CONTENTS

List of Figures
List of Tables
Preface
Acknowledgments

PART 1 THEORY

Chapter 1 Basic Concepts in Wireless Communications

1.1 Overview
1.2 Wireless Channel Models

- 1.2.1 AWGN Channel Model
- 1.2.2 Linear Time-Varying Deterministic Spatial Channel
- 1.2.3 The Random Channels
- 1.2.4 Frequency-Flat Fading Channels
- 1.2.5 Frequency-Selective Fading Channels

1.3 Equivalence of Continuous-Time and Discrete-Time Models

- 1.3.1 Concepts of Signal Space
- 1.3.2 Sufficient Statistics
- 1.3.3 Discrete-Time Signal Model—Flat Fading
- 1.3.4 Discrete-Time Channel Model—Frequency-Selective Fading

1.4 Fundamentals of Information Theory

- 1.4.1 Entropy and Mutual Information
- 1.4.2 Shannon’s Channel Coding Theorem
- 1.4.3 Examples of Channel Capacity

1.5 Summary
Exercises
Chapter 2 MIMO Link with Perfect Channel State Information

2.1 Overview 59
2.2 Mathematical Model of the MIMO Link 60
 2.2.1 Probabilistic Channels with States 61
 2.2.2 General Transmission and CSI Feedback Model 64
 2.2.3 Adaptive-Channel Encoding and Decoding 65
 2.2.4 Transmit Power Constraint 66
 2.2.5 Causal Feedback Constraint 67
2.3 Ergodic and Outage Channel Capacity 67
 2.3.1 Ergodic Capacity 68
 2.3.2 Outage Capacity 68
2.4 Channel Capacity with No CSIT and No CSIR 69
 2.4.1 Fast Flat Fading MIMO Channels 70
 2.4.2 Block Fading Channels 70
2.5 Channel Capacity with Perfect CSIR 72
 2.5.1 Block Fading Channels 73
 2.5.2 Fast Flat Fading MIMO Channels 76
 2.5.3 Effect of Antenna Correlation on Ergodic MIMO Capacity 81
 2.5.4 Slow Flat Fading MIMO Channels 87
2.6 Channel Capacity with Perfect CSIT Only 89
 2.6.1 Discrete Block Fading Channels 91
 2.6.2 Discrete Channel with Three States 93
 2.6.3 Fast Flat Fading MIMO Channels 94
 2.6.4 Slow Flat Fading MIMO Channels 94
2.7 Channel Capacity with Perfect CSIR and Perfect CSIT 95
 2.7.1 Fast Flat Fading MIMO Channels 96
 2.7.2 Slow Flat Fading MIMO Channels 100
2.8 Summary 101
Exercises 103

Chapter 3 MIMO Link with Imperfect Channel State Information

3.1 Overview 107
3.2 Effect of Imperfect CSI Estimation 108
 3.2.1 CSI Estimation for MIMO Channels 108
 3.2.2 Capacity Bounds of MIMO Link 109
3.3 Effect of Limited Feedback—Optimizing for SNR 111
 3.3.1 Introduction to Optimizing Effective SNR 112
 3.3.2 Grassmannian Line Packing 112
3.3.3 Grassmannian Precoding for MIMO Systems—Spatial Diversity 115
3.3.4 Grassmannian Precoding for MIMO Systems—Spatial Multiplexing 119
3.4 Effect of Limited Feedback—Optimizing for Ergodic Capacity 124
 3.4.1 Channel Capacity with Partial CSIT 124
 3.4.2 Coding Theorem with Partial CSIT 125
 3.4.3 Equivalence with Vector Quantization Problem 130
 3.4.4 Fast Flat Fading MIMO Channels 130
 3.4.5 Lloyd’s Algorithm 132
 3.4.6 Approximate Closed-Form Solution for Step 1 133
 3.4.7 Complexity of the Online Adaptation Strategy 134
 3.4.8 MMSE-SIC Receiver Structure 135
 3.4.9 Numerical Results and Discussion 136
3.5 Summary 138
Exercises 140

Chapter 4 Spacetime Coding and Layered Spacetime Coding for MIMO with Perfect Channel State Information 143
4.1 Overview 143
4.2 Design of MIMO Links with Perfect CSIR 144
 4.2.1 Spacetime Coding—Spatial Diversity 147
 4.2.2 Layered Spacetime Coding—Spatial Multiplexing 154
 4.2.3 Receiver Designs for Layered Spacetime Codes 159
 4.2.4 Optimal Architecture for Fast Flat Fading Channels 166
 4.2.5 Optimal Architecture for Slow Flat Fading Channels 168
 4.2.6 Fundamental Tradeoff between Spatial Diversity and Spatial Multiplexing 170
4.3 Switching Threshold Design for MIMO Adaptation with Perfect CSIT and Perfect CSIR 175
 4.3.1 MIMO Transmitter and Adaptation Designs 176
 4.3.2 Optimization Problem—Quasistatic Fading Channels 178
 4.3.3 Equivalence to the Classical Vector Quantization Problem 179
 4.3.4 Results and Discussion 180
4.4 Summary 183
Exercises 184

Chapter 5 MIMO Constellation Design with Imperfect Channel State Information 189
5.1 Overview 189
5.2 Constellation Design for MIMO Channels with Imperfect CSIR 191
 5.2.1 System Model 191
 5.2.2 Design Criteria Based on Kullback–Leibler Distance 191
6.7.1 Multiuser Physical Layer Model with Imperfect CSIT 247
6.7.2 System Utility Function 248
6.7.3 The Scheduling Problem Formulation 249
6.7.4 The Optimal Scheduling Solution 249
6.7.5 Suboptimal Solution 251
6.7.6 Numerical Results 253
6.8 Summary 253
Appendix 6A: Proof of Lemma 6.2 257
Appendix 6B: Calculation of Weights 257
Appendix 6C: Proof of Lemma 6.3 258
Appendix 6D: Proof of Lemma 6.4 259
Appendix 6E: Proof of Lemma 1.10 259
Appendix 6F: Proof of Lemma 6.5 259
Appendix 6H: Asymptotic Distribution of S_k 262
Exercises 264

PART 2 DESIGN EXAMPLES AND APPLICATIONS 267

Chapter 7 Review of MAC Layer Design for Wireless Systems 269
7.1 Overview 269
7.2 TDMA-Based MAC Layer Design 272
 7.2.1 ALOHA 272
 7.2.2 Slotted ALOHA 272
 7.2.3 PRMA 273
 7.2.4 TDMA with Request Subframe 273
7.3 CDMA-Based MAC Layer Design 275
7.4 Issues in Request Scheduling 277
7.5 Design Example—a Jointly Adaptive TDMA MAC Protocol 279
 7.5.1 Overview of TDMA MAC Protocol Design 279
 7.5.2 Synergistic Channel-Adaptive Multiple Access 280
7.6 Design Example—a Jointly Adaptive CDMA MAC Protocol 290
 7.6.1 Channel Adaptation in CDMA Systems 290
 7.6.2 Optimal and Near-Optimal Approaches 291
 7.6.3 Approaches that Maintain Fairness 293
 7.6.4 User-Oriented Heuristics 294
7.7 Performance Comparisons 295
7.8 Summary 303
Exercises 303
Chapter 8 Channel-Adaptive Wireless Fair Scheduling 307

8.1 Overview 307
8.2 Scheduling Model 308
 8.2.1 Fluid Fair Queueing 308
 8.2.2 Service Model 308
 8.2.3 A Motivating Example 309
8.3 Design Framework 310
 8.3.1 Error-Free Service Model 310
 8.3.2 Lead–Lag Model 310
 8.3.3 Compensation Model 311
 8.3.4 Slot Queue and Packet Queue 312
8.4 Fairness Notions 312
 8.4.1 Effort Fair and Outcome Fair 312
 8.4.2 Fairness Notions for Wireline Networks 313
 8.4.3 Fairness Notions for Wireless Networks 314
 8.4.4 Channel-Adaptive Fairness 318
 8.4.5 Comparison with Other Fairness Notions 319
8.5 Wireless Packet Scheduling Algorithms 319
 8.5.1 Idealized Wireless Fair Queueing (IWFQ) 319
 8.5.2 Channel-Condition-Independent Fair Queueing (CIFQ) 320
 8.5.3 Server-Based Fairness Approach (SBFA) 320
 8.5.4 Wireless Fair Service (WFS) 321
 8.5.5 Utility-Based Opportunistic Scheduling 321
 8.5.6 Channel-Adaptive Fair Queueing 322
8.6 Numerical Examples 328
 8.6.1 Parameters 328
 8.6.2 Scenario 1 329
 8.6.3 Scenario 2 331
 8.6.4 Scenario 3 332
 8.6.5 Scenario 4 332
8.7 Channel-Adaptive Scheduling for CDMA Systems 334
 8.7.1 Code Allocation in Multicode CDMA Systems 335
 8.7.2 CAFQ for CDMA Systems 335
8.8 Summary 337
Exercises 338

Chapter 9 Packet-Switched Data Services in W-CDMA Systems 341

9.1 Overview 341
9.2 UMTS Architecture 343
 9.2.1 Radio Interface 345
 9.2.2 PHY Layer 347
9.2.3 MAC Layer 356
9.2.4 RLC Layer 357
9.2.5 RRC Layer 360

9.3 Packet-Switched Connections in UMTS (Rel 99) 363
 9.3.1 Radio Bearer for Packet-Switched Users 364
 9.3.2 Setup of Packet-Switched Connection 365
 9.3.3 Scheduling Algorithms 367
 9.3.4 Performance 369

9.4 Packet Scheduling in HSDPA (Rel 5) 370
 9.4.1 Key Enabling Technologies in HSDPA 370
 9.4.2 Scheduling Algorithms and Performance 374
 9.4.3 Continued Evolution 376

9.5 Summary 376
Exercises 377

PART 3 ADVANCED TOPICS 379

Chapter 10 Cross-Layer Scheduling for Wideband Systems 381

10.1 Overview 381

10.2 Overview of DS-CDMA/MISO and OFDM/MISO Systems 383
 10.2.1 Multiuser Physical Layer Model of DS-CDMA/MISO Systems 384
 10.2.2 Physical Layer Model of OFDMA/MISO Systems 390

10.3 Cross-Layer Scheduling Design for DS-CDMA/MISO and OFDMA/MISO Systems 397
 10.3.1 Cross-Layer Design for DS-CDMA/MISO Systems 398
 10.3.2 Cross-Layer Design for OFDMA/MISO Systems 398

10.4 Performance Comparisons of DS-CDMA- and OFDM-Based Systems 400
 10.4.1 Performance of DS-CDMA/MISO Systems 401
 10.4.2 Performance of OFDMA/MISO Systems 401
 10.4.3 Comparisons of DS-CDMA/MISO and OFDMA/MISO Systems 404

10.5 Implementation Issues of OFDMA System 405
 10.5.1 Downlink versus Uplink 405
 10.5.2 Signal Model 406
 10.5.3 Effect of Timing Offsets 409
 10.5.4 Effect of Frequency Offsets 410

10.6 Summary 411
Exercises 413
Chapter 11 Cross-Layer Scheduling Design Based on Queueing Theory and Information Theory

11.1 Overview 417
 11.1.1 Cross-Layer Scheduling Model 420

11.2 Multiuser Physical Layer Model 423
 11.2.1 Graph Model 424
 11.2.2 ON/OFF Channel Model 427
 11.2.3 Information-Theoretic Model 429

11.3 Motivations for Cross-Layer Scheduling in Multiuser Wireless Networks 431

11.4 Stability Region 434
 11.4.1 Stability Region of Time-Invariant Physical Layer 435
 11.4.2 Stability Region of Stochastic Physical Layer 437
 11.4.3 Scheduling Design for Stability 441

11.5 Cross-Layer Scheduler Design for Delay Minimization 444
 11.5.1 Problem Formulation 445
 11.5.2 Optimal Solution 447
 11.5.3 Description of LQHPR Policy 451
 11.5.4 Performance of an Example System 452

11.6 Summary 454

Appendix 11A: Proof of Theorem 11.1 on Stability Region of Deterministic Physical Layer 455
Appendix 11B: Proof of Theorem 11.2 on Stability Region of Stochastic Physical Layer 456
Appendix 11C: Proof of Theorem 11.3 on Throughput Optimality of MW Scheduling 457
Appendix 11D: Proof of Theorem 11.5 on Throughput Optimality of EXP Scheduling 458
Appendix 11E: Conditions for Stability of a Stochastic Process 460
Appendix 11F: Proof of Theorem 11.6 on Throughput Optimality of Tse–Hanly Policy 461

Exercises 462

Chapter 12 Channel-Adaptive Ad Hoc Routing

12.1 Overview 465

12.2 Background 465

12.3 Overview of Ad Hoc Routing Protocols 467
 12.3.1 AODV Protocol 467
 12.3.2 DSDV Protocol 467
 12.3.3 DSR Protocol 468
 12.3.4 ABR Protocol 469
 12.3.5 Link State Routing Protocol 469
12.4 Receiver-Initiated Channel-Adaptive (RICA) Routing 470
 12.4.1 Channel Model 470
 12.4.2 Route Discovery 471
 12.4.3 Broadcast of CSI Checking Packets 473
 12.4.4 Route Maintenance 475
 12.4.5 Route Updating 476
 12.4.6 Comparison with Other Protocols 479

12.5 Performance Results 479
 12.5.1 Simulation Environment 479
 12.5.2 Average End-to-End Delay 482
 12.5.3 Successful Percentage of Packet Delivery 483
 12.5.4 Routing Control Overhead 485
 12.5.5 Scalability 486
 12.5.6 Varying Offered Traffic Load 486
 12.5.7 Quality of Routes 487
 12.5.8 Observations in the Simulations 488
 12.5.9 Critiques on the Four Protocols 490

12.6 Summary 491

Exercises 491

References 493

Topic Index 503