INDEX

Absorption Property, 26
access types, 52
analog signal, 1
AND, 27, 56
AND array, 4
AND gate, 4, 35, 76, 155, 156
AND plane, 4
antifuse, EPROM, 6
Application-Specific Integrated Circuits, see ASIC
arithmetic circuits, 120
arithmetic overflow, 19
array type, 53
ASIC, 3, 4, 6, 7, 47, 87
Associative Property, 26
Asynchronous Decade Counter, 151, 152
Asynchronous Sequential Circuits, 199
Asynchronous systems, 7
Asynchronous Up–Down Counters, 150
Attribute Declarations, 62

base 16, 10
base 8, 10
base-2, 10
BCD, 13, 19, 20, 21, 118, 119, 120, 151, 155, 156,
BCD Counters, 153
BCD-to-Excess-3 Code Converter, 118
BCD-to-Gray Code Converter, 118
BCD-to-Seven-Segment Code Converter, 118
bidirectional shift registers, 148
binary, 9
binary representation, 97
binary-coded decimal representation, 19
binary-to-octal and hexadecimal conversions, 12
bistable, 134, 138
bit and bit_vector types, 52
boolean algebra, 24, 25, 33, 34, 36, 87, 88, 89, 105
boolean theory, 24
boolean type, 53, 55
byte, 13, 15, 134
CAD, 1, 46, 47, 48, 50, 61, 175, 179
carry look-ahead adder, 125
Case Statement, 59, 61
CLBs, 6
Clk, 136
CMOS, 7, 38, 73, 75
CMOS Inverter, 73
CMOS Logic Gates, 72
CMOS Logic Networks, 75
CMOS NAND Gate, 73
CMOS NOR Gate, 73
Combinational Logic Circuits, 105
Commutative Property, 26
comparison circuits, 128
Complement Property, 26
Complementary Metal–Oxide semiconductor, see CMOS
Complex Logic Nlocks, see CLBs
Complex Programmable Logic Devices. see CPLDs
Component declarations, 62
Component Statement, 63
Composite types, 52
computer-aided design, 1, 8, 46
Consensus Theorem, 26
INDEX

Constant Declaration, 62
counters, 149, 151, 153, 155, 189, 191, 193
CPLDs, 4, 5, 6, 8
D Flip-Flop, 140, 141, 142, 143, 191
D Latch, 137
data latch, 137
decimal, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 117
decimal representations, 9
decimal-to-hexadecimal conversion, 12
decoders, 113
DeMorgan’s Theorem, 27
demultiplexers, 112
designated signed numbers, 16
designated unsigned numbers, 16
digital circuits, 2, 5, 25, 47, 48, 78
digital system, 1, 2, 7, 9, 17, 19, 20, 28, 31, 46, 49, 94,
Distributive Property, 26
dynamic power dissipation, 79
EEPROM transistors, 6
encoders, 115
enumeration type, 53
fan-in and fan out, 76
Field-programmable gate arrays, see FPGA
Field-Programmable Interconnect, see FPIC
file and alias declarations, 62
file types, 52
finite-state machine, 167
five-variable Karnaugh Map, 93
full-adder, 35, 49, 64, 121, 122, 124, 125
full-subtractor, 124
GAL, 4
Gated SR Latch, 136, 137
Generate Statement, 58
Generic Array Logic, see GAL
half-adder, 35, 49, 64, 120, 121, 122
half-subtractor, 123
hardware description language, see HDL
HDL, 3, 7, 47, 48
hexadecimal, 10, 12, 13, 15, 19
I/O blocks, see IOBs
Idempotent Property, 26
Identity Property, 25
If–Then–Else Statement, 59, 60
implicants, 97, 98, 179
integer type, 52
integrated circuit, 2, 47, 48
interconnection array, 5
Involution Property, 26
IOBs, 6
JK Flip-Flop, 142, 143, 144, 191, 193
Karnaugh Maps, 87
Latches, 134
Law of Identity, 24
Law of Noncontradiction, 24
Law of Rational Inference, 24
Law of the Excluded Middle, 24
least significant bit, see LSB
logic complement, 25
logic product, 25
logic signals, 68
logic sum, 25
logic switches, 69
lookup table memory, see LUT
Loop statements, 59
LSB, 11, 12, 13, 120, 125, 156
LUT, 6
maxterms, 31, 32, 33, 94
Mealy model, 167, 175
metal–oxide semiconductor field-effect transistors, see MOSFETs
minterms, 31, 32, 33, 88, 89, 90, 91, 96, 97, 98, 99
Moore model, 167, 171
MOSFETs, 69
most significant bit, see MSB
MSB, 11, 13, 14, 17, 18, 19, 125, 129
multiplexer, 34, 35, 51, 62, 64, 79, 106, 108, 109, 110
NAND, 27, 56
n-channel MOSFET, 70
negative logic system, 69
negative number representation, 15
next-state and output logic functions, 170
nibble, 13, 20, 134
NMOS Inverter, 70, 71
NMOS NAND Gate, 71
NMOS NOR Gate, 72
noise margins, 77
NOR, 27, 56
NOT, 27
NXOR, 27, 56
octal, 10, 11, 12, 13
one’s-complement representation, 14
one-hot encoding method, 180
OR, 27, 56
OR gates, 3, 4, 36, 127
overflow, 17, 19, 120
Package Statement, 61, 62
PAL, 4, 5, 47
p-channel MOSFET, 70
physical type, 53
PLA, 4, 5, 47
PLD, 3, 4, 6, 48, 87
positive logic system, 69
Power Dissipation, 79
prime implicants, 97, 98, 99
product-of-sums, 31, 95
Programmable Array Logic, see PAL
Programmable Logic Array, see PLA
Programmable Logic Devices, see PLDs
programmable switch matrix, 5
propagation delay, 5, 31, 38, 76, 77, 78, 125, 127, 152,
Quine–McCluskey Minimization, 96
real type, 52
registers, 145, 147
ring counter, 157
ripple-carry adder, 125
scalar types, 52
sequential circuit counters, 188
Sequential Declaration, 59
sequential logic circuits, 133
sequential serial adder, 184
Sequential Statement, 58
serial-in, parallel-out shift registers, 147
serial-in, serial-out shift registers, 146
set–reset latch, 134
shared variables, 62
Signal Declaration, 56
Signal Statement, 56
sign–magnitude representation, 14
Simple Programmable Logic Devices, see SPLDs
Simplification Property, 26
SOP, 32, 42, 75, 88, 94, 97, 98
special counters, 156
SPLDs, 4
SR Flip-Flop, 139, 140, 141
SR Latch, 134
standard chips, 1, 2, 3, 8, 37
state diagram, 167
state optimization, 195
state table, 168
static power dissipation, 79
static RAM, 6
std_logic and std_logic_vector types, 53
sum of products, 4, 24, 31, 32, 88, 94, 95
synchronous sequential circuits, 165
synchronous systems, 7
T Flip-Flop, 144, 145, 146, 193, 195	hree variable Karnaugh Map, 90
threshold voltage, 68, 69
timing diagram, 31,
transmission gates, 79
truth table, 28
two’s-complement representation, 14
two variable Karnaugh Map, 89
Type and Subtype Declarations, 62
Use Statement, 63
VHDL, 46–64
VHDL Arithmetic Operators, 56
VHDL Logical (Boolean) Operators, 55
VHDL relational operators, 55
VHDL Relational Operators, 56
VLSI technology, 75
While Loop, 60
word, 13
XOR, 27, 56
XOR AND NXOR Karnaugh Maps, 94
XOR Gate, 80