls, structural 424
Inhomogeneous soil 160–2
Insurance (earthquake) 9, 259
Intensity
definition 21
see also Modified Mercalli intensity
Interaction of frames and infill panels 180–2
Inter-earthquake effects 240–1
Intermediate technology 306
International decade for Natural Disaster Reduction (IDNDR)
Inter-storey drift see Drift
Intraplate earthquakes 47, 57, 79–80, 99–100
Isolating devices, location of 293–4
Isolation
from seismic motion 291–8
of equipment 466–8
using flexible piles 298–9
using rocking 298, 300–1
Kobe 1995 earthquake 4, 253, 255, 279, 293
Kocaeli, Turkey, 1999 earthquake 279, 293
Kanto 1923 earthquake 7
Koyna dam, India 15
Laboratory tests for soils 34, 39–43
Lamellar tearing 345–7
Laminations in steel 346
Landslides (avalanches) 12, 27, 30–1, 251–2
Lateral drift see Drift
Lateral restraints, spacing of 354–5
Lateral spreading 147
Lead-rubber bearings 292, 295–7
Lifelines, retrofitting 493–6
Light fittings 468
Limit state design 268, 270, 312, 356–7
Limited ductility see Ductility
Line source models 85–7
Link beams in EBFs 360
Liquefaction
damage due to 241–2
flow 147
level ground 147
of saturated cohesionless soils 147–9
Liquefiable ground (foundations) 241–2, 325–6
Local magnitude 21–3
Lognormal distribution 209
Loma Prieta 1989 earthquake 103, 429
Longitudinal steel
in r.c.beams 397
in prestressed concrete members 413–5
Index

Losses see Damage costs
Low damage structures see Damage avoidance design
Low seismic hazard regions see Masonry
Low-rise construction 182, 206, 226, 277, 283, 291
Lumped mass model for soil 142
Lysmer’s analogue 159

Magnitude (earthquake) 21–4
Magnitude-frequency relationship 63–5
Managua 1972 earthquake 116, 117, 428
Masonry 416–27
 confined 444
 in low seismic hazards regions 427
 infill, reinforced concrete buildings with 424
 reinforced, design and construction details 421–4
 see Stone buildings
 unreinforced see Unreinforced masonry
Mass densities 133
Material (internal) damping see Damping, material
Material behaviour 141–2, 192–7
Maximum Considered Earthquake (MCE) 268
Maximum magnitude (M_{max}) 46–9, 51, 53, 64–5, 117
Mechanical equipment see Equipment
Mexico City 28, 105, 140, 143
 Lake Zone of 28, 105, 140, 143
Mexico earthquakes 1957 28
 1985 28, 105, 143
Michigan Basin 49
Microzones 31–4
 effects on vulnerability 225–36
 classification 228–9
 effects on damage to houses 229–35
 foundation effects 227–9
 house foundation type, household contents and 235
 risk assessment methodology 236
 very strong shaking 225–7
Mode shapes 190, Figure 5.21
Mode superposition 191
Modified Mercalli intensity scale 81–3, 204–5, 511–6
 upper bound on MMI 203–5
 uses of MM intensities 83
Modified Omori relation 69
Modulus of elasticity values for soils 135
Moment magnitude 22
Moment (seismic) release 44–7
Moment-resisting frames 280–2, 286, 289
Monetary Seismic Risk 3
Mononobe-Okabe equations 329–33
Monte Carlo process for synthetic earthquake catalogue 258
Movement gaps 278, 433, 469, 471–2
See also Seismic joints
Multi-degree-of-freedom system 170, 188–92
Murchison, New Zealand 1929 earthquake see Buller
Napier, New Zealand 1931 205–6, 225–7
Near-source directivity effects 102–3
Near fault fling 296
Nevis-Cardrona fault see Faults
Next Generation Attenuation Models 96–7
Niigata, Japan 1964 earthquake 147
Non-linear dynamic analysis 192, 298
Non-linear seismic response of structures 172–7
Non-linear soil behaviour 160, 193
Non-structure and failure mode control 286–7
Normal faults see Fault types
Normal mode analysis 192
Normal risk construction 273–4
North Sea 30, 48
Northridge, California, 1994 earthquake 70–1, 84, 102, 104–5, 347, 418, 429, 506
 casualties 251–3
Notch ductility see Ductility
One-dimensional site response analysis 140–3
Operational Basis Earthquake (OBE) 109, 274

Pacoima Dam 72, 79, 144
Pahiatua New Zealand 1934 earthquake 485
Panel zones, steel 361–4
Parkfield California 1966 earthquake 196
Particle board 431, 435, 438
size distribution (of soil) 39–40
Partitions 181, 280, 281, 286
see also Infill
P-delta effect 196–7, 281, 282
Peak Ground Acceleration (PGA) 81–3, 91, 93, 121, 140, 143–4, 225, 229
versus Modified Mercalli intensity–81 83
Peak ground motions, upper bounds 76–9
Penetration resistance tests (soils) 36
Performance Achievement Ratio see Retrofitting
Performance-Based Seismic Design 267–70
Period of vibration 164–6, 169–72, 179–80
effective 340–2
of soil sites 139–40
Peruvian 1970 earthquake 4, 30, 286
Piers 316
Piles
dynamic response 317–8
elastic continuum analysis 319
equivalent static lateral load analysis 318
foundations 166, 288, 316–7
house 229–35
in cohesionless soils 324–5
in cohesive soils 321–4
in isolated structures 298–9
lateral elastic displacements of a single ‘long’ pile 321–5
non-linear lateral displacements of a single ‘long’ pile 320–1
Pipelines 116–7
Pipework 471–3
Planar source models 86–8
Planning
aims 5
for earthquakes 256–9
Plant 451–73
retrofitting of 503–4
vulnerability 214, 217–20
see also Equipment
Plastic design method 345
Plastic hinge
mechanisms 285
rotation capacity 348–9
Plasticity 134, 172, 349
Platforms (geological) 47–8
Plumbing see Equipment; Pipework; Services
Plywood 435–9, 442
Point-source models 85–6
Poisson model, or process 68–70
Poisson’s ratio 34, 41, 43
Porcelain 194–5
see also Brittle materials
Post-yield behaviour 271–4
see also Hysteresis
Pounding 286, 424
see also Hammering
Precast concrete
cladding 302, 406, 409–11, 480
structural 399–406
Precursory scale increase 66, 69
PRESSS 304
Prestressed concrete 263, 304, 410–6
Probabilistic Seismic Hazard Assessment (PSHA) 120–2
Probability of occurrence, or exceedance 105, 110, 112
of occurrence of fault displacements 116–7
Pseudo-acceleration 187
Quality assurance 266, 306
Quality
of concrete 390
of reinforcement 390–1
of structural steel 345–7, 517–8
Quito Project 260

Radiation damping 135–8, 158–67
RADIUS Initiative 260
Ramberg-Osgood model 177–8
Rankine conditions 333–4
Rate
of loading 343–4
of strain energy release 62–3
Ray-theory method 115
Reduction factor, for loading 195–6
Reinforcement quality see Quality
Relative density
of soil 146
test 34, 36–7, 40–1
Reliability of performance 270, 274–6, 282, 284, 286
Reliable seismic behaviour
concrete structures 367–77
masonry 419–21
steel structures 344–7
timber structures 432–3
Repairability 223–4, 273–4, 285, 290
Repairable (structures) 244, 268, 273
Replacement Value 206, 208, 210, 219, 247, 487, 493
Resonance
of soils 105, 113, 187, 229, 235
of structures 169–70
Resonant column test (for soils) 42–3
Response spectrum
analysis 184–8, 191–2, 193
averaged 95, 188
design 114, 452–3
elastic 111–3, 197
inelastic 113–4
of design earthquakes 105–6
of real earthquakes 111
of simulated earthquakes 111
sources of 111
special features of 112–3
Retaining walls see soil-retaining structures
Retrofitting
benefit-cost 493

benefits of 486
equipment and plant 503–4
in developing countries 504–5
lifelines 493–6
Performance Achievement Ratio (PAR) 488–9
performance in earthquakes 506–7
structures 496–503
see also Upgrading
Reverse faults see Fault types
Rise time 71–2
Risk reduction 1–2, 9–13, 237, 261–2
effect of corruption see Corruption
Robustness of concrete structures 370
Rocking structures 137–9, 153, 158–68, 298–301
Root-mean-square acceleration 75–6
Rupture (fault)
area 57–9, 70–1
displacement 53, 70, 116–8
length 57–60, 70
slip see Displacement
surface 57, 87, 97
velocity 71

Safe-Shutdown Earthquake (SSE)
Safety criteria 270–1
San Antonio, Chile 1985 earthquake 144, 276, 278
San Fernando, California 1971 earthquake 28, 72, 93, 277, 314, 454, 475
San Francisco Bay area 103, 140
San Francisco earthquakes
1906 4, 7, 59, 248
1957 144–5
Sedimentary basins, effects on ground motions 105
Seiches 31
Seismic analysis of structures, methods of 183–97
Seismic design
criteria 451–6
joints 482, 497
procedures for equipment 456–62
Seismic gaps 52
See also Movement gaps
Seismic hazard (definition) 1
Seismic isolation see Isolation, seismic
Seismic moment 22, 46, 86
Seismic response
 masonry 417–8
 prestressed concrete 412–3
 reinforced concrete 367
 of soil-structure systems 149–68
 soils 131–49
 steel structures 343–4
 structures
 elastic 169–72
 non-linear 172–7
 timber structures 429–32
Seismic risk (definition) 1
Seismic soil pressures 329–34
 in cohesionless soils containing water 333
 in cohesive soils or with irregular ground surface 333
 completely rigid walls 333–4
 in unsaturated cohesionless soils 331–2
Seismicity 1, 15–7, 19
Seismicity model 118
Seismology 21
Seismotectonics
 global 16–20
 regional 47–9
Serviceability criteria 270–2
Serviceability Limit State 268, 270
Services 451–73, 478
see also Equipment; Lifelines
Settlement of dry sands 34, 40, 138, 146
Shaanxi 1556 earthquake 3
Shear beam 141–4, 146, 157
Shear in columns (steel) 356
Shear modulus 20, 34, 36–7, 40–2, 132–4, 147
Shear strain 20, 134, 136
 effect on damping and shear modulus 135–6, 139–40, 156
Shear strength
 of concrete columns 395–6
 of structural walls 384
Shear walls see Structural walls; Walls
Shear wave velocity 34–40
Sian 1556 earthquake 48
Simulated earthquakes 115–6
see also Accelerograms
Single-degree-of freedom-systems
 169–70, 184–7, 339–40
Site
 characteristics 27–42, 107, 490
 investigations 27, 34–9
 period 39, 139–40
 response to earthquakes 138–49
 soil conditions 27–34, 143–5, 163
 Slip-predictable models 69
 Soft storey concept 279, 487, 492, 502
 See also Weak storeys
Soil
 conditions see Site conditions
 improvement 326–7
 layers, effect on bedrock excitation 131–7, 145–51
 models 145–51
 reinforcement of 326–7
 retaining structures 328–34
 structure interaction 149–62
 tests 39–43
 types 133
Space geodesy 45–7
Spatial distribution of earthquakes 60–2
Spectra for different site conditions 31–2
Spectral acceleration, displacement, velocity 187–8
Splices (in reinforcement) 388–9, 393, 422
Spring and block models 66
Springs and dashpots 152–4, 157
Sprinkler systems 462–3, 483
Square-Root-of-Sum-of-Squares (SRSS) 192
Standard penetration resistance 36
Standards
 of construction 306
 reinforced concrete see Quality
 structural steel see Quality
Stationary random processes 115
Steel
 beams 347–51
design of 350–1
under cyclic loading 350
under monotonic loading 347–50
connections under cyclic loading 361
design forces for connections 364
quality see Quality
Stiff structures versus flexible 273, 281–2
Stiffness
Appropriate, of structures 280–2
degradation 172–5
effective 269, 340–2
Stochastic methods 115
Stock, vulnerability of 211, 217–22, 238
Stone buildings 445
Stone columns 327–8
Strain-hardening 172
Strain-release map 174, 348–9, 361, 390
Strain-softening 172, 311
Strength of an earthquake 20–1
Strengthening structures see Retrofitting
Stress drop (on faults) 71, 76
Stress-release model 69
Strike-slip faults see Fault types
Structural form 275–80
for masonry 419–21
for steel 344
for timber 429
Structural walls (concrete)
flanged 380–2
reinforced concrete 377–87
see also Walls
Struts, steel, forces in 355
Subduction zone interface (underthrust)
faults 50
Subduction zones 16–8, 93–4
Substructure 287–8
see also Foundations
Supervision of construction
in masonry 422, 427
in timber 429
Surface wave magnitude 21–2, 24
Survivability 268, 274, 298
Symmetry of structures 276–7

Tanks 463, 465–6
underground 314

Tectonic
plates 16, 18–9
provinces 47, 49
Tectonics see Seismotectonics
Tilting (of strata) 47, 49
Timber sheathed walls 431, 435–7
Time-domain analysis 163
Time-predictable models 69
Tokachi-Oki 1968 earthquake 30–1
Tokyo 1923 earthquake 248
Topographical effects 28, 30, 144–6
Torsional (effects) 276
Transcurrent faults 50
Trigger models 69
Tsunami 31
Uncertainty intervals 210
Unified magnitude 21
Uniform hazard response spectra 79–81, 112–3
Unreinforced masonry (URM) 4, 13, 204, 207, 281
see also Brick, pure
in developing countries 444, 505
in low seismic hazard regions 427
retrofitting, earthquake performance
501, 506
Value (of property) 1–3
Vertical shear beam model 141–3
see also Shear beam
Vibro techniques 326
Viscoelastic half space 158
Viscous damping 135–6
Void ratio 40
critical 146–7
Volcanic activity and earthquakes 15–6
Von Mises criterion 365
Vulnerability
casualties 237–40
contents of buildings 214–35
definition 2–3
of different classes of buildings 213–4
household contents 216
inter-earthquake effects 240–1
qualitative measures of 203–7
Vulnerability (continued)
quantitative measures of 206–41
upper and lower bounds on 236–8

Wairarapa New Zealand 1942 earthquake
206, 214–5, 493, 506
Wall finishes 480–1
Walls see also Structural walls
apertures in 419–21
curtain 480–1
for reliable behaviour 257–60
Warping of strata 47, 49
Water
content of soil 31, 33
table 35, 315
see also Groundwater; Liquefaction;
 Tanks
Weak storeys 204

see also Soft storey concept
Weaknesses in earthquake risk reduction
 processes 9–13
Weibull distribution 68
Weldability 346
Welding
 of reinforcing bars 391, 402–7
 of structural steel 347, 364
Western Montana 49
Whittier Narrows, California 1987
 earthquake 506
Windows 481
Winkler spring method 329
Wood–Anderson seismograph 21
Workmanship 274–5, 278, 286

Young’s modulus 134, 319
 See also Modulus of elasticity