Index

4C Inc., 85-86

A
Adams, J., 132
AMM, See Attractiveness-for-migration multiplier
Analytic Hierarchy Process, 208, 229
Appalachian program, 30
Apple Computer, 266–267
Argyris, C., 93
Arrow paradox, 188–189
Arrow, K., 189, 192–193
AT&T, 107, 265
Attractiveness-for-migration multiplier, 157
Au, T. and Au, T., 100, 106, 108
Audit trial, 250–251, 275
Axiological component, 58, 63–65, 81, 154–155

B
Babcock, D.L., 148
BANANA, 50, 111
BART, See Bay Area Rapid Transit
Baseball draft case, 123–124
Battelle Institute, 64–65, 151
Battelle Susquehanna Model, 151–153
Bay Area Rapid Transit, 10, 31–32
Bayes’ rule, 198, 216, 218
Bayes’ theorem, See Bayes’ rule
Bell, D.E., 199–201
Bell Laboratories, 16, 20, 265
Benefit–cost ratio, 96, 98–99, 105–107
Betamax, 290
Big Dig, 10, 32
Black, H.S., 16
Blanchard, B., 100
Bode, H.W., 16
Body mass index (BMI), 93
Boeing, 2, 6, 290
Boorstin, D., 219
Borda sums, 190–192
Bottom-up approach, 37–39, 55, 111, 148–149, 277
Boulding, K., 146
Bowl Championship Series poll, 94
Brainstorming, 58, 61, 132–135, 260
rules of, 133
drawbacks of, 134
Brainwriting, 58, 61–62, 135–136, 260
trigger questions, 62
Bransford, J., 132
Bridge security case, 122
Bush, G.W., 92
Business school selection case, 236–237
Bussey, L.E., 100, 106, 108
INDEX

<table>
<thead>
<tr>
<th>Letter</th>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Call center</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Capability Maturity Models</td>
<td>196, 298</td>
</tr>
<tr>
<td></td>
<td>Certain monetary equivalent</td>
<td>201, 205–206</td>
</tr>
<tr>
<td></td>
<td>Chesapeake Bay</td>
<td>147–148</td>
</tr>
<tr>
<td></td>
<td>Churchill, W.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Churchman, C.W.</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Clarke’s method</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Clients</td>
<td>302–309, 315</td>
</tr>
<tr>
<td></td>
<td>CMM, See Capability Maturity Models</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>Commission on National Goals</td>
<td>31, 92</td>
</tr>
<tr>
<td></td>
<td>Compound interest</td>
<td>96–97</td>
</tr>
<tr>
<td></td>
<td>Compound lottery</td>
<td>201–202</td>
</tr>
<tr>
<td></td>
<td>Computer simulation, See Simulation</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Concorde</td>
<td>188–189</td>
</tr>
<tr>
<td></td>
<td>Copley, F.B.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Coronary artery surgery case</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Corporate headquarters case</td>
<td>235–236</td>
</tr>
<tr>
<td></td>
<td>Cougar, D.</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>CPM, See Critical path</td>
<td>129–132</td>
</tr>
<tr>
<td></td>
<td>Creativity</td>
<td>131–132</td>
</tr>
<tr>
<td></td>
<td>Critical incident analysis</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>Critical path</td>
<td>248, 252, 278, 292–297</td>
</tr>
<tr>
<td></td>
<td>Cross-interaction matrix</td>
<td>246–247</td>
</tr>
<tr>
<td>D</td>
<td>de Bono, E.</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>de Borda, J.C.</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>de Condorcet, M.</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Decision analysis</td>
<td>18, 188, 197–224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>basic axioms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>classic examples</td>
</tr>
<tr>
<td></td>
<td></td>
<td>practical problems with</td>
</tr>
<tr>
<td></td>
<td>Decision theory, See Decision analysis</td>
<td>309–310, 315</td>
</tr>
<tr>
<td></td>
<td>Decision-maker</td>
<td>134–135</td>
</tr>
<tr>
<td></td>
<td>Delaware River basin</td>
<td>308</td>
</tr>
<tr>
<td></td>
<td>DELTA method</td>
<td>248–251</td>
</tr>
<tr>
<td></td>
<td>Denver International Airport</td>
<td>33, 50, 111</td>
</tr>
<tr>
<td></td>
<td>Department of Commerce</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Descriptive scenario</td>
<td>39, 58, 61, 241, 252, 268, 273–274</td>
</tr>
<tr>
<td></td>
<td>Detroit Edison Company</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Detroit subway, See Woodward Avenue</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Detroit Doxiadis analysis</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Detroit Transportation and Land Use Study</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Developing Alternative Scenarios</td>
<td>44–45, 129–159</td>
</tr>
<tr>
<td></td>
<td>Dewey, J.</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Dynamic confrontation</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Dynamic programming</td>
<td>18, 187</td>
</tr>
<tr>
<td></td>
<td>DYNAMO</td>
<td>151</td>
</tr>
<tr>
<td>E</td>
<td>Econometrics</td>
<td>17, 23</td>
</tr>
<tr>
<td></td>
<td>Economic rating methods</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Edwards, W.</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Eisenhower, D.D.</td>
<td>31, 92</td>
</tr>
<tr>
<td></td>
<td>Electronic Switching System</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Ellul, J.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>EMV, See Expected monetary value</td>
<td>95, 109–110, 198, 201, 205–206</td>
</tr>
<tr>
<td></td>
<td>Enterprise Resource Planning</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Error-embracing approach</td>
<td>46–47</td>
</tr>
<tr>
<td></td>
<td>ESS, See Electronic Switching System</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Evans, J.</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>Executive Summary</td>
<td>270–271, 273</td>
</tr>
<tr>
<td></td>
<td>Expected monetary value</td>
<td>95, 109–110, 198, 201, 205–206</td>
</tr>
<tr>
<td>F</td>
<td>Fabrycky, W.J.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Farquhar, P.H.</td>
<td>199–201</td>
</tr>
<tr>
<td></td>
<td>Feedback theory</td>
<td>16, 23</td>
</tr>
<tr>
<td></td>
<td>FFRDCs</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Fishburn, P.C.</td>
<td>189, 191–192</td>
</tr>
<tr>
<td></td>
<td>Fitch’s Goals for Urban America</td>
<td>31, 63, 72–79, 92</td>
</tr>
<tr>
<td></td>
<td>content analysis</td>
<td>79–82</td>
</tr>
<tr>
<td></td>
<td>Forrester Urban Model</td>
<td>65–66, 151–157</td>
</tr>
<tr>
<td></td>
<td>axiological level</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>policy level</td>
<td>155–156</td>
</tr>
<tr>
<td></td>
<td>structural level</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Forrester, J. W.</td>
<td>145, 151, 153, 260</td>
</tr>
<tr>
<td></td>
<td>FORTRAN</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>Frequency ratio approach</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Functional alternatives</td>
<td>32</td>
</tr>
<tr>
<td>G</td>
<td>Galbraith, J.K.</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Game theory</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Gantt chart</td>
<td>242–243, 253</td>
</tr>
<tr>
<td></td>
<td>Gantt, W.</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Gardner, M.</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>General Motors</td>
<td>41–42</td>
</tr>
<tr>
<td></td>
<td>corporate goals</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Generalizing the question</td>
<td>57, 59–60, 305, 310</td>
</tr>
<tr>
<td></td>
<td>Geschka, H.</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Ginsberg, A.S.</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Goal development</td>
<td>55–83</td>
</tr>
<tr>
<td></td>
<td>seven steps of</td>
<td>57–59</td>
</tr>
<tr>
<td></td>
<td>Goal-centered approach, See Top-down approach</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Goode, H.H.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Gray, J.</td>
<td>148</td>
</tr>
</tbody>
</table>
INDEX

Green Book (AT&T), 107
Group Decision Support System, 143–144
Grove, A., 137

H
Hall, A.D., 20
Hard systems, 23
Hershey–Blanchard four-mode theory, 281–283
High-speed ground transportation, 4
Highway vehicle simulator case, 180, 208–210
Holon, 3
Hoos, I.R., 3, 20, 148, 308
Human personalities, 257–258
Hurricane Katrina, 193

I
IBM personal computer, 289–290
IIASA, 20–23, 145, 157
organizational problems, 21–22
world energy model, 145, 157
Illumination, 131
Imperfect estimator, 217
Incremental IRR, 107, 108
Incubation, 131
Index of performance, 2–3, 30, 40–44, 89–114, 185, 306
desirable characteristics, 91–94
In-scoping, 260
Intelligent transportation systems, 8–11
Interaction matrix, 243–248
Internal Rate of Return, 95–96, 98, 107–108, 187
Internalizing the problem, 310
IP, See Index of performance
Iraq, war in, 40, 92
IRR, See Internal rate of return
ISTJ, 258–259
Iteration, 46–48, 239–253
efficiency of, 48
ITS, See Intelligent transportation systems

J
Janus effect, 3
Japanese businessmen, 60
Jensen’s Inequality, 110, 127
Jobs, S., 266
Jung, C.G., 257–258

K
Kappel, F.R., 265
Katrina, See Hurricane Katrina
Kerzner, H., 100
Keynes, J.M., 17
Keynote, 267
Klein, L., 17
Koestler, A., 3

L
Large-scale system, 7–8
Leontief, W.W., 17
Lindemann, F., 15
Linear programming, 18, 187
Lumsdaine, E. and M., 132

M
Machol, R.E., 20
Manned Mars Mission, 35–36, 160, 269
MARR, See Minimum attractive rate of return
Maslow, A., 302
Matsushita, K., 66
McGregor, D., 14
Michigan Electric Coordinated System, 3
MIL–499B, 6, 302
Minimum attractive rate of return, 97, 99, 106
MITRE Corporation, 48, 56
Monte Carlo simulation, 18, 229
Monty Hall probability problem, 94
Moore-Baker scheme, 186
More, Saint T., 156
Morgenstern, O., 198, 200
Morphological box, See Zwicky
Morton, J.A., 265
Multiple criteria, 100–105
Multistage rating process, 192–193

N
NASA, 35, 134–135
National Science Foundation, 147–148
Net present value, 96, 105, 107, 185
Net present worth, See Present net worth
NIMBY, 50, 111
Nonmonetary performance indices, 111–114
Normalized weights, 228
Normative scenario, 39–40, 58, 62, 241
NPV, See Net present value
Nuclear winter model, 157–158

O
Objectives tree, 58, 66–68, 246, 250
OCC, See Opportunity cost of capital
Offsend, F.L., 223
OPEC, 158
Operations research, 5–7, 13, 15–16, 40, 59, 301
definitions, 6
typical analytical techniques, 7
Opportunity cost of capital, 97
Optimization methods, 187–188
INDEX

Options field approach, 139–143
Oral presentations, 266–273
Out-scoping, 260

P
- Pauker, S.G., 210
- Paulos, J.A., 94
- Payback period, 99
- Persian Gulf “reflagging”, 92
- PERT, See Program Evaluation and Review Technique
- PNW, See Present Net Worth
- Polaris System, 244
- Policy analysis, 7
- Polya, L.G., 129
- Posterior probability, 216
- Power failure, Northeast US, 3
- PowerPoint™, 267
- PPBS, 20, 188
- Program Evaluation and Review Technique, 248, 252, 278, 292–297
- Project management, 277–292
dealing with conflict, 287–288
life-cycle planning, 288–292
vs. process management, 279
project planning, 286–287
relation to management style, 285–286
Pugh Method, 132

Q
- Quality control, 297–298
- Quality function deployment, 243

R
- Raiffa, H., 208, 222
- Ralston Purina Company, 266
- RAND, 5–7, 11, 17–20
 RAND/NYC, 19
- Ranking alternatives, 45–46, 185–224
- Ranking methods, 186
- RANN Chesapeake simulation, 148
- Rate & weight, 225
- Rating methods, See Scoring methods
- Reagan, R., 92
- Real-time television system, 35–36, 262, 269
case study, 160–179
Regional transportation collaboration case, 122–123
- Renault, 43
- Report writing, 273–275
- Request for proposal, 273
- Return on original investment, 96, 99
- Risk, 197
 Risk-averse, 206–207, 219
 Risk-seeking, 206
- Robbins, S.P., 63
- ROI, See Return on original investment
- Rokeach, M., 63
- Rothblatt, D.N., 30
- Royal Dutch Shell, 136, 158
 petroleum demand and supply model, 158
- RTTV, See Real-time television system
- Sagan, C., 157, 158
- Sage, A.P., 207, 243–244
- Schwartz, S., 95–96
- Scientific management, See Taylor, F.W.
- Scoring methods, 187
- SEI, See Software Engineering Institute
- Self-interaction matrix, 244–245
- Senge, P.M., 145
- Sensitivity analysis, 311
- Sequential sampling, 218
- Shewhart, W.A., 219
- Simon, H., 186
- Simulation, 144–148
 arguments for, 146–147
- Six major phases of system analysis, 29–34
- Sky High Airlines case, 116–122, 241, 269
- Smith, B.L.R., 5
- Snail Darter, 50, 313
- Soft systems, 23
- Software Engineering Institute, 297–298
- S.O.S. See System of systems
- Spaghetti twirlers, 37, 55
- SPIT, See Strategic planning initiative team
- SRI, 297
- Stakeholders, 315
- Stanford Children’s Hospital, 223
- Stein, B., 132
- Strategic planning initiative team, 135–136
- Subjective probability theory, 197
- SuperSonic transport, 56–57
- Susquehanna river basin model, See Battelle
 Susquehanna Model
- System
 definition, 2
 integration, 11–12, 34
 life-cycle 48–50
 rules-of-thumb, 50
- System of systems, 6, 302
- Systematic thinking, 302
- Systems engineering, 2, 5–6
INDEX

T
TALUS, See Detroit Transportation and Land Use Study
Taylor, F.W., 14–15, 66, 306–307
Taylorism, See Taylor, F.W.
Team leader, 261
Team management, 261–263
Technological alternatives, 31
Total quality management, 243
Traceability, 243, 248
Trade-offs, 227–228
Traffic entry fees, 32
Training center case, 234–235
Transition scenario, 40, 241
Transitive relation, See Transitivity
Transitivity, 188–189

U
Uncertainty, 197
United Way, 290
Urban rat control, 70, 269
Urban system analysis, 64
Utility function, 202–207
 properties of, 203
 constructing, 205–207
Utopia, 156

V
Validation, 59, 82
Values, See Axiological component
Venture Profile, 140–142
Vertinsky, I., 95–96
VHS, 290
Von Neumann, J., 198, 200
Von Winterfeldt, D., 224

W
Wald, A., 219
Wallas, G., 130
Wal-Mart, 53
Weinberger, C., 92
Wells, J.H., 92
Willow Run Research Center, 20
Winnebago case, 160
Wohl, M., 100, 107–108
Woodrow Wilson bridge, 45
Woodward Avenue case, 44–45, 60, 62, 91, 146
Worth of additional information, 213

Z
Zero-base budgeting, 188
Zwicky, F., 45, 132, 137–139
Zwicky's morphological box, See
 Zwicky, F.