INDEX

Absorbed energy, 478, 483
Adverse health effects, 453
Ampere’s law, 12
Analytical methods, 4
Antenna
 centre-fed, 76
dipole, 172
linear, 75–78
parameters, 71–75

Boundary conditions, 26–32
 Cauchy, 41
 Dirichlet, 41, 81
 incorporation of, 95
 mixed, 81
 Neumann, 41, 81, 94
Boundary element method (BEM), 4, 82, 84, 109–122
 computational example, 121, 122
 discretization, 114–121
Boundary elements
 constant, 115–118, 158
curvilinear, 118, 178

isoparametric, 118
linear, 119, 159
quadratic, 119
Buried cables, see Transmission lines – below ground
Circuit theory model, 7
Conducted
 emission, 8
 susceptibility, 8
Conformal mapping, 82
Conservation law, 21–24
Continuity equation, 17–19
Continuous wave (CW), 7
Coulomb gauge, 36
Detection, 213
Differential operator, linear, 81
Diffraction, 151
Diffusion gauge, 37
Direct approach, 85
Direction finding systems, 191
Directivity, 72
Distributed parameters, 338

Advanced Modeling in Computational Electromagnetic Compatibility, by Dragan Poljak
Copyright © 2007 John Wiley & Sons, Inc.

493
Eddy currents, 136
- analytical solution, 144–146
- boundary element solution, 146–150
Electric field integral equation, 204
Electromagnetic, 3
- interference (EMI), 5
- pulse (EMP), 250, 251
- wave equations, 24–26, 151–154
Electrostatic fields, 123

Faraday’s law, 11

Field
- approach, 80
- coupling, 55

Finite difference method (FDM), 4, 82, 85–91
- one-dimensional, 86
- backward scheme, 86
- central scheme, 86
- computational example, 87
- forward scheme, 86
- two-dimensional, 88–90
- computational example, 90

Finite element integral equation method (FEIEM), 174, 265
Finite element method (FEM), 4, 82, 84, 91–109
- one-dimensional, 92–98
- computational example, 96–98
- strong formulation, 93
- two-dimensional, 98–109
- computational example, 105–109
- weak formulation, 93, 100–102
Flux density, 102, 103

Fourier transform, 83

Frequency domain modeling, 82–84, 165
Full-wave approach, 7

Gain, 74

Galerkin Bubnov
- indirect boundary element method (GB-IBEM), 168, 174, 204, 265
- procedure, 94
Gauss’s flux law, 14

Geophysical exploration, 213

Grounding
- grids, 405
- systems, 405–451

Grounding horizontal electrode, 405, 418–437
- computational examples, 428–437
- formulation, 420–425
- boundary conditions, 424
- reflection coefficient, 423
- Sommerfeld integral, 421, 422
- input impedance, 425–427
- numerical solution, 427, 428
- transient impedance, 428
- transmission line method (TLM), 438
- computational examples, 439–443

Grounding vertical electrode, 405
- computational examples, 416–418
- formulation, 407–411
- reflection coefficient, 410
- boundary conditions, 411
- Sommerfeld integral, 408
- input impedance, 411–413
- numerical solution, 413, 414
- transient impedance, 414

Hallen integral equation, 166, 251, 255

Hamilton variational principle, 43–51

Heating, 456

Helmholtz equation, 100–102, 140–143

Hertzian dipole, 4, 69–71

High frequency fields, effects of, 456

Human body
- parasitic antenna representation, 460–465
- computational examples, 465–467
- realistic model (BEM), 467–473
- computational examples, 473–478
- time domain model, 479
- computational example, 486–489
- transient current
 - average value, 480
 - root-mean-square value, 481
- transient radiation, 478

Human exposure, 453
- assessment of, 458

Indirect approach, 85

Induced currents, 455

Input impedance, 73, 180

Instantaneous power, 478, 482
Integral
 approach, 80
 equation formulation, 109–114
 equation in electrostatics, 126–129
 transform, 82

Lagrange’s polynomials, 177
Lagrangian formulation, 42–51
Laplace equation, 110
Lightning
 effects, 250
 protection, 257
Lightning rod, modeling of, 129–134.
 See also Grounding
Lorentz gauge, 38
Loss resistance, 73
Low frequency fields, effects of, 455

Magnetostatic fields, 124
Matrix
 banded, 84
 dense, 85
 finite element, 94
 global system, 94
 local system, 94
 symmetric, 84
Maxwell equations, 3
 differential form, 10, 11
 integral form, 11–14
 moving media, 14–17
Method of moments (MoM), 4, 82
Microwave hyperthermia, 183
Modified image theory (MIT), 406

Oceanography, 213
Ohm’s law, 19, 20
Overhead lines, see Transmission lines – above ground

Phasor, complex, 51, 154
Pocklington integral equation, 4, 166, 172
Point-matching technique, 166
Poisson equation, 110
Potential
 electric scalar, 32
 magnetic scalar, 32
 magnetic vector, 32
 retarded, 40, 54
 wave equations, 35

Poynting theorem, 52
Propagation, 66–68

Quasistatic
 computational example, 143–150
 formulation, 137–139
Radiated
 emission, 8
 field, 180
 susceptibility, 8
Radiation, 68, 73
 efficiency, 74
 intensity, 72
 ionizing, 454
 nonionizing, 454
 pollution, 454
 power density, 72
Radio base station antennas, 201

Scattering, 151, 154
 computational example, 159–161
Separation of variables, 82
Series expansion, 82
Shape functions, 177
Short-pulse radar, 250
Singularity, 112
Skin effect, 136
Soil ionization, 405
Sommerfeld
 approach, 167
 integrals, 167, 213, 227–229
Source(s)
 computation, 104
 element method (SEM), 85
 integration method (SIM), 85
Specific absorption (SA), 483
Specific absorption rate (SAR), 456
Step-function, 83
Subdomain collocation, 168
Submarine communication, 213

Telegrapher’s equation, 56
 finitely conducting wire, 60
 first, 57
 lossy media, 61
 second, 58
Temperature control mechanism, 456
Thin wire, 165
 frequency domain (FD), 165, 166
time domain (TD), 166, 167
Thin wire – free space (FD), 171–213
coated wire, 181–185
 BEM solution, 187–190
 computational example, 190
near field, 186
horizontal array, 196–201
 BEM solution, 199–201
 computational example, 201
 isoparametric, 200
 linear, 199
loop antenna, 191–196
 BEM solution, 193–196
 computational example, 196
single wire, 172–174
 BEM solution, 174–180
 isoparametric, 178–180
 linear, 175–178
 computational examples, 180
vertical array, 201–213
 BEM solution, 207–209
 computational example, 209–213
Thin wire – free space (TD), 252–290
 computational examples, 275–290
energy measures, 263–265
 numerical solution, 272
single wire, 252–259
 electric field, 256, 270
 nonlinear loading, 258
 numerical solution, 271
 numerical solution, 265–270
 resistive loading, 257
 numerical solution, 271
two coupled wires, 259–263
 numerical solution, 273–275
Thin wire – lossy half-space (FD), 213–246
loaded antenna, 220–222
multiple wire, 237–246
 BEM solution, 240
 computational examples, 242–246
 electric field, 239, 241
single wire, 214–220
 BEM solution, 224–227
 computational examples, 233–237
 electric field, 222–224, 229–233
 input impedance, 222–224, 229–233
 reflection coefficient approach, 218–220
 Sommerfeld integral approach, 214–218
Thin wire – lossy half-space (TD), 290–332
array, 304–307
 numerical solution, 314–317
 computational examples, 317–332
single wire, 290–300
electric field, 294–296, 310
 nonlinear loading, 298, 311
 numerical solution, 307–310
 resistive loading, 296, 311
two coupled wires, 300–304
 numerical solution, 312–314
Time domain modeling, 82–84, 166
Transient
 phenomena, 7
 response, 83, 443–445
 computational example, 445–451
Transmission line, 7, 54–66, 337–342, 406
Transmission lines – above ground
 (FD), 341
 computational examples, 351–359
 telegrapher’s equations, 345–351
Transmission lines – above ground
 (TD), 341
 computational examples, 359–372
Transmission lines – below ground
 (FD), 341
 computational examples, 381–384
 formulation, 374–378
 numerical solution, 378–381
Transmission lines – below ground
 (TD), 341
 computational examples, 395–402
 energy measures, 391
 formulation, 384–391
 numerical solution, 392–395
Triangular elements, 98
UHF communications, 191

Weighted residual approach, 101, 111
Wire
 antenna, 165
 scatterer, 165
Yagi-Uda array, 196