Beyond Budgeting Model 243–4
organizational principles
capability 253
empowerment 252–3
focus 253–4
governance 252
information 254
performance climate 251–2
origins of movement 244–5
process principles
coordination 251
investment management 250–1
measurement and control 250
planning and forecasting 249–50
rewards system 249
target setting 248–9
strengths of 248
bias 261
advanced tool for measuring 142–3
benefits of tracking 144
causes of 143–4
changing unpredictably 105–7
distinguishing from random variable 135–8
freedom from 211
importance of eliminating 269
measures of 139–40
and reliable forecasts 50–1
using run charts to visualize 133–4
see also behavioral bias
Black Swan, The (Taleb) 156
Boghes, Bjarte 50, 64, 235, 248
Bogoievski, Marko, CFO at Telecoms New Zealand 73–4
boom and bust periods 11, 13, 62, 281
Boyd, John 68–9
Bridges, William 224
Brohms, Anders 85
Bryan, Lowell 151, 170–1, 173
buckets (units of time) 132, 261
Budgetary Control (McKinsey) 13
budgeting
cohert quality of 235
and commitment 76
constraint on resource reallocation 73–5, 236–7
definitions 233–4, 240–1, 261
encouraging spend 250–1
‘immune system’ 236
looking beyond year-end 237
making more flexible 236–7
meaning of ‘budget’ 44
and performance measurement 238–9
roles & characteristics of 234
and target negotiation culture 237–8
budgeting mindset 40
business forecasting 66–7, 261, 267
business horizon 67–8
Cannon, Walter 231, 279
capability 78, 253
Cassandra paradox 38
‘catching heuristic’ 89
central forecasts see range forecasts
certainty, illusion of 36
Chambers, John, Cisco CEO 5
change
dealing with 15
rapid pace of 7–8
Change Equation 224–5, 230–1
change management 221–2
AMEX example 227–9
Change Equation 224–5
first steps 226–7
resistance to change 225–6
three stages of change 222–3
change ‘S’ curve 222–3
chaos theory 88, 261
Christopher, William 286
Cisco, collapse of 4–5
cognitive bias 98–101, 262
commitments 76, 78
complex systems, architecture of 283–5
‘Complexity Science’ 277
corcertina horizons 65–6, 262
confirmation bias 100, 129
conformity to group behavior 101–3
conjunction fallacy 100
‘contingency funds’ 161–2, 236–7
contingency plans 172–4, 262
continuous risk 165–6, 262
control systems 276–86
conventional management model 246–7
assumptions of 245–6
coordination
in complex systems 198–209
lack of 21–2
process principle of Beyond Budgeting 251
Coram, Robert 85
Cost Accounting: A Managerial Emphasis (Horngren) 234
cost effectiveness, quality of good forecast 52–3
coupling 198–208, 262
credit crunch 10, 170
crieses, scenario planning 171–2
Crittenden, Gary 48, 174, 228, 229
Croake, Jamie 29, 46, 75, 108, 174, 192, 227–9
curse of knowledge bias 101
cybernetics 55, 262
aiding management thinking 277
complex control systems 283–5
concept of ‘a goal’ 277–8
feedback and feedforward 281–4
and information flow 278–80
origins of 276–7
practical application of 285–6
time, role in regulation of system 280–1
cycle time of a forecast 45–6, 55, 262
development of decision-making authority 252–3
discipline 190
Toyot’s example 187–8, 189
versus conformity 188
discontinuities 94–5, 112, 131–2, 153–4, 156
discrete risk 165–6, 262
dissatisfaction
in the Change Equation 224
sources of 226–7
diversification 141, 155
divination techniques 36
domain knowledge 211, 212–13, 262
double loop learning 128–9, 283–4
driver-based forecasting 107–8, 263
duPont Corporation 13, 14
‘dynamic equilibrium’ 226, 231, 278–9
dynamic resource allocation 73–5, 81–2
ease of recall bias 99
emergence principle, systems science 276
empowerment 252–3
errors see forecast error
event risk 165, 177, 263
exchange rates, risk factor 173–4
execution stage of project 78
expertise, failure of 103
exploitative actions 169, 177, 263
Farmer, Doyne 88
Farrell, Diana 151, 170–1, 173
fatalism 25
feasibility stage of projects
assessing 77, 117–18
and forecast decay 80
innovation funnel 78–9
feedback 263
destabilizing role of 281–2
in goal seeking systems 278–80
for information learning 128–9
for successful performance 126–7
feedforward information 127, 263
destabilizing role of 281–2
goal seeking systems 279–80
Fifth Discipline, The (Senge) 129
first order control systems 283, 285
folk lore remedies 25
Fooled by Randomness (Taleb) 137

forecast accuracy
- danger of incentivizing people 192–3
- futility of measuring 131–2, 158–9
- obsession with 19–20
- reliability as goal for 49–51, 269

‘forecast decay’ 79–81, 116–17, 263

forecast error 12, 263
- balancing 50–1
- inevitability of 19–20
- measurement of 129–32
 - frequency of 132–3
 - using run charts 133–43
- see also risk; systematic error; uncertainty; variation

forecast horizons 62–3
- definitions of 83–4, 263
- and forecast decay 116–17
- operational and strategic 66–8
- rolling and concertina 64–6
- sub horizons 81

forecast lead times 62–9, 81–2, 131–2, 263

forecast process, benefits of improving 28–9

forecasting
- ‘cure for’ 26–7
- ineffective therapy 23–5
- symptoms of 17–22

forecasts
- definitions 40–2, 263
- five qualities of good 45–52
- and prophesies, difference between 9–10, 37–9
- three different types of 67
- uses of 39–40
- four successive errors, rule of 135–8
- Fraser, R. 248
- Frith, Chris 148
- future planning/shaping 39–40, 127

Gaia hypothesis, Lovelock 287

Gaussian (normal) distribution 156, 157, 163

General Motors 13, 14

General Systems Theory (GST) 276–7

Geus, Arie de 49, 153, 182

Gigerenzer, Gerd 36, 123

Gladwell, Malcolm 88

goal, concept of 277–8

goal seeking systems 277, 278–80, 284

goal seeking variable 285

governance 252

Greenspan, Alan 10, 288

group behavior and social bias 101–2
- ‘groupthink’ 102
- ‘gut feelings’ 137, 161–2

Hackett Group 12–13, 55–6, 70, 95

Harris, R. T. 224

heuristics 89, 98–101

hindsight bias 101

homeostasis 231, 279

Hope, J. 248

horizons see forecast horizons

Horngren, Charles 234

Hoverstadt, Patrick 286

ideas
- in life cycle of a decision 77–80
- spreading, ‘S’ curve 223
- stage of projects, approaches for 117–18

immune systems 236

implementation of change 221–30

Implementing Beyond Budgeting (Bogsnes) 248

independent risk 167–8, 263

information
- and decision-making 268–9
- open access to 192, 254
- role of in control systems 278–80
- innovation funnel, managing 78–9
- insensitivity to base rates bias 99
- insensitivity to sample size bias 99
- interdependency 202–5
- interventions 263
- deciding what to treat as 118–19
- judgmental forecasting for 115–16
- models for forecasting 113–14
- problem of forecast decay 116–17
- risk attached to 165, 177, 263
- see also momentum
Jarvis, Martin 45, 51–2, 145, 165, 185, 196, 207–8
Johnson, Tom 13, 85
judgmental forecasts 95, 264
attractiveness of 95–6
and cognitive bias 98–101
for interventions 115–16
and motivational bias 104–7
popularity of 23–4
problems with 96–7
and social bias 101–4
Kaplan, Robert 13
Kelvin, Lord 10
knowledge
curse of knowledge bias 101
decline of 80–1, 116–18, 271
domain knowledge 211, 212–13, 262
of experts 103
and judgmental forecasting 95–6
and science 26, 275–6
Kotter, John 231
Laplace, P. S. 287
law enforcement, behavior and process 191
lead times 59–60, 131–2
destabilizing a system 59–61, 84–5, 280–1
different for different types of decisions 81
and length of forecast horizons 62–8
shortening to improve responsiveness 81–2
leadership 190, 192, 253
learning, first and second order 128–9
Lehman Brothers 10, 88, 170
length of forecast horizon 55, 62–3
life cycle of a decision 77–9
‘like with like’, comparing 132
Liker, Jeffrey 188
Lorenz, Edward 88
Lovelock, James 123, 287
Magolewski, Artur 75, 113, 146, 173, 178
Making up the Mind (Frith) 148
Managing Transitions (Bridges) 224
manufacturing processes, baked beans example 133–5
MAPE (Mean Average Percentage Error) 139, 264
maps as examples of models 91, 92
Marconi, collapse of 5–7, 8–9
Marconi, Guglielmo 4
mathematical models 94, 107–8, 264
benefits of 108–9
drawbacks of 109–10
for momentum forecasting 114–15
Maxwell, J. C. 84, 280
McKinsey, James O. 13, 14, 247
mean percentage error (MPE) 139–40, 264
measurement 125–9
frequency of 132–3
run charts 133–43
what to measure 129–32
meetings 26–7, 184–5, 190
military strategy and time 68–9
misconceptions of chance bias 100
mitigating actions 154, 169, 177, 264
models 87–91, 264
guidelines for choosing 113–21
types of 91–5
judgmental 95–107
mathematical 107–10
statistical 110–12
momentum 113–14, 264
assessing risk 165
models for forecasting 114–15
motivational bias 104–5, 264
unpredictable change in 105–7
MPE (mean percentage error) 139–40, 264
multiple forecasts, argument for 205
navigation forecasts 39, 40–1, 57–8, 69, 113, 129–30, 131
negative bias, factors driving 105
negative feedback 282–3
Nelson, Lloyd 135
nervous system breakdown 20–1
nonlinear systems 88, 122, 123
normal distribution 156, 157, 163
novelty 95
judgmental forecasting coping with 95–6, 115–16, 120
models unable to cope with 109–10, 112

OODA (observe-orient-decide-act) loop 68–9
openness 192, 254
operational forecasting 67, 264
‘operational horizon’ 66
options, assessing
organization charts 211, 214, 253
Organizational learning (Argyris and Schon) 128–9
orthostasis 231
overconfidence bias 100, 101
ownership of forecasts 213–14

perception of risk 155–8
plan, definition 264
planning 43–4, 249–50, 264
in military affairs 202–3
new role of 76
scenario planning 170–2
Plato 55
portfolio effect 141
positive bias, factors driving 104–5
positive feedback, stabilizing role of 281–3
potato prices example 168
power law distributions 156
Powers, William 284
pragmatism 195–6
predictions 35–6, 265
and forecasts, difference between 9–10, 37–9
models needed for 87–90
prediction markets 103
see also unpredictability
presumed association bias 99
probability distributions 155–6, 157, 162–3
process management 183–4
and alignment 198–208
definition of process 264
roles and responsibilities 209–15

techniques
bad behavior patterns, eliminating 190–5
bias, minimizing 186–7
discipline, importance of 190
ordering tasks logically 184–6
principles and pragmatism, balancing 195–6
standardization and improvement 187–9

Proctor and Gamble 201
production processes, controlling
performance of 133–5
pull versus push 251

quality of forecasts, measuring 130–46, 272
questionnaire on design principles 267–74

RACI diagram, allocation of responsibilities 214–15
Randall, Jeff 4
random variation 50, 70, 134–8, 141, 142, 250
range forecasts 152, 178, 265
estimating a range 158–9
texts of 159–61, 173–5
excessive skew of 164
mistakes made in constructing 168–9
mitigating effect of social bias 104
rare events, likelihood of 155–6
reaction times 57–8, 63, 85
reductionism 274–5
regression to the mean bias 100
regulation, control systems 278, 280–1
reliability, quality of good forecast 49–51, 265, 269
representative heuristic 98–9
biases attributed to 99–100
Republic, The (Plato) 55
resistance to change 225–6, 228–9
and budgeting 235–6
resource allocation 72–6, 236–7, 271
respect, importance of 195
responsibilities and roles, allocation of 211–15
retrievability bias 99
Index

rewards 192
 decoupling from targets 238, 249
linked to targets 104, 234
risk 151, 265
 aggregating 167–8
 assessing 159–69
 and contingency planning 172–3
 continuous and discrete 165–6
 definitions 153–4
 and diversification 155
 improving judgmental estimates of 166
 overstatement of 168
 own actions changing 168–9
 perception of 155–8
 range estimates 158–9
 range vs. single outcome 152–3
 skewed distribution of 162–4
 timing issues 162
 versus uncertainty 153–8
 see also uncertainty
Roemer, Fritz 12, 42, 49, 95, 97, 190
 roles and responsibilities 209–15
 rolling horizons 64–6, 265
 ‘rule of four’ errors 135–8
run charts 106, 133–42, 265
‘S’ curve 222–3
sales and operations planning (S&OP) 216, 265
Sanwal, Anand 75
scenario planning 169–75, 265
Schon, Douglas 128–9
 ‘scientific’ approach, adopting 26
Sciver, Richard 52, 74, 174
second order control systems 283–4
semantic schizophrenia 17–18
Senge, Peter 129
sensitivity analysis 166, 266
Shewhart, Walter 148–9
shower example 59–61
Simon, Herbert 98
Simpson, George, Marconi CEO 4, 6, 7, 9
 single loop learning 128–9
 skewed distribution, risk profiles 162–4, 266
Sloan, Alfred 13, 14, 15, 70, 85, 123–4
social bias 101–4, 266
social conformity 101–3
socio-pathological behavioral patterns 22
software therapy 24–5
Southwest Airlines 71
 speed of forecasting 45–7
Stalin, Joseph 13–14
 standardization 188–9
statistical models 94, 110–11, 266
 advantages of 111
 drawbacks 111–12
 for momentum forecasting 114–15
statistical therapy 23–4
StatoilHydro 50, 63, 64, 235
 ‘strategic horizon’ 66, 67
 strategic planning 66–7, 266
 ‘stretch goal forecasting’ 201
 ‘structural breaks’ 94–5
 substitution effects 119, 120
 success, redefining 26–7, 251–2
Suroweik, Joseph 103
Svenska Handelsbanken 204–5
Symbios, systems dynamic models 109
 symptoms of forecasting illness 17–22
 systematic error 50
 cognitive bias 89, 98–101
 eliminating 143–4, 145, 269
 and judgmental forecasting 97–8
 motivational bias 104–5
 social bias 101–4
 systems dynamics 62, 109
 systems science 266, 276–7
 see also cybernetics
Taleb, Nassim Nicholas 137, 156
 ‘tampering’ by managers 135
TARAC mnemonic 45, 54–5, 91, 198
targets 42–3, 266
 decoupling from rewards 238, 249, 250
 forecasts converted into 201
 negotiation, weakening of 237–8
 relative versus fixed 236–7, 248–9
 technical expertise 211–12
 technological therapy 23–5
Telecoms New Zealand 73–4
thinking systems 98

301
FUTURE READY: HOW TO MASTER BUSINESS FORECASTING

time 57–8
and decision-making 76–82
forecast horizons 62–8
frequency of forecasts 69–71
and military strategy 68–9
role in regulation of systems 280–1
time lags see lead times
timeliness, quality of good forecast 45–7
Tomkins plc 207
Toyota 69, 187–8, 189, 245
Toyota Way, The (Likert) 188
transparency of information 254
trends
and discontinuities 94–5, 112, 131–2
extrapolating statistically 111, 119
momentum forecast 114–15
risk defined as variation around 153
Trigg’s Tracking Signal 142–3
trust, importance of 195
tunnel vision 18, 152–3

uncertainty 266
assessing using scenarios 169–76
strategies for managing 155–8
versus risk 153–4
underlying risk 165, 177, 266
Unilever Canada 114
Unilever Poland 74–5, 116, 173–4
unpredictability
cause of variation 144
and chaos theory 88
dealing with 59–60, 171–2
and patterns of bias 105–6
unsystematic error see variation

variance analysis 145, 234, 238–9, 250
variation 50–1, 266
causes of 144–5
and portfolio effect 141
random 50, 70, 141, 142, 250
distinguishing from bias 135–8
effect of reacting to 134–5
Vester, Frederic 31, 287
Viable Systems Model (VSM) 286
visibility 9–10, 21, 47, 237
vision for the future, Change Equation 224–5
volatility, incorporating into forecast design 71

Watkins, Michael 236
weather forecasts 39, 87, 88
Weiner, Norbert 55, 276–7
Weinstock, Arnold, GEC founder 4, 7
Welch, Jack 237
‘what if’ analysis 166, 177, 266
Wisdom of Crowds, The (Suroweiki) 103

Index compiled by Sophia Clapham