CHAPTER 1

Vertebrates Originate
KEY QUESTIONS IN THIS CHAPTER

1. What are the closest living relatives of vertebrates?
2. When did deuterostomes and chordates originate?
3. What are the key characters of chordates?
4. How do embryology and morphology, combined with new phylogenomic studies, inform us about the evolution of animals and the origin of vertebrates?
5. How do extraordinary new fossil discoveries from China help us understand the ancestry of vertebrates?

INTRODUCTION

Vertebrates are the animals with backbones, the fishes, amphibians, reptiles, birds, and mammals. We have always been especially interested in vertebrates because this is the animal group that includes humans. The efforts of generations of vertebrate palaeontologists have been repaid by the discovery of countless spectacular fossils: heavily armoured fishes of the Ordovician and Devonian, seven- and eight-toed land animals, sail-backed mammal-like reptiles, early birds and dinosaurs with feathers, giant rhinoceroses, rodents with horns, horse-eating flightless birds, and sabre-toothed cats. These fossils tell us where the living vertebrates have come from, and they show us glimpses of different worlds that seem so bizarre that they would defy the imagination of a science fiction writer. Despite all this information that has accumulated over the past 200 years, the origin of vertebrates is hotly debated.

One thing is clear from the biology of living animals. Vertebrates are members of a larger group, termed the Phylum Chordata, which also includes their closest living relatives, marine animals such as the sea squirts and amphioxus (see below). These creatures do not have a skeleton, but they share some features, such as a notochord, a flexible, tough rod that runs along the length of the body down the back. The notochord in living chordates is generally made from an outer sheath of collagen, a tough fibrous connective tissue that encloses tur- gid, fluid-filled spaces. Invertebrate chordates also have V-shaped muscle blocks (myomeres) along the length of their body. The question about the origin of vertebrates then broadens out to include the origin of chordates.

Looked at more widely, vertebrates are a minor twig in the ‘Tree of Life’ (Figure 1.1). It is common to think of the major divisions of life as being animals, plants, protists, and simple organisms classed broadly as bacteria and viruses. However, molecular studies since the 1990s (e.g. Woese, 2000; Wolf et al., 2002) have shown that the fundamental splits were between Bacteria, Archaea, and Eukaryota. The familiar plants, animals and fungi are members of Eukaryota, all diagnosed by complex cells with a membrane-bound nucleus and the primitive presence of mitochondria. Within Eukaryota are various protist groups, as well as plants, fungi, and animals, and of course vertebrates are animals. Among animals, it has always been assumed that chordates are closely related to hemichordates (acorn worms and pterobranch worms) and echinoderms (starfish, sea lilies, and sea urchins), and this is now widely confirmed, based on morphological, developmental and molecular evidence.

The purpose of this chapter is to explore the various lines of evidence that can be used to reconstruct the origin of the vertebrates: the study of modern animals that are vertebrate-like in some features, the study of molecular relationships, and fossils.

![Figure 1.1](image-url) The ‘Tree of Life’, the commonly accepted view of the relationships of all organisms. Note the location of ‘Animals’, a minor twig in the tree, close to plants and Fungi. Source: Adapted from various sources.

1.1 SEA SQUIRTS AND THE LANCELET

There are two key groups of living non-vertebrate chordates, the sea squirts and the cephalochordates (amphioxus). The amphioxus certainly looks superficially fish-like, but adult sea squirts look like rubbery bottles, and so would hardly seem to be sensible candidates for close relatives of the vertebrates!

1.1.1 Urochordata: sea squirts

A typical sea squirt, or tunicate, is Ciona (Figure 1.2(a)), which lives attached to rocks in seas around the world. It is a 100–150 mm tall bag-shaped organism with a translucent outer skin (the tunic) and two openings, or siphons, at the top. The body is firmly fixed to a hard substrate.

The internal structure is fairly complex (Figure 1.2(b)). A large pharynx fills most of the internal space, and its walls are perforated by hundreds of gill slits, each of which bears a fringe of cilia, fine hair-like vibratile structures. Seawater is pumped through the inhalant siphon into the pharynx by beating movements of the cilia, and the water is then passed through a surrounding cavity, the atrium, and ejected through the exhalant siphon. The pharynx serves mainly to capture food particles...
from the stream of seawater that flows through it. The seawater is drawn into a filter bag of mucus, which is produced inside the pharynx by an organ called the endostyle. During feeding, the endostyle continuously secretes mucus into the oesophagus, together with the food particles that it has filtered from the seawater, and the food is passed to the stomach for digestion. Tunicates also have a heart that pumps the blood around the body; an intriguing aspect is that the heart stops beating every few minutes and the direction of blood flow reverses.

Why is Ciona identified as a chordate? The pharynx and other structures are in fact very like those of the cephalochordates and lamprey larvae, but further evidence is to be found in the larval stage, when the sea squirt is a tiny free-swimming tadpole-shaped animal with a head and a tail. The larval sea squirt (Figure 1.2(c)) has a notochord that runs along the tail, and this identifies it as a chordate. There are muscles on either side of the notochord that contract alternately, causing the tail to beat from side to side, and this drives the animal forward in the water. The larva has a dorsal nerve cord, running just above the notochord, and this expands at the front into a very simple brain that includes a light sensor (an 'eye') and a tilt detector.

The larva then settles on a suitable surface. It up-ends onto the tip of its 'snout' and attaches itself by means of adhesive suckers (Figure 1.2(d)). The notochord and tail portion wither away, and the pharynx and gut expand to fill up the body cavity. This extraordinary metamorphosis occurs rapidly to allow the adult to start feeding in its new way as soon as possible.

1.1.2 Cephalochordata: amphioxus

Another chordate generally reckoned to be related closely to the vertebrates is the amphioxus or lancelet, Branchiostoma, a representative of the Cephalochordata (or Acraniata). The adult amphioxus is convincingly chordate-like, being a 50 mm long paperknife-shaped animal that looks like a young lamprey or eel, yet lacking a head (Holland, 2010; Bertrand and
Escriva, 2011). Amphioxus swims freely by undulating its whole body from side to side, and it burrows in the sediment on the sea floor (Figure 1.3(a)).

Amphioxus feeds by filtering food particles out of the seawater. Water is pumped into the mouth and through the pharynx by cilia or the gill slits, and food particles are caught up in a bag of mucus produced by the endostyle, the feeding system seen also in tunicates and in the larvae of the lamprey. The mucus with its contained food particles is pulled into the gut for digestion, whereas the seawater passes through the gill slits into the atrium. Oxygen is also extracted, and the waste water then exits through the atriopore.

The anatomy of amphioxus, with its pharynx, notochord, dorsal nerve cord, myotomes, and endostyle (Figure 1.3(b)) is typically chordate. Swimming and burrowing are by means of lateral contractions of the myomeres acting against the stiff rod-like notochord.

1.2 AMBULACRARIA: ECHINODERMS AND HEMICHORDATES

Unexpected relatives of chordates are the Ambulacraria, a clade consisting of echinoderms and hemichordates. The living members of these groups do not look much like modern vertebrates, but there is considerable evidence for the relationship (see Box 1.1).

Echinoderms today include such familiar animals as starfish and sea urchins, as well as ophiuroids (brittle stars), crinoids (‘sea lilies’) and holothurians (‘sea cucumbers’). There are some 7000 species of living echinoderms and 13,000 extinct species. Echinoderms all share four key features: (1) a calcite skeleton made from many ossicles, each composed of many aligned small crystals in a somewhat spongy arrangement called stereom; (2) a water vascular system that functions in locomotion, respiration, and feeding; (3) ossicles are linked by mutable collagen, ligaments that are normally rigid, but can be loosened; and (4) pentaradial (five-fold) symmetry. Most of these special features of echinoderms do not show close similarities to other deuterostomes, but the water vascular system may have evolved from simple tentacular systems, such as those of pterobranch hemichordates.

The first putative echinoderms include Arkarua from the Vendian of Australia, a disc-shaped organism with radial ridges and a five-pointed central depression, but it has no stereom or evidence of a water vascular system and the identification is inconclusive. The first definitive echinoderms appeared in the Early Cambrian as part of the Cambrian Explosion, and these included some close relatives of living forms, as well as other entirely extinct groups, some of them lacking pentaradial symmetry.

The hemichordates (Röttinger and Lowe, 2012) include two superficially very different kinds of marine animals. The first, the pterobranchs such as Cephalodiscus (Figure 1.4(a,b)), are small animals that live in loose colonies on the seabed in the southern hemisphere and in equatorial waters. Cephalodiscus has a plate-like head shield, a collar with five to nine pairs of feeding arms, and a sac-like trunk perforated by a pair of gill slits and containing the gut and gonads, and the body ends in a contractile stalk. Cilia on the arms produce a feeding current, and food particles are captured by mucus on the arms, while water passes out of the pharynx through the gill slits. The animal lives in or around a group of horny tubes that the colony has constructed, and it attaches itself inside these tubes by means of a sucker on the end of the stalk.

The second hemichordate group, the acorn worms, or enteropneusts, such as Saccoglossus, are worm-like animals varying in length from 20 mm to 2.5 m. They live in burrows low on the shore in Europe and elsewhere. Saccoglossus (Figure 1.4(c)) has a long muscular proboscis that fits into a...
Two substantially different schemes for deuterostome relationships have been proposed. The ‘traditional’ view (e.g. Maisey, 1986; Donoghue et al., 1998; illustration (a)) was to place the hemichordates as basal to chordates since they both share ciliated gill slits and giant nerve cells, as well as other features, which are not seen in echinoderms. Enteropneusts were sometimes said to be closer relatives of chordates since their gill slits are similar, they have a very short dorsal hollow nerve cord, and a number of other features of the gut not seen in pterobranchs. Most authors regarded amphioxus as the closest relative of the Vertebrata on the basis of 10–15 features that are not seen in tunicates.

The second view (illustration (b)) is supported by morphological and molecular data and is now widely accepted (Swalla and Smith, 2008; Edgecombe et al., 2011). The first molecular studies, in which the 18S rRNA genes of echinoderms, hemichordates, and chordates were compared were inconclusive, but newer work (e.g. Eernisse and Peterson, 2004; Delsuc et al., 2006; Swalla and Smith, 2008; Edgecombe et al., 2011; Röttinger and Lowe, 2012; Cannon et al., 2013) pairs hemichordates with echinoderms as the clade Ambulacraria, and within the clade Chordata places cephalochordates as the basal clade, and pairs Urochordata and Vertebrata, as clade Olfactores because of shared characters in the olfactory region. See Box 3.1 for phylogeny of Vertebrata.

Cladograms showing the relationships of the main deuterostome groups: (a) the ‘traditional’ model, and (b) molecular model. Synapomorphies: A DEUTEROSTOMIA, blastopore becomes anus during development, bipartite mesocoel, mesocoelomic ducts; B, stomochord, paired gill slits; C, multiple pairs of gill slits, pharyngeal slits U-shaped, dorsal hollow nerve cord, preoral ciliary organ, mouth anterior and ventral and anus posterior and ventral or dorsal, multiciliated cells; D CHORDATA, notochord present and not attached to gut, dorsal hollow nerve cord with neural-plate stage in development, endostyle organ, a true tail used in swimming; E, digestive caecum, open capillary junctions, somites present, lateral-plate mesoderm, neural tube differentiated into grey and white matter, cerebral vesicle in brain; F OLFACTORES, specialized olfactory areas in buccal cavity, hind-tail tripartite, dorsal longitudinal canal connected with notochord; G AMBULACRARIA, trimeric arrangement of the adult coelom, axial complex with hydropore, dipleureula larva with notochord.

The fossil record of enteropneusts has been debated. It is widely assumed that the extinct, colonial graptolites were a clade of hemichordates, and particularly allied with ptero-branches, based on similarities in the ultrastructure of their wall structures (Sato et al., 2008). However, fossils of the two extant clades have been restricted to rare forms in the Carboniferous and Jurassic until reports (Caron et al., 2013; Malétz, 2014) of Cambrian specimens from Chengjiang and the Burgess Shale respectively. The latter example, the worm-like Spartobranchus, shows a fibrous tube that might be a precursor of the pterobranch periderm, suggesting that pterobranchs arose from enteropneust-like ancestors.

The phylogeny of hemichordates is actively debated. However, morphological (Smith et al., 2004) and molecular (Röttinger and Lowe, 2012; Cannon et al., 2013) data now concur that Hemichordata is a valid phylum. Hemichordates do not have a notochord at any stage, but they possess gill slits, as in chordates, and giant nerve cells in the nerve cord of the collar region that are probably equivalent to similar nerve cells in amphioxus and primitive vertebrates. Both pterobranchs and enteropneusts share morphological characters indicating monophyly of the Hemichordata, such as the stomochord (an anterior buccal tube on the dorsal part of the pharynx) and mesocoelomic ducts. Earlier molecular phylogenetic studies suggested that enteropneust worms were either monophyletic (based on 28S rDNA) or not (based on 18S rDNA), but micro-RNAs provide strong evidence for monophyly (Peterson et al., 2013).
1.3 DEUTEROSTOME RELATIONSHIPS

The relationships of chordates used to be rather problematic, but intensive analyses of molecular data have provided a clearer picture (Eernisse and Peterson, 2004; Swalla and Smith, 2008; Edgecombe et al., 2011). The Phylum Chordata is part of a larger clade, the Deuterostomia, comprising chordates, hemichordates, and echinoderms, which in turn is part of a yet larger clade of all the bilaterally symmetrical animals, the Bilateria, and these in turn fall within Metazoa, the animals. But what exactly diagnoses the Deuterostomia, and how can some of our closest relatives be sea urchins, starfish, and worm-like animals? The clues come from embryology, the study of the early phases of development in, and just out of, the egg, and from molecular phylogenetic analysis.

1.3.1 Embryology and the position of the anus

In early development each animal starts as a single cell. Soon this cell begins to divide, first into two cells, then four, then eight, sixteen, and so on (Figure 1.5(a–c)). Eventually a hollow ball of cells is produced, called the blastula stage (Figure 1.5(d)). A pocket of cells then moves inwards, forming the precursor of the gut and other internal structures. The opening of this deep pocket is called the blastopore. You can imagine pushing in the walls of a hollow rubber squash ball with your thumb to produce a model of this embryonic pattern, known as the gastrula stage (Figure 1.5(e–g)).

Embryologists noticed some time ago that animals fall into two large groups depending on the relative orientation of the mouth and anus. The classic story is that in most invertebrates (the protostomes), the blastopore becomes the mouth (Figure 1.5(h)),
whereas in others (the deuterostomes), including the chordates, this opening becomes the anus (Figure 1.5(i)), and the mouth is a secondary perforation. Such a dramatic turnaround, a switch from mouth to anus, seems incredible. Note, however, that many protostomes show deuterostomy, and this condition may be primitive and shared by all Bilateria (Eernisse and Peterson, 2004). This peculiarity of embryological development was noted over a century ago, and the group Deuterostomia named in 1908; but does it stand up to the scrutiny of modern molecular phylogenetics?

1.3.2 Animal phylogenomics

Numerous zoologists have contributed over the years to disentangling the relationships of animals. All creatures from sponges and corals to crabs, clams, and birds, are animals, members of the clade Metazoa, diagnosed by a combination of feeding, being motile, lacking rigid cell walls, and passing through the blastula embryonic stage. These characteristics are not all exclusive, however. First, metazoans are distinguished from most plants and algae by being heterotrophs, meaning they feed on other organisms to acquire carbon, which is digested in an internal chamber (gut), whereas plants and algae are able to fix carbon from the atmosphere or water. Fungi and many bacteria, however, are also heterotrophs. Secondly, metazoans are motile, meaning they use energy to move spontaneously and actively, at least at some stage in their lives (larval stages in ‘fixed’ forms such as sponges and corals can swim), although some bacteria and protists are also motile, moving by means of a flagellum. Thirdly, animals lack the rigid cell walls seen in plants, fungi, and algae, and fourthly most pass through the blastula embryonic stage (see Section 1.3.1).

Metazoa, Bilateria, and Deuterostomia are monophyletic groups, or clades. A clade is a group that has a single common ancestor, and that includes all of the descendants of that ancestor (see Section 2.5.1). Before the advent of molecular phylogenetics (see Section 2.5.2), and even after, there has been active debate about the relationships of the various animal clades. It is usually easy to determine membership of these major clades, the phyla (see Box 2.4) – such as arthropods, molluscs, or sponges – but determining how the phyla relate to each other within Metazoa has been difficult. However, by 2010, a consensus about the major outlines of animal relationships had been reached (Figure 1.6).

The fundamental division of Metazoa distinguishes six early-branching clades (including sponges and corals) from the Bilateria, supported by both morphological and molecular evidence (Eernisse and Peterson, 2004; Halanych, 2004; Philippe et al., 2009; Edgecombe et al., 2011; Nielsen, 2012). The Bilateria have bilateral symmetry primitively, and most are triploblastic, meaning they have three fundamental body wall tissues that arise from the ectoderm, mesoderm, and endoderm in the embryo. Non-bilaterian metazoans may be diploblastic, lacking the mesoderm, or monoblastic like sponges and placozoans. Within Bilateria, most animals are Nephrozoa, taxa that are characterized by the possession of an excretory system. Nephrozoa is divided into the two major clades Protostomia and Deuterostomia, long recognized on embryological grounds. Protostomes include the Ecdysozoa (animals that moult, such as nematodes, arthropods, priapulids, and some minor groups) and Spiralia (animals with spiral development, such as bryozoans, annelids, molluscs, brachiopods, rotifers, and other phyla). Most spiraliana belong to the clade Lophotrochozoa.

The monophyly of Deuterostomia is confirmed both by morphology and by phylogenomics. All deuterostomes share the posterior blastopore that generally becomes the anus, as well as gill slits (present only in precursors of the echinoderms). Further, most molecular phylogenetic analyses indicate monophyly (e.g. Eernisse and Peterson, 2004; Swalla and Smith, 2008; Edgecombe et al., 2011; Röttinger and Lowe, 2012; Cannon et al., 2013), although this is queried in some studies (e.g. Delsuc et al., 2006; Mallatt et al., 2010). Some recent phylogenomic studies have suggested the addition of two further clades to Deuterostomia, the Xenoturbellida and the Acoelomorpha, simple worms with no through gut and a simple nervous system. However, these assignments are controversial (Edgecombe et al., 2011; Röttinger and Lowe, 2012). Further, there has been some dispute over the interrelationships among these deuterostome taxa (see Box 1.1).
1.4 CHORDATE ORIGINS

Among morphological characters, the chordates all share several unique features such as a notochord, a dorsal hollow nerve cord with a shared developmental pattern, an endostyle organ (equivalent to the thyroid gland of vertebrates), and a tail used for swimming. It is generally accepted that only chordates have true tails. A tail technically may be defined as a distinct region extending behind the visceral cavity, and in particular located entirely behind the anus; hence the term ‘postanal tail’, to be quite precise. Non-chordates, such as insects, worms, molluscs, jellyfish, and sea urchins, do not have tails. What of the fossil evidence?

There are many putative early fossil chordates, and their numbers have grown hugely since 1995, with the announcement of remarkable new finds from the Chengjiang biota of China, an Early Cambrian deposit (see Box 1.2). These new specimens, combined with studies of modern forms, give clues about the
The Chengjiang biota from Yunnan Province, south-west China, is exciting because it is one of the oldest sources of exceptionally preserved organisms, falling early in the great Cambrian radiation of animals in the sea (Hou et al., 2004; Shu et al., 2010). The fossils come from different levels through several hundred metres of mainly fine-grained sediments, comprising the Maotianshan Shales. When the site was discovered, in 1984, it was thought to correspond to the already well-known Burgess Shale, a Middle Cambrian locality in Canada that has yielded numerous exceptionally preserved arthropods and the putative chordate *Pikaia*. Chengjiang, however, is older, dating from the middle of the Early Cambrian, some 525–520 Myr ago.

The Chengjiang biota is rich, having been collected now from over 30 localities that have produced tens of thousands of specimens. The fauna consists of more than 200 species, mainly of arthropods (trilobites and trilobite-like forms), sponges, brachiopods, worms, and other groups, including possible basal deuterostomes, such as the vetulicolians and yunnanozoons (see Figure 1.7), as well as the first fishes (Zhao et al., 2013). Some of the arthropods are like Burgess Shale animals, but others, such as the basal deuterostomes, seem to be unique. Most of the animals lived on the bottom of the seabed, filtering organic matter from the sediment. There were a few floaters and swimmers, and some of the larger arthropods were clearly predators, feeding on the smaller bottom-dwellers.

The Chengjiang beds are grey marine mudstones that preserve soft tissues of many animals in exquisite detail, some replaced by phosphate and others by pyrite. Some soft tissues survive as thin organic films. The grey sediment weathers on contact with the air to a light grey or yellow colour, and the fossils may also be grey, or sometimes reddish, and with internal anatomical details picked out in shades of grey, brown, and black.

Typical Chengjiang fossils, the vetulicolian *Xidazoon* (a), facing left, and the basal vertebrate *Myllokunmingia* (b), facing right. Scale bars in millimetres. Compare with interpretive drawings in Figures 1.7 (b) and 3.1(a). Source: D. Shu, Northwest University, Xi’an, China. Reproduced with permission.
early evolution of chordates, but there are many debates (Donoghue and Purnell, 2009).

1.4.1 Diverse early chordates

There are three main categories of possible early chordates: possible urochordates, possible cephalochordates, and vetulicolians. At one time, conodonts, represented in the fossil record generally only by their tooth elements, were treated as dubious chordates. Conodonts are now placed firmly within the Vertebrata, as jawless fishes, as are some of the basal chordate taxa from Chengjiang, such as Haikouichthys (see Chapter 3).

Urochordates have a patchy fossil record. Isolated impressions of sac-like bodies, and trace fossils, markings made in or on the sediment by the activities of animals, have been ascribed to tunicates. The best fossils are small sac-like specimens from Chengjiang, Shankouclava, which shows a large perforated branchial basket, branchial slits, and an elongate endostyle (Chen et al., 2003). There is also a possible degenerating tail, suggesting this might be a larva that had just settled (cf. Figure 1.2(d)).

The fossil record of cephalochordates is not much better. The Chengjiang biota includes a superficially amphioxus-like cephalochordate, Cathaymyrus, as well as the yunnanozoons, which have also been identified as cephalochordates, although most assign them to other positions among deuterostomes (see below). In the absence of hard tissues such as bone, these non-vertebrate chordates are not often preserved.

1.4.2 Vetulicolians and yunnanozoons

The Vetulicola are an unusual group, based on about ten species from the Chengjiang Formation, as well as Banffia, named in 1911 from the Burgess Shale in Canada, and only later associated with the Chinese fossils, and materials from the Cambrian site, Sirius Passet, in Greenland, and from the United States (Figure 1.7(a,b)). These animals look like sausage balloons, knotted in the middle: the body is in two parts, with bulbous sections in front of, and behind, a flexible connection. There is a large mouth with a strengthened rim, and preserved internal structures include the guts. Both parts of the body appear to be crossed by transverse bands. On the mouth-bearing segment, presumably the front part of the body, are five circular structures in a row that have been interpreted as pharyngeal gill slits.

The vetulicolians were regarded first as unusual arthropods, and then as deuterostomes. In their review and phylogenetic analysis, Aldridge et al. (2007) were unable to determine whether vetulicolians were arthropods, deuterostomes, or even kinorhynchs, a clade of segmented ecdysozoans close to priapulids. Most recent authors, however, assign vetulicolians to Deuterostomia, and they have been accorded three positions (Figure 1.8): as basal deuterostomes, as urochordates or as basal chordates (Gee, 2001). Evidence that vetulicolians are deuterostomes are the gill slits and a possible endostyle, although the latter identification has been questionable. They were interpreted as basal deuterostomes by Shu et al. (2001, 2010) because they apparently lack an atrium, the internal chamber in cephalochordates and tunicates into which the gill slits and anus open. In vetulicolians, the intestine terminates at the end of the body, and the gill slits presumably opened directly to the outside through openings in the external body wall. Vinther et al. (2011) confirmed this, based on new specimens from Greenland that show the lateral pouches that appear to be homologues of gill slits, a large sediment-filled atrium (in opposition to the interpretation by Shu et al. (2010)), which they regard as possibly a character of all deuterostomes and not just urochordates, and possible lateral flexure of the tail. Their terminal anus, if the gut is correctly interpreted, means that vetulicolians lack a postanal tail, and so they cannot be regarded as stem-group chordates. Ou et al. (2012) confirm this view with their observations of the lateral gill slits in new Chinese material. Others had earlier assigned vetulicolians to Urochordata because of the general resemblance in the bulbous streamlined body shape, as well as the thin external tunic, and the regularly spaced transverse
bands, which might be muscles that ran round the body in rings (Lacalli, 2002). The absence of a notochord in vetulicolians was said not to be critical, since most adult tunicates also have lost this structure, and Gee (2001) suggested that these unusual fossils are just what would be expected as the ancestral vertebrate, long predicted to have emerged from a sac-like animal that is all guts (like a tunicate), which then became surrounded by musculature, nerves, and sensory systems to enable locomotion.

The yunnanozoons, also from Chengjiang, such as *Yunnanozoon* and *Haikouella* (Figure 1.7(c)) look like much more convincing basal chordates, perhaps even close to vertebrates, with their fish-like form, dorsal fin, postanal tail, notochord, gill slits, and even some head structures. Nonetheless, they have been interpreted as occupying many different positions in deuterostome phylogeny (Figure 1.8) by rival researchers. One team identified these animals first as possible cephalochordates (Chen et al., 1995), and then upwards as vertebrates (Chen et al., 1999; Holland and Chen, 2001; Mallatt and Chen, 2003). The other team preferred to regard the yunnanozoons first as hemichordates (Shu et al., 1996), and then downwards as basal deuterostomes allied to the vetulicolians (Shu et al., 2003b). The problems revolve around different interpretations of coloured blobs, lines, and squiggles in the fossils. There are plenty of fossils – literally thousands – but anatomical interpretation is critical (Donoghue and Purnell, 2009).

Haikouella and *Yunnanozoon* are 25–40 mm long, and preserved as flattened bluish-grey to black films on the rock. Chen et al. (1995) were able to see a notochord, a filter-feeding pharynx with an endostyle, segmented musculature, and branchial arches, all chordate characters. Chen et al. (1999) and Mallatt and Chen (2003) went further, identifying an enlarged, possibly three-part, brain and paired lateral eyes in *Haikouella*, hence indicating it might have had a distinctive, enlarged head, a key feature of vertebrates. Shu et al. (1996) argued, however, that there is no notochord, and that this tubular structure is actually the gut. In addition, they suggested that the segmented musculature was wrongly identified. In contrast, they claimed to see key hemichordate features in *Yunnanozoon*, and especially that the body is divided into three parts from front to back, a proboscis, a collar, and a trunk that is divided into a branchial and a gut region, just as in the living acorn worm (see Figure 1.4(c)). Shu et al. (2003, 2010) subsequently noted similarities between the yunnanozoons and the vetulicolians, and moved them down from the hemichordates to a basal position among deuterostomes (Figure 1.8): they could see no evidence of a notochord, segmented muscles, a large brain, lateral eyes, or any of the other chordate features previously reported.

The final early chordate to consider is *Pikaia* from the Burgess Shale in Canada, named in 1911 as an annelid, but subsequently widely regarded as a basal chordate or even basal vertebrate (Figure 1.9). In a thorough redescriptions of 114 specimens, Conway Morris and Caron (2012) highlight its chordate characteristics: a laterally compressed, hydrodynamic body with about 100 myomeres, a thin dorsal fin, a small bilobed head with tentacles but no eyes, possible pharyngeal pores, a pharyngeal cavity, an almost terminal mouth, a probable terminal anus (and hence no postanal tail), a dorsal nerve cord, a possible notochord, and a blood vascular system. As with the yunnanozoons, however, determining the phylogenetic
position of Pikaia is problematic. It is a chordate because of the sigmoidal (S-curved) myomeres and the putative notochord. Some would classify it as a chordate, or even a vertebrate, on the basis of the head and putative sensory organs, but Conway Morris and Caron (2012) see it as allied with yunnanozoons, at the base of Chordata (see Figure 1.8). In a revision of the new morphological data, Mallatt and Holland (2013) cannot resolve the phylogenetic position of Pikaia, but find it located higher in the tree, either as sister group to Chordata or to Vertebrata.

An important note of caution about the interpretation of Pikaia and the other early deuterostome fossils is that their phylogenetic placement depends on the identification of key diagnostic characters of the various subclades, such as ambulacrarians, cephalochordates, urochordates, and chordates, and yet taphonomic experiments (see Box 1.3) suggest the need for extreme caution.

BOX 1.3 ROTTING BIAS

When an organism dies its carcass decays, and information is lost. Until recently, such loss of information was assumed to be random, but taphonomic experiments on modern amphioxus and lampreys (Sansom et al., 2010) show that the first tissues to rot away take with them key diagnostic characters. In fact, through the process of decay over a few weeks, tissues are lost in such a way that the specimens become more and more primitive in appearance.

The rather smelly experiments on lamprey and amphioxus juveniles were run for up to 200 days, with dead specimens decaying in normal seawater and at reasonable temperatures. Tissues began to be lost quickly. In the case of amphioxus, the eye spot was lost after 11 days, the atrio pore after 15, the anterior bulb after 21, and the midgut caecum and storage organ after 28. Most resilient to decay were the myomeres and the notochord, and before those the endostyle, pharyngeal arches, and gonads. Sansom et al. (2010) noted that these last tissues are those most commonly seen in exceptionally preserved basal chordate and deuterostome fossils from the Chengjiang and Burgess Shale biotas.

The initial suite of characters that disappeared in the decaying amphioxus specimens were those diagnostic of Cephalochordata, and the myomeres and notochord are the most general chordate characters. Normal decay processes then favour preservation of primitive characters, and phylogenetic analysis of chordate fossils will position the fossils in a more basal position than is correct. These decay experiments strongly suggest that the fossil record of non-vertebrate chordates is affected by a systematic bias of stem-ward slippage down the cladogram, and that some Cambrian chordate fossils are placed too deep in the phylogeny. These experiments partly explain why palaeontologists have had such a hard time in finding the diagnostic characters that would help them to identify the true phylogenetic positions of vetulicolians, yunnanozoons, Pikaia, and early vertebrates such as Haikouichthys (see Chapter 3).
1.4.3 Development and vertebrate origins

The development of living vertebrates and other chordates indicates a great deal about their ancestry. Traditionally, embryos are sliced thinly on a microtome, rather like a mini salami-slicer, and three-dimensional reconstructions are made from scans of the thin-sections. In addition, and most importantly, studies of the genome allow developmental biologists to relate specific anatomical structures to genes. In many cases, they have found that genes that code for particular organs or functions are shared among widely different species that may have had enormous long independent histories. So, hypotheses of homology between organs can be tested by identifying shared genes, and recent work on amphioxus has been remarkably informative (see Box 1.4).

These recent studies shed light on an older theory for the origin of vertebrates, which proposes that we arose ultimately from the sea squirt tadpole. In the 1920s, the distinguished zoologist Walter Garstang noted the similarities between the larval sea squirt (see Figure 1.2(c)), adult amphioxus (see Figure 1.3(b)) and vertebrates. The sea squirt tail seemed to him to be a transient appendage that evolved as an outgrowth from the body to ensure wide dispersal of the larvae before they settled. Garstang (1928) proposed that the evolutionary link between the sea squirts and all higher chordates is through a process termed paedomorphosis, the full development of the gonads and

BOX 1.4 GENES AND BRAINS

New work on amphioxus has given clues about the origin of vertebrate characters, particularly the head. Amphioxus, the classic cephalo-lochordate (see Figure 1.3), looks superficially like a rather simple fish, but it lacks the vertebrate hallmarks of a true head with well-defined sensory organs and the three-part brain (see Section 1.5). So how could the head and the sense organs and the three-part brain have arisen from the first chordates?

Anatomists have for a long time sought evidence for homologies between the cerebral vesicle of amphioxus and the three-part brain of vertebrates, the frontal eye of amphioxus and the paired eyes of vertebrates and other such structures. New studies by three developmental biologists, who rather confusingly share the homologous surname of Holland – Linda Holland and Nicholas Holland (both at the Scripps Institute of Oceanography, San Diego) and Peter Holland (at the University of Oxford) – have revealed amphioxus homologues of developmental genes on the basis of amino acid sequences of conserved regions (Holland and Chen, 2001; Holland and Holland, 2001; Holland et al., 2001; Koop and Holland, 2008; Holland et al., 2008a, 2008b; Holland, 2009, 2013; Holland, 2010; Holland and Onai, 2011). It turns out that developmental genes show remarkable conservation across a wide range of animal phyla – in sequence, expression and in function. In other words, when the Hollands sequence particular segments of the chromosomes of amphioxus and of vertebrates, they find the same developmental genes (genes that regulate fundamental aspects of an animal’s orientation and key organs), and these genes express themselves in comparable parts of the body, hence pointing to potential homologies.

Of particular interest is that, despite over 500 Myr of independent evolution, the amphioxus genome contains a basic set of chordate genes involved in development and cell signalling, including a fifteenth Hox gene (Holland et al., 2008b). It turns out that, in places where amphioxus has a single gene, vertebrates often have two, three, or four equivalent genes as a result of two intervening whole-genome duplication events. As examples of homologous genes and functions, the expression patterns of amphioxus homologues of the genes called Dlx, Otx, Hox-1 and Hox-3 indicate that the amphioxus nerve cord, which has no obvious divisions except for a slight anterior swelling, has counterparts in the vertebrate forebrain and hindbrain. Further, expression of the genes Pax-1, Pax-2/5/8 and Brachyury homologues support homologies of amphioxus and vertebrate gill slits and notochord.

So even though amphioxus adults have a very simple brain, and simple sense organs (the ‘eye spot’), the genes are shared, and phylogenetic precursors of vertebrate brain regions, eyes, and other organs, are there in amphioxus. Even that most typical of vertebrate organ systems, the skeleton, has its gene and morphological precursors in amphioxus.

It had been argued that amphioxus shares the fundamentals of the vertebrate neural crest, and this was supported by discovery of shared gene expression. However, this is now regarded as over-interpretation (Donoghue et al., 2008). First, the neural crest has been regarded as a unique feature of vertebrates, and indeed it is a developmental precursor of virtually all the distinctive vertebrate characters. The neural crest starts as a group of cells that forms on either side of the developing spinal cord and migrates to all areas of the body, providing the starting point for much of the head and face, and contributes to many other parts of the body such as the skin, nervous system and limbs, producing the cranial nerves, the fin rays, the pharyngeal gill skeleton, and other key vertebrate characters. The neural crest is preceded in development by the neural plate, a feature that occurs in the embryos of all bilaterians: this forms as a thickening of the embryonic ectodermal cells, and the borders push up as the neural folds on either side to form an elongate neural tube, precursor of the brain and spinal cord. All aspects of this process are guided by particular developmental genes shared among all bilaterians (Donoghue et al., 2008). Genomic studies do not show that amphioxus and vertebrates share unique neural crest specifiers, although some, such as the SoxE family of transcription factors were co-opted to the neural plate and act to specify development of some neural crest derivatives in the lamprey.

Continued
reproductive abilities in an essentially juvenile body. According to his view, an ancient sea squirt larva failed to metamorphose and became adult (i.e. reproductively mature) as a swimming larval form. This elegant theory, however, is rejected by recent molecular phylogenies of tunicates that suggest their developmental characters are unique and did not give rise to the vertebrates.

1.5 VERTEBRATES AND THE HEAD

The vertebrates, the major group of chordates, form the subject of this book. They have sometimes been termed craniates since all forms, including the hagfishes and lampreys, have specialized head features (the cranium, the skull). The term vertebrate is better known, so will be used here, following recommendations by Donoghue et al. (1998).

The basic vertebrate body plan (Figure 1.10) shows all of the chordate characters so far described – notochord, dorsal nerve cord, pharyngeal gill slits, postanal tail, myomeres, and so on. The additional synapomorphies of vertebrates include a range of features that make up a true head: well-defined sensory organs (nose, eye, ear) with the necessary nervous connections, the cranial nerves, and the olfactory, optic, and auditory (otic) regions that make up a true brain. Larval sea squirts and amphioxus have an expansion of the nerve cord at the front end and all the vertebrate cell and sensory organ systems, as we have seen, but these are not developed to the same level as in vertebrates. Also, as we have seen, palaeontologists continue to debate whether Cambrian fossils such as the yunnanozoons and Pikaia did or did not have a true head with sensory organs.

1.6 FURTHER READING

You can read more about the palaeontological, embryological, and molecular debates concerning the origins of chordates and vertebrates in Gee (1996). Jefferies (1986) provides the fullest
account of basal chordate anatomy, and makes an impassioned case for the generally rejected role of carpoids in linking echinoderms and chordates. Edgecombe et al. (2011) provide a thorough overview of current evidence on metazoan relationships, and the current position and debates over Cambrian deuterostome fossils are presented in excellent review papers by Holland and Chen (2001), Halanych (2004), Chen (2008), Swalla and Smith (2008), and Shu et al. (2010). You can find out more about modern invertebrates, and in particular those classified as deuterostomes in Barnes et al. (2001), Brusca and Brusca (2003), and Nielsen (2012). The embryology and anatomy of modern vertebrates is covered by many zoology texts, such as the classic by Romer and Parsons (1986), and more recent textbooks such as Hildebrand and Goslow (2001), Liem et al. (2001), Kardong (2011), and Pough et al. (2012). Waegle et al. (2014) provides review papers on all aspects of current metazoan phylogenomics.

1.7 REFERENCES

Holland, L.Z. and 63 other authors. (2008b) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Research, 18, 1100–111.

