Contents

ACKNOWLEDGEMENTS xi
FOREWORD xiii
PREFACE xv
INTRODUCTION xvii

Part One Review and supplementary information 1
1 Review 3
 1.1 The Elements of a Contactless Device 4
 1.1.1 The transponder 4
 1.1.2 The air interface 4
 1.1.3 The base station 4
 1.1.4 The host system 5
 1.2 General Operating Principles of the “Base Station–Transponder” Pair 5
 1.2.1 Transfer, energy supply and remote power supply 5
 1.2.2 Data transfer from the base station to the transponder: the “uplink” 5
 1.2.3 Data transfer from the transponder to the base station: the “downlink” 6
 1.2.4 Energy transfer 7
 1.2.5 Remote power supply 14
 1.2.6 Communication between the base station and transponder 15
 1.3 Before We Continue . . . Conventional Notation 16

2 The Transponder: Supplementary Information 17
 2.1 Ready-made Products 17
 2.2 Specification or Choice of the Transponder Integrated Circuit 18
 2.3 The Transponder Antenna 19
 2.3.1 The transponder antenna alone, in the “idle” state 19
 2.3.2 Transponder antenna alone, “in the presence of a magnetic field” 21
 2.3.3 Transponder antenna “tuned”, but “unloaded”, in the presence of a magnetic field 27
 2.3.4 Transponder antenna “tuned and loaded” outside the magnetic field 29
 2.3.5 Transponder antenna “tuned and loaded” in the presence of a magnetic field 31
CONTENTS

2.3.6 Concluding remarks
2.3.7 Analysis of the transient response of the transponder to the signals from the base station
2.3.8 Reading transponders arranged in a stack
2.3.9 Examples

3 The Base Station: Supplementary Information

3.1 The Base Station Antenna
3.2 Review and Supplementary Technical Information
3.2.1 Maximum permissible quality factor of the base station antenna
3.2.2 Pulsed response of the base station antenna
3.2.3 Structure of the tuned LC load: series or parallel?
3.2.4 Maximum current in the base station antenna
3.2.5 Selectivity of the antenna circuit
3.3 Structure of the Driver Stage of the Base Station Antenna
3.3.1 Conventional push–pull stages
3.3.2 Differential or balanced push–pull stages
3.4 The Downlink
3.4.1 Voltage induced in the base station antenna
3.4.2 And then . . .
3.5 Summary of the Principal Formulae of Chapters 2 and 3

Part Two Applications and implementation

4 Design and Implementation of a "Contactless" Application

4.1 Specifying an Application
4.2 Specifying the Requirements
4.3 Specifying the Near Environment of the Application
4.4 How to Approach an Application
4.4.1 Agenda and stages
4.5 Choice of the Operating Frequency
4.6 Overview of the Frequencies Used in RFID
4.6.1 Below 135 kHz
4.6.2 13.56 MHz
4.6.3 UHF
4.6.4 2.45 GHz
4.7 Choosing the Right Frequency
4.7.1 kHz versus MHz and GHz

Part Three Examples

5 Examples at 125 kHz

5.1 The Usual Constants and Parameters of Applications Operating at 125 kHz
CONTENTS

5.2 Example
 5.2.1 The transponder 101
 5.2.2 The base station 102
 5.2.3 Example 108

6 Examples at 13.56 MHz
 6.1 The Usual Constants and Parameters of Applications Operating at
 13.56 kHz 111
 6.2 ISO 14 443 “Proximity” Applications (Approximately 10 cm)
 6.2.1 The MIFARE range of devices 112
 6.2.2 The base station 112
 6.2.3 The transponder 115
 6.2.4 Matters of flux . . . 131
 6.2.5 Return voltage induced in the base station antenna 144
 6.3 “Vicinity” Applications (Approximately 70 cm) of the ISO 15 693 or
 18 000 Type and Long-range Applications for Vicinity Cards or Item
 Management 149
 6.3.1 The I·CODE integrated circuit 149
 6.3.2 Choosing the quality factors of a vicinity contactless system
 150
 6.3.3 First example – base station, for “long-range” applications only
 152
 6.3.4 Second example (or another way of looking at the problem) 163
 6.3.5 Third example (or yet another way of looking at the same problem)
 165
 6.3.6 Seen from the transponder 168
 6.3.7 Baggage label or ISO 15 693 vicinity card in the ISO card format
 175
 6.3.8 ISO 15 693 consumable product labels (“smart labels”) 185
 6.4 Applications and Conformity with Standards 196
 6.4.1 The case of the ISO 14 443 proximity standard 196
 6.4.2 The case of the ISO 15 693 vicinity standard and ISO 18 000–3 203

Part Four Antennae and their technology

7 The Transponder Antenna and its Technology
 7.1 The Range of Technologies
 7.1.1 Technologies for producing the coil winding 223
 7.1.2 Connection technologies 224
 7.1.3 A summary 224
 7.2 The Geometrical Shapes of the Windings
 7.2.1 The concept of inductance 225
 7.2.2 Inductance of a circular air-core coil 226
 7.2.3 Simple square, circular or rectangular antenna 229
 7.2.4 Note on the tuning (accuracy and tolerance) of transponder antennae
 234

8 The Base Station Antenna and Its Technology
 8.1 Shape, Size and Technology of the Base Station Antenna
 8.1.1 Single antenna 241
 8.1.2 Multiple antennae 254
Part Five The electronics involved

9 Electronic Systems of the Base Station

9.1 Standard Base Station Circuits

9.2 Advanced Base Station Circuits

9.3 The Output Stage Transmission Part

9.4 Driving the Antenna

9.4.1 Reception

9.4.2 Return voltage induced in the base station antenna

9.4.3 And then...

9.4.4 The amplification, demodulation and detection chain

9.5 The Demodulators

9.6 The Common Reception/Transmission Part

9.6.1 The microcontroller

9.6.2 Structure of the software

Part Six Tools and Measurement Methods

10 Development Aids and Tools

10.1 Simulation of the System Performance

10.1.1 Simulation models

10.1.2 Simulation tools

10.1.3 Correlation

10.2 Development Aid Tools

10.2.1 Some theoretical considerations

10.2.2 Tool for measuring the coupling coefficient

10.2.3 Bond out chip for estimating the energy transfer

10.2.4 Demonstration kits

11 Measurement Methods for Contactless Systems

11.1 The Principal Parameters to be Measured for a Transponder

11.1.1 Absorption threshold, B_{thr}

11.1.2 Read absorption, B_{read}

11.1.3 Resonant frequency, f_{res}

11.1.4 Bandwidth

11.2 Transponder Measurement Methods and Set-ups

11.2.1 The 125 kHz products

11.2.2 The measuring tools

11.2.3 The 13.56 kHz products

11.2.4 The measuring tools

11.3 Measuring Complete Systems

11.3.1 The various measurements to be made

11.3.2 The measurement sequence

11.3.3 Verification of the energy surfaces, the zero lines and the areas of good operation

11.3.4 Certification authorities
CONTENTS

11.3.5 Conformity with radiation regulations 310
11.3.6 Human exposure to electromagnetic fields 310
11.3.7 A little more work 311
11.4 Conclusions 312
11.5 The Future 313

Appendix A 315
A.1 Duality of Series and Parallel RLC Circuits 315
A.1.1 Series RLC resonant circuit 315
A.1.2 Parallel RLC resonant circuit 315
A.2 Useful Addresses and Information 323
A.2.1 Standardization, certification and similar authorities 323
A.2.2 Professional activities 324
A.2.3 Professional journals in the RFID field 324
A.2.4 Hardware, equipment, component manufacturers 325
A.2.5 Other useful books 326

INDEX 327