Index

a
AC power system, control actions 179
generator redispatch 179
load shedding and demand side management 179
phase shifting transformer 179
reactive power management 180
special protection schemes 180
switching actions 180
angle stability 391
rotor angle stability 6
steady-state angle stability 391–395
ant colony optimisation (ACO) 218, 221–222
combinatorial optimisation problems 221
data structure, solution archive 222
optimal control action 229
unconstrained optimisation 221
artificial intelligence (AI) 4
artificial neural network (ANN)
feed-forward and recurrent networks 221
voltage stability margin 218
ATPDraw Model 384–386
Augmented Lagrange formulation 275, 281

b
behavioral recognition 11, 97–109
boundary end effect
EMD algorithm 75–76
Gibbs phenomenon 70
Hilbert transform 76–80
mirror extension method 76–77
mode mixing and pseudo-IMF component 70–71
parameter identification 71
bounds constraints 244
bulk power systems 1
centralized model predictive control 200
Clarke model 384
coherent electrical areas 122
controlled islanding scheme (CIS) 337
Control variables 28, 160, 169, 178, 252, 253, 255, 259
definition 269
voltage controller 253
convergence test 153
corrective actions 26, 27, 30, 32, 35, 54, 98, 151, 163, 164, 166–167, 169, 170, 177, 313, 315, 333, 407
corrective control 96, 97, 98, 103, 115, 122, 135, 151, 154, 163, 164, 252, 263, 283, 407
customer average interruption duration index (CAIDI) 47
damping controller models
IEEE Type DC1 model 196
PSS 197
TCSC 197
damping oscillations
angular speed 198
centralized MPC 200
decentralized MPC 200–202
generator 198

Edited by José Luis Rueda-Torres and Francisco González-Longatt.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
damping oscillations (contd.)
 hierarchical MPC 202–204
 mathematical formulation 199–200
 TCSC 199
data scaling 373
Day Ahead Congestion Forecast (DACF) 185
decentralized model predictive control 200–202
defuzzification 241–242
demand side management 178, 179, 182, 183
discrete Fourier transform (DFT) 9, 10
dispersed generation unit (DGU) 283
 active power outputs 291, 292
 dispatchable unit 284, 292
 Doubly-Fed Induction Generators (DFIG) 297
 local voltage control 284
 mode 1, 292
 mode 2, 292–294
 mode 3, 294–295
 non-dispatchable unit 284, 292
 problem formulation 295–296
 reactive power limitation 298
 reactive power output 291, 300
 voltage correction, minimum control effort
 external voltage drop 300
 future tap movements 300
 low power demands and high power production 299
 LTC actions 301
 reactive power output 300, 301, 302
 simulation results 302–306
 distributed energy resources (DER) 311
 reactive power injection 318
 reactive power productions 326
distributed generators (DGs) 251
 active power generation 260–261
 active power injection 265
 reactive power 260
distribution networks (DNs) 251, 252, 253, 283
 long-term voltage stability (see long-term voltage stability)
 voltage control and congestion management 285
 voltage correction, minimum control effort
 emergency limits 288
 normal operation limits 288
 voltage regulation 284
dual variables 152, 153
Dutch extra-high voltage (EHV)
 transmission network 53–56, 361
dynamic control strategy 284
dynamic security assessment (DSA) 11, 12, 24, 96, 120, 257
dynamic security region (DSR)
 definition 97
 electrical power system 96
 security assessment 97
 transient stability assessment (TSA) 96
dynamic vulnerability assessment (DVA) 4, 120
 post-contingency DVA 2
 wide area monitoring systems (WAMS)
 characteristic ellipsoid (CELL) method 13
 data mining-based framework 14
 Monte Carlo methods 14
 phase-space visualization 14
 PMU data 13, 16
 random-forest (RF) learning 15
 short time Fourier transform (STFT) 14
 support vector regressor (SVR) 14
 verge of collapse state 15

e

Ecuadorian National Interconnected System (SNI) 389
Ecuadorian system
 Ecuadorian ISO, CENACE 390
 oscillatory stability 398–406
 SNI, PMU location in 390–391
 special protection schemes 407–410
 steady-state angle stability 391–395
 steady-state voltage stability 395–398
 electrical power grids 88, 201
 electromagnetic transients programs (EMTP) 362
Emergency Single Machine Equivalent (E-SIME) 13
emerging technologies 3, 120
empirical orthogonal functions (EOF)
data compression and pattern extraction 363
data scaling 373
energy patterns 373–376
explained variability (EV) 376–378
fault classification 380–383
fault events 362
fault patterns 378–379
formulation 363–364
forward faults 371
PCA 363
protection scheme 379–380
reverse faults 371
sampling frequency 372
signal conditioning 373
superimposed component 373
training data 370
training data matrix 370–372
transmission line protection
fault classification 367–368
fault direction 366–367
fault location 369
fault simulation 365
online algorithm 365
power system 370
and simulations 369–370
ENTSO-E system operation guideline 22
expected energy not supplied (EENS) 37, 46–47

\(f \)

fault direction 366–367
fault location 369, 382–383
fault simulation 365
fitness function 242, 244
forward faults 371
frequency control 339
fuzzy controller 243

\(g \)
generation tripping schemes (GTS) 339
generator exciter power system (GEP)
approach 405
genetic algorithm (GA) 233, 242
groups of coherent generators (GCG) 338

\(h \)
hierarchical model predictive control 202–204
high-performance computing (HPC)
techniques 120
high voltage multi-terminal DC (HV-MTDC) grids
conventional control schemes
communication resources 235
constant voltage and power control 234
dead and un-dead band strategies 235
droop control strategy 234
droop voltage strategy 235
N–R method 235
power compensation 234
power flow pattern 234
voltage and power deviation 235
voltage margin 235
fuzzy logic and control 236
optimization-based secondary control strategy
constraints 244
fitness function 242, 244
power and droop voltage control strategies
defuzzification and output 241–242
fuzzy logic 237
input/output variables 238–240
knowledge base and inference engine 241
primary and secondary power-voltage control 237–238
reference set points 246
set point change 245
wind power plant, sudden disconnection of 246–247
Hilbert-Huang transform (HHT)
bimodal test oscillation signal 84–85
boundary end effect (see boundary end effect)
Butterworth filter processing 81
damping coefficient 87
Hilbert-Huang transform (HHT) (contd.)
- data pre-treatment processing
 - DC removal processing 72
 - digital band-pass filter algorithm 72–75
- EMD 65
- EMD results 82–83
- Hilbert spectrum and Hilbert marginal spectrum 66–67
- IMF components and residue signal 67
- mode mixing 70–71
- mutation signals 64
- nonlinear/nonstationary signals 67, 85
- oscillation signal 81
- parameter identification 71, 80–81
 - damping coefficient 80
 - frequency oscillation signal 80
- IMF component 8
- parameter identification results 87
- power system oscillation signals 64
- pre-treatment EMD results 81–82
- pseudo-IMF components 68, 70–71
- ratio computation 87
- time domain spectrum 69

i
- injection shift factor (ISF) 142
- inter-machine oscillations 345
- inverse Jacobian matrix 272

j
- Jacobian matrix 273
- JMarti model 384

k
- Kernel-based Classification 14

l
- Lagrangian decomposition 269–270
- Library for Support Vector Machines (LIBSVM) 113
- line impedances and admittances 386
- load shedding 179
- load shedding and generation tripping schemes 339
- load tap changer (LTC) 284, 290–291, 311
- local correlation network pattern (LCNP) 14
- long-term voltage stability
 - countermeasures 314–316
 - loadability curves 313, 314
 - load restoration mechanisms 314
- OverExcitation Limiters (OELs) 313
- VVC
 - active power modulation 316
 - algorithm 321–322
 - countermeasure 318–319
 - disturbance and voltage restoration 317
 - emergency detection 322–323
 - minimum load reduction 317
 - reactive power injection 316, 318
 - restoration procedure 318
 - test system 319–321
 - TN assumption 317
- loss minimization
 - control actions 269
 - controller performance 263–266
- loss of energy expectation (LOEE) 45–46
- loss of load expectation (LOLE) 45–46
- loss of load probability (LOLP) 45

m
- MATLAB programming 261
- Maximum Power Point Tracking (MPPT) 292
- mean-variance mapping optimization (MVMO5) 111
- membership function (MF) 239–240
- Mitigation Matrix 408
- model predictive control (MPC) 263, 283
 - application 252
 - centralized MPC 204–207
 - control delay consideration 208–209
 - state estimation errors 206–208
 - centralized voltage control scheme 284
 - control strategy 194
 - control variable changes 286
 - and damping controller models
 - IEEE Type DC1 model 196
 - PSS 197
 - TCSC 197
 - damping oscillations
 - angular speed 198
centrallyal MPC 200

decentralized MPC 200–202
generator 198
hierarchical MPC 202–204
mathematical formulation 199–200
TCSC 199
definition 194–195
distributed MPC 209, 214
DN voltages 311
factors 193
features 307–308
formulation 254
hierarchical MPC 209–214
implementation 257
MPC-based multi-step controller 284
MPC based voltage/reactive controller control algorithm 259
DG response 258
functions 259–261
loss minimization performance 263–264
operational principle 261
operation condition, changes of 262
parameter setup and algorithm selection 263
slow control functionality 258
test system and measurement deployment 262–266
voltage correction performance 264–266
voltage violation 262
optimal power flow 194
prediction capability 285
principle of 253–254
problem formulation 290–291
robust hierarchical MPC 194
system linearizations 254
TCSC 194
test system and simulation setting 204
voltage regulation 194
Monte Carlo simulation 23, 51–53
Dutch extra-high voltage (EHV) transmission network 58, 59
TVFS vulnerability performance indicators 125
multi-agent power system augmented Lagrange formulation 275
implementation algorithm 275–276
loss minimization 280
parameters setup 277–278
proposed control scheme’s performance 279
vs. single-agent based system 278–279
mutation signals 64
n
N–1 criterion 22, 24, 33, 177
network splitting mechanism 339
dynamic frequency behavior 340
flowchart of 340, 341
graph modeling, update, and reduction 341–342
graph partitioning procedure 342–344
load shedding/generation tripping schemes 343
off-line computations 340
tie-lines determination 344
Newton–Raphson (N–R) method 242
nonlinear and nonstationary signals 67
nonlinear equality constraints 244
o
off-line computations 340
one machine infinite bus equivalent (OMIB) 13
online voltage control 251
operating state, power system
alert states 26
blackout state 26, 28
emergency operation 28
interconnected area 26
N–1 criterion 27
normal operation 26, 27
preventive controls 27
system deterioration 27
optimal grid management
bounds constraints 244
fitness function 242, 244
nonlinear equality constraints 244
optimal power flow (OPF) 242, 283–284
abstract mathematical formulation 150–151
active power re-dispatch 157
5-bus system
optimal power flow (OPF) (contd.)
critical post-contingency constraints 155
formulation models 155
and initial state 154
line data 154
objective and decision variables 155
pre-contingency and post-contingency states 155
computational intelligence 220
contingency constraints 150
conventional OPF
classical methods vs. convex relaxations 171–172
risk, uncertainty, smarter sustainable grid 172–173
solution methodology 169–170
core optimizer and security analysis (SA) 157
generation dispatch pattern 157
inequality constraints 156
interior-point method
basic primal dual algorithm 152–153
optimality conditions 151–152
“no contingencies” mode 156, 157, 158
OPF under uncertainty (OPF-UU)
motivation and potential approaches 162
robust optimization framework 162–169
optimal decision variables 220
power system static security 150
preventive modes 157
reference values, of reactive power 284
risk-based OPF
5-bus system 160–162
motivation and principle 158–159
problem formulation 159–160
security-constrained economic dispatch (SCED) 150
security-constrained optimal power flow (SCOPF) 150
unoptimized mode 156
optimal reactive power dispatch 271–272
oscillatory index (OSI)
dominant modes 139
electrical area 139
electrical signals 137
fast-phenomena assessment 138
modal identification technique 141
mode meters 138
oscillatory modes 139, 140
poorly-damped local modes 140
prony analysis 138
ringdown methods 138
threshold damping 139
oscillatory instability 398
oscillatory stability 6–7
alert and alarm amplitude limitation 402
inter-area mode amplitude 401
inter-area mode oscillations 399
low frequency control modes 399
modal identification algorithm 400
oscillation amplitudes 401
power system stabilizer tuning
Ecuador–Colombia interconnected power system 404
GEP approach 405
0.45 Hz inter-area mode 406
Paute plant’s AB generators 405
Pomasqui substation 404
WAProtector modal identification algorithm 404
system’s damping performance 399
WAProtector 399, 400
overload index (OVI)
branch outages 144
dc-DFs 141
injection shift factor (ISF) 142
MC-based simulation 142
power transfer limit 143
SDF-based overload estimation 142
OVI. see overload index (OVI)

\(p \)
perturbed Karush–Kuhn–Tucker (KKT) 152
phase shifting transformer 179
phasor calculation 10
phasor estimation techniques 361
phasor measurement units (PMUs) 1, 4, 9, 120
Index

SNI, location in 390–391
WAMPAC system 389
point of collapse (POC) 219
post contingency dynamic vulnerability regions (DVRs)
data-time windows 103–104
DSR hyper-plane boundary 96
electrical power system 96
IEEE New England 39-bus, 60 Hz and 345 kV test system 104–109
independent system operator (ISO) 97
methodological framework 99
Monte Carlo-type (MC) simulation 97–98
N–1 Contingency Monte Carlo Simulation 98, 100
pattern recognition method
computer algorithms 100
\((n \times p)\) data matrix 101
dynamic electrical signals 100
EOF 100–101
EOFs 103
Fourier analysis 103
orthogonal matrix 102
power system random variables 98
probability distribution functions (PDFs) 97
vulnerable and non-vulnerable regions 97
post-contingency system 24
power system controlled islanding
frequency control 339
Groups of Coherent Generators (GCG) 338
network splitting mechanism 339
dynamic frequency behavior 340
flowchart of 340, 341
graph modeling, update, and reduction 341–342
graph partitioning procedure 342–344
load shedding/generation tripping schemes 343
off-line computations 340
tie-lines determination 344
overload assessment and control 348–349
power imbalance constraint
analytical expressions and nomograms 345
inter-machine oscillations 345
limitation 347–348
power-frequency control system, equivalent models of 345
reduced frequency response model 345–346
power network splitting 339
test system
power system collapse 349–351
proposed ACIS 354–356
proposed methodology 351–354
vulnerability assessment 337–338
WAMS 338–339
power system model
N\(^a\) areas 270–271
regional assets 270
system constraints 270
power system oscillation signals 64
power system reliability management
adequacy and security, interaction between 22–223
coping capacity 22
definition 22
electrical power requirements 21
interruption costs 35–36
sum of reliability 36–37
local energy 21
power system adequacy 22
power system security 22
reliability assessment
and adequacy assessment 24
analytical contingency enumeration 23
post-contingency system 24
pseudo-dynamic evaluation techniques 24
and security assessment 24
simulation techniques (Monte Carlo simulation) 23
reliability control mechanism
credible and non-credible contingencies 24
N–1 criterion 24
operating state 25–28
Index

power system reliability management (contd.)
 reliability actions 24
 system state space representation 28–31
 reliability costs 34–35
 reliability criteria 33–34
 reliability criterion 22
 system's vulnerability 22
 uncertainty space, timeframes 31–32
 vulnerability 22
power system signals, mining of 103
power system toolbox (PST) 204
power transfer limit 143
preventive actions 177
primal variables 152
principal components analysis (PCA) 101, 363
probabilistic approaches 34
probabilistic reliability analysis
 alert state 49
 Dutch extra-high voltage (EHV)
 transmission network
 configurations 55
 expected redispatch costs 58
 failure frequency 56
 input parameters 54–56
 Monte Carlo simulation 58, 59
 probability of load curtailment 57
 probability of overload 57
 repair time 56
 expected redispatch costs 48
 of generation redispatch 48
 input information
 component repair times and failure frequencies 50
 development scenario 50
 generator parameters 50
 load scenario 49–50
 network topology and component parameters 50
 wind scenario 50
 overlapping and interaction 42, 44
 of overload 48
 pre-calculations 50
 reliability indicators 53
 remedial actions 42, 44–45
security-of-supply related indicators
 customer average interruption duration index 47
 expected energy not supplied 46–47
 loss of energy expectation 45–46
 loss of load expectation 45–46
 loss of load probability 45
 probability of load curtailment 46
 system average interruption duration index 47
 system average interruption frequency index 47
 state enumeration 51
 time horizons 42, 43
 probability of load curtailment (PLC) 46
 prony analysis 138
 pseudo-dynamic evaluation techniques 24

q
 Quadratic Programming (QP) problem 196, 288

r
 RAMSES software 323
 reactive power management 180
 real-time area coherency identification
 associated PMU coherent areas 122–124
 coherent electrical areas 122
 recursive clustering approach 122
 real-time digital simulators 362
 recursive clustering approach 122
 reduced frequency response model 345–346
 reliability criterion 177
 renewable energy sources (RES) 251, 291
 reverse faults 371
 ringdown methods 138
 robust optimal power flow (R-OPF)
 formulation of 166–167
 numerical results 168–169
 problem solving methodology 163–164
 worst case scenarios 164–165
 Roy Billington Test System (RBTS) 185
 rule-based fuzzy systems 236
sampling frequency 372

security-constrained economic dispatch (SCED) 150

security-constrained optimal power flow (SCOPF) 150

DC SCOPE

generator redispatch and load shedding 186–189
PST implementation 190
transmission line switching 190–191
formulation 178
linear implementation

generator redispatch 181–182
load shedding and demand side management 182–183
phase shifting transformer 183–184
switching 184–185

self-healing functions, EMS with

sensitivities

analytical approach 255
definition 255
first layer, calculation of 273
load flow analysis 272
numerical approach 254–255
parameter values 255
second layer, calculation of 273–275
sensitivity analysis 219–220
short-term frequency stability 7
short-term voltage stability 7
short time Fourier transform (STFT) 14
signal conditioning 373
simulation techniques (Monte Carlo simulation) 23

single-agent power system 278–279
single pole tripping (SPT) schemes 367
singular value decomposition (SVD) 101

Smart Grid developments 312

special protection schemes (SPS) 180
implemented strategies 408
mitigation matrix 408
operation analysis 409–410
real time dynamic vulnerability assessment (DVA) 407
Smart Grid applications 407
static security assessment (SSA) 3, 120
steady-state angle stability

alert and alarm limits, hydrological scenarios 395
Chebyshev’s inequality 394
dynamic contour plots, of angle difference 393
mechanical and electromagnetic torques 391
methodology 394
N-1 contingencies 394
“π” equivalent model 392
phase angle difference maximum limit 393
power–angle curve 392
power transfer 391
static simulations 394
WAProtector 393

steady-state voltage stability
alert and alarm threshold value 397
DPL script 398
N-1 contingencies 397
power–voltage (P-V) curves 395
P-V curve and voltage profile stability band 397
real time monitoring application 395
Thevenin equivalent method 395, 396
Totoras–Santa Rosa 230 kV transmission line 399
transmission corridor monitoring, PMU 396

superimposed component 373

Supervisory Control and Data Acquisition/Energy Management System (SCADA/EMS) 3

support vector classifier (SVC)
and decision tree classifier (DTC) 112
discriminant analysis (DA) 112, 113
feature extraction stage 112
feature selection stage 112
kernel function 111
LIBSVM 113
and pattern recognition network 112
probabilistic neural networks 112, 113
real-time implementation 113–114
training data based model 110
vulnerable/non-vulnerable status 111
support vectors (SV) 110
synchronized phasor measurement technology 9
discrete Fourier transform and phasor calculation 10
phasor measurement units 9
phasor representation of sinusoids 8
WAMPAC communication time delay 12–13
wide area monitoring systems (WAMS) 10–12
system average interruption duration index (SAIDI) 47
system average interruption frequency index (SAIFI) 47
system operator (SO) 177
system state space representation
flexible demand 30
generation and load variations 28
generation outage 30, 31
input and control variables and parameters 28
limited uncertainty and increased uncertainty 29
line outage 30
N–1 criterion 29
operating points 29
phase shifting transformers and HVDC 30
renewable generation sources 28
security limits 28
security threshold 28
topology changes 30
traditional power system 28

Test power system 223
Thevenin equivalent method 395
tie-lines determination 344
time domain spectrum 69
transient stability 6
transient, voltage, and frequency stability (TVFS)
39-bus-test system logic schemes 133–134
DiGSIILENT PowerFactory software 125
frequency deviation index (FDI) 131
MATPOWER package 125
Monte Carlo simulation 125
optimal power flow (OPF) 125
penalty 133
real-time area coherency iterative algorithm 136
real-time transient stability index (TSI) 125–130
transient unstable case 135
voltage deviation index (VDI) 128–130
voltage vulnerable case 136
vulnerability status 133
vulnerability status prediction method 113

transmission and distribution (T&D) test-system 313
transmission-distribution systems, control of 258, 317
transmission networks (TNs) 41, 42, 49, 53, 54, 58, 60, 312, 334, 341, 392
transmission system operators (TSOs) 22, 25, 34, 161, 258, 318
turbine generators 284

U
ultra-high voltage (UHV) 362
Under-frequency load shedding schemes (UFLS) 339

V
Vapnik–Chervonenkis dimension 110
voltage control
control variables 253
models 251
reference values and voltage limitation 253
system operators 252
voltage source converter (VSC) technology 234
voltage stability
assessment 218–219
definition 217, 395
measurement-based methods 217
model-based methods 217
steady-state voltage stability 395–398
voltage stability constrained optimal power flow (VSCOPF)
optimal control action 217
preventive measure
 problem statement 224–225
 simulation results 225–226
voltage stability margin (VSM) 218, 219
corrective measure
 problem statement 226–227
 simulation results 227–229
volt-var control (VVC) 312
active power modulation 316
algorithm 321–322
countermeasure 318–319
disturbance and voltage restoration
 emergency detection 322–323
 minimum load reduction 317
 reactive power injection 316, 318
 restoration procedure 318
 simulation results and case studies
 emergency support, from distribution
 328–334
 stable scenarios 323–325
 unstable scenarios 326–328
test system 319–321
TN assumption 317
vulnerability assessment
 conventional methods 120
 definition 119
 off-line assessment 3
 on-line assessment 3
oscillatory index (OSI)
 dominant modes 139
 electrical area 139
 electrical signals 137
 fast-phenomena assessment 138
 modal identification technique 141
 mode meters 138
 oscillatory modes 139, 140
 poorly-damped local modes 140
 prony analysis 138
 ringdown methods 138
 threshold damping 139
overload index (OVI)
 branch outages 144
dc-DFs 141
 injection shift factor (ISF) 142
 MC-based simulation 142
 power transfer limit 143
 SDF-based overload estimation 142
 PMU measures 120
 power system actions and operations
 4–5
 power system vulnerability condition 121
 real time assessment 3–4
TVFS vulnerability performance indicators
 39-bus-test system logic schemes
 133–134
 DlgSILENT PowerFactory software 125
 frequency deviation index (FDI) 131
 MATPOWER package 125
 Monte Carlo simulation 125
 optimal power flow (OPF) 125
 real-time area coherency iterative algorithm 136
 real-time transient stability index (TSI)
 125–130
 transient unstable case 135
 voltage deviation index (VDI)
 128–130
 voltage vulnerable case 136
 vulnerability status 133
vulnerability symptoms
 oscillatorystability 6–7
 post-contingency overloads 7–8
 rotor angle stability 6
 short-term frequency stability 7
 short-term voltage stability 7
 transient stability 6
vulnerable area 119
vulnerable system 1, 2, 119

W
Western System Coordinating Council (WSCC) 3-Machine 9-Bus test system 370
wide area monitoring, control, and protection (WAMPAC) system 357, 389
wide area monitoring systems (WAMS)
 10–12, 120
 Campus WAMS 88–89
wide area monitoring systems (WAMS)
(continued)
dominant oscillation mode 88
DVA
characteristic ellipsoid (CELL) method 13
data mining-based framework 14
Monte Carlo methods 14
phase-space visualization 14
PMU data 13, 16
random-forest (RF) learning 15
short time Fourier transform (STFT) 14
support vector regressor (SVR) 14
verge of collapse state 15
EMD results 89–90
extracted oscillation mode 91–92
Hilbert marginal spectrum (HMS)
analysis technique 89, 91
phasor measurement unit 88–89