Index

a
ABCD matrix 190
Abel transform 69
Abel inversion 92
absorption coefficient 130–132
active diagnostics 65–115, See also
Polarimetry; Reflectometry; Scattering; Interferometry
Airy function 89
all-digital phase measurement 301–303
all-digital phase meter 301, 302
Altar–Appleton–Hartree-equation 31, 41, 147
alternative decorrelation 271–272
– single-sightline correlation experiments 272
analog output, phase measurements with 299–300
antenna arrays
– array factor 219
– element factor 219
antennas 208–221
– antenna arrays 217–221
– frequency-scanned array 220
– phased array 218
– antenna gain 209
– antenna temperature 211–212
– antenna theorem 210, 258
– basic definitions 208–211
– characterizing parameters 209
– conical horn 214–215
– directivity 210
– Gaussian beam excitation 217–219
– pyramidal horn 212–213
– receiving 208
– transmitting 208
anti-Hermitian part of dielectric tensor 23
antireflection coating 198
aspect ratio 5

b
B0-field varying along sightline 135–137
backward waves 219
backward-wave oscillator (BWO) 203–205, 334
band-pass filter 292
– general definitions 293–294
– metallic meshes 298–300
– in overmoded waveguide 295–297
bandwidth influence on sensitivity 259–260
beam radius 56
beam waist 56
Bessel functions 172, 174
bistatic arrangement 334
bi-refringence
– circular 38
– linear 39
bolometer 223–225
– composite bolometer 223
– hot electron bolometer 225–226
Boltzmann equation 25
Bragg-back-scattering 99
break-even condition 9
bremsstrahlung 117–122
Brillouin angle 178
Budden parameter 146
burning plasma experiment (BPX) 375

Hans-Jürgen Hartfuß and Thomas Geist.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
circular waveguides 170–176
– fields in 171
– loss in 175–176
circulator 287
coaxial transmission line 161–163
– characteristic properties 162
– losses in 162–163
coherent detectors 221, 237
coherent Thomson-scattering (CTS) 106, 108–109, 373–375
cold-plasma dispersion relations 34–42
– finite-temperature correction to 42–48
– nonmagnetized plasma 34
cold-plasma limit 29–32, 390
collision frequency 33
components and subsystems 275–313,
See also Network-analysis measuring techniques
composite bolometer 223
Compton effect 105
confocal parameters 188
conical horn 214–215
constant fraction discriminator 342
control loop components 308–309
correlation radiometry 264–267
– intensity fluctuations 264–266
– and coherence 266–267
corrugated circular waveguides 182–185
– fields of 183–185
corrugated waveguide 182–183
Cotton–Mouton polarimeter 75, 327, 330–322
– common generalized description 77–83
Cotton–Mouton effect 75, 326–327
coupling coefficient for fundamental
Gaussian beams 194–196
cross correlation 267
– accuracy of measurements 270–271
– function 267–268
crossed-waveguide construction 233
curvature parameter 234
curved mirrors 191–193
cyclotron emission imaging (ECEI) 347
cyclotron harmonic waves 145
deuteron 3
detection 221–236, See also Bolometer;
– Diode direct detector; Heterodyne detection
– coherent detectors 221
– incoherent detectors 221
– noise-equivalent power (NEP) 226
– optimization 221–222
– – linearity 224
– – noise level 221
– – sensitivity 221
– – stability 224
– – temporal resolution 224
– – voltage or current responsivity 221
– Schottky diode 227–229
deviation 105–106
detector 221–236,
See also Bolometer; Diode direct detector; Heterodyne detection
deviation
– coherent detectors 221
– incoherent detectors 221
– noise-equivalent power (NEP) 226
– optimization 221–222
– – linearity 224
– – noise level 221
– – sensitivity 221
– – stability 224
– – temporal resolution 224
– – voltage or current responsivity 221
dot matrix Schottky diode 230
down-shifted frequency 123
dynamic range of a component 304
deuterium–tritium (DT) fusion reaction 3
device under test (DUT) 288
dielectric tensor from kinetic theory 25
digital prescalars 310
digital-to-analog convertor (DAC) 301–302
diode direct detector 231–233
diode mixer 239–241
directional coupler 281–283
directivity 210
dispersion interferometer 323
dispersion relation of the mode 22
Doppler broadening 140
Doppler reflectometry 346–348
Doppler shift 102–103
dot matrix Schottky diode 230
down-shifted frequency 123
DT reaction 2
dynamic range of a component 304
e
echelette grating 356
effective ion charge 119
eigenmodes 165
eikonal phase 49
electron Bernstein wave emission 143–149
– detection 370–373
– electron Bernstein waves 144–146
– mode conversion 146–149
– O–X–B mode conversion 143
electron cyclotron emission (ECE), radiometry of 349–370
– calibration 370
– general requirements 350–354
– heterodyne radiometers 357–362
– imaging (ECEI) 362–363
– system parameters 363–366
electron cyclotron emission (ECE) 122–143
– absorption coefficient 130–132
– B0-field varying along sightline 135–137
- electric field and spectrum, single electron
 123–126
- electron cyclotron absorption (ECA)
 measurement 142–143
- electron motion in a static field 122–123
- emission profile 132–135
- optical depth of most relevant modes
 137–140
- perpendicular observation, characteristic
 modes 126–128
- spectrum, electron ensemble 128–130
- visibility depth and localization 140–142
electron cyclotron frequency 27
electron cyclotron resonance heating (ECHR)
 10, 290
electron gyration radius 122
electron motion in a static field 122–123
elliptical waveguide 373
emission profile 132–135
emissivity 128
energy confinement time 8
even Matthieu functions 373
extraordinary mode (X-mode) 39

f
Faraday effect 71–75, 82
Faraday polarimeter 329–330
far-infrared (FIR) wavelength 319
fast X-wave 146
finite Larmor radius (FLR) approximation
 42–44
finite-size probing beam 54–58
finite-temperature correction to cold-plasma
dielectric tensor 42–48
first-order active loop filter 311
first-order product 307
fluctuation measurements 345–346
flux surface 4
form factor 104
Fourier–Bessel expansion 124, 244
Fourier spectroscopy 352
 – Fellgett advantage 355
 – Jaquinot advantage 355
free–free radiation 117
frequency-selective filters 290–299
 – band-pass filter 290
 – high-pass filter 290
 – low-pass filter 290
frequency stability 308–312
 – control loop components 308–309
 – first-order active loop filter 311
 – phase margin 312
 – theoretical concept 310–312
frequency-scanned antenna array 220
frequency-selective surfaces (FSS) 299
fringes 299
full width at half maximum (FWHM) 90, 93,
 341
fundamental dispersion relation of waves in
 plasmas 22
fundamental mode 57
fundamental TE_{10}-wave 167–170
fusion research 1–17
 – magnetic plasma confinement 4–10
 – proton-proton-chain (pp-chain) 2
 – reaction scheme 1–3
gain compression 304–305
Gauss-Hermite polynomials 57
Gaussian beam 185–196
 – coupling coefficient for 194–196
 – description 55–58
 – excitation of 215–217
 – lenses and curved mirrors 191–193
 – quasi-optical system components 191
 – solution of approximate wave equation
 185–186
 – telescope 188
 – transformation of 186–191
 – truncation of 193–194
Gaussian beam parameter 190
Gaussian beam telescope 188
Gouy phase 56
grating spectrometer 356–357
grid constant 300
group velocity 35
guided waves 151–199, See also circular
 waveguides; coaxial transmission line;
corrugated circular waveguides; Gaussian
 beams; multimode waveguides;
 transmission lines; transverse electric (TE)
 waves; transverse magnetic (TM) waves
Gunn diode 231
Gunn oscillator 203–205
 – donation layers 206
 – I/V-characteristic of Gunn diode 206
 – limited space-charge accumulation (LSA)
 mode 206
 – quenched-domain mode 206
 – typical housing with screwable heat sink
 206
h
half-wave window 197–198
Hanbury-Brown and Twiss experiment 269
Hankel function 120
harmonic mixing 239
Index

helical field lines 4, 7
Helmholtz equation 52, 89
Hermitian part of dielectric tensor 23
heterodyne detection 236–246
– diode mixer 239–241
– mixer construction 245–246
– square law mixer 237–238
– two-port mixer 241–244
heterodyne radiometers 357–362
heterodyne receiver, noise temperature of
253–255
high-density polyethylene (HDPE) 192
high-pass filter 292
hot electron bolometer 225–226
hot–cold technique 367
hot-plasma dielectric tensor 27
hybrid mode 185–194
– HE11 characteristics 185
hybrid-factor 184
i
IQ detection 305
image frequency 242
image port 240
image sideband 240
imaging reflectometry 348
IMPATT oscillator 207–208, 231
incoherent detectors 221
incoherent scattering 104–106
inhomogeneous plasma 48–54
in-phase and quadrature signals 304
input matching network 245
integrated data analysis (IDA) 11
intensity interferometer 269–270
interferometer 315–326
– dispersion interferometer 323
– frequency stability 320–321
– 2ω-interferometer 323
– Mach–Zehnder heterodyne interferometer
319–320
– Mach–Zehnder interferometer 318–319
– multichannel interferometer 324–326
– path length variations 322–323
– swept frequency interferometer 324
– two-color-interferometer 322
– wavelength 316–317
interferometry 65–70
– multiple chords 69–70
– single-chord interferometry 68
intermodulation 305–308
– first-order product 307
– products of order |m| + |n| 308
– third-order intercept point 307
International Thermonuclear Experimental
Reactor (ITER) 7
ion cyclotron resonance heating (ICRH) 10
ionogram 333
isolator 285
j
Joint European Torus (JET) 10
k
Kirchhoff’s law 131
L
L-wave 37
Larmor formula 103
Larmor radius 27
Lawson criterion 8
lenses 191–193
limited space-charge accumulation (LSA)
mode 206
line-integrated density 68
Lithium 3
impedance transformation 156
localization of reflecting layer 93–94
Lorentz force 4, 123
lossy transmission line, waves on 151–153
low density polyethylene (LDPE) 192
lower sideband (LSB) 359
low-pass filter 292
m
Mach–Zehnder heterodyne interferometer
319–320
magnetic axis 4
magnetic plasma
– confinement 4–10
– – physics issues of 7–9
magnetized plasma
– parallel propagation 37–38
– perpendicular propagation 39–41
magnification 187
Martin–Puplett polarizing interferometer
354–356
– grating spectrometer 357–359
Maxwell averaged Gaunt factor 120
Maxwell–Boltzmann velocity 128
metallic meshes, in band-pass filter 298–300
Michelson interferometer 352–354
microwave diagnostics 15–16
microwave imaging reflectometry (MIR) 350
millimeter-wave range, PLL circuits in
309–310
millimeter-waves in plasmas 19–62, See also
cold-plasma dispersion relations
– basic equations 20–23
– derivation within fluid description 32–34
– dispersion relation of the mode 22
– fundamental dispersion relation of waves in plasmas 22
millisecond time scale 12
minimum detectable temperature 263–264
– minimum detectable blackbody temperature 263
mixer construction 245–246
– input matching network 245
mixer noise temperature 251–253
mode coupling 179
modulation factor 338
modulation techniques 327–329
– Scheme 1 327–328
– Scheme 2 328–329
– Scheme 3 329
monolithic microwave-integrated circuits (MMICs) 205
mono-mode propagation, TE11 180–191
monostatic arrangement 336
Müller matrix 327–329
multichannel interferometer 324–326
multifrequency systems 332–338
multimode waveguides 176–181
– mono-mode propagation, TE11 180–191
– multimode propagation 178–179
– number of modes propagating 176–178
multiple chord interferometry 69–70
multiple chords, imaging 61–62
multiplier chain 206–207
mutual coherence function 267

n
network-analysis measurement 290–312
– errors in 290
– reflection measurement 287–288
– substitution measurement 288–289
– transmission measurement 286–287
– using noise sources 289–290
neutral beam injection (NBI) 10
noise-equivalent power (NEP) 226, 260–261
– coherent detection 261–263
– incoherent detection 260–261
noise figure 249–250
noise sources, measurements using 289–290
noise temperature 247–249
– of cascaded systems 250–251
– of heterodyne receiver 253–255
– measurement of 255
– mixer noise temperature 251–253
nonmagnetized plasma 34
nonreciprocal devices 283–286
normal dispersion 35
Nyquist relation 246

o
odd Matthieu functions 346
off-axis system 192
O-mode 42
ohmic heating 10
Onsager relation 23
optical depth 60, 133, 137
optical depth, in electron cyclotron emission 137–140
ordinary mode (O-mode) 39
overmoded circular waveguides, TE11 mode in 180–181
overmoded waveguide, band-pass filter in 295–297
O–X–B mode conversion 143, 146

p
passive diagnostics 117–149, See also Electron Bernstein wave emission; Electron cyclotron emission
path length variations 322–323
phase change at cutoff in reflectometry 75–92
phase margin 312
phase measurement 299–304
– all-digital phase measurement 300–303
– all-digital phase meter 301
– with analog output 299–300
– input signals of 302
– output signals of 302
– by software 303–304
phase memory concept 50
phase runaway 346
phased antenna array 218
phase-locked loop (PLL) 308, 309, 311, 320
– in millimeter-wave range 309–310
phase velocity 35
photoconductor detectors 221
physics issues of magnetic confinement 7–9
pitch angle 4
Planck’s law 249
plasma anisotropy 21
plasma diagnostic 11–16, See also Microwave diagnostics
– active diagnostics 15
– generic arrangements 12–15
– passive diagnostics 15
plasma dielectric tensor 23–25
 – general properties 23–25
 – wave propagation geometry 24
plasma dispersion function 28
plasma frequency 27
plasma heating 10
 – heating schemes 10
plasma pressure 8
Poincare sphere 79
polarimeter 326–332
 – modulation techniques 327–329
 – polarization state, evolution 326–327
polarimetry 70–83
 – Cotton-Mouton effect 75
 – Faraday effect 71–75
polarization filters 300
polarization rotator 181–182
polarization-selective filters 290–299
polarizing Martin–Puplett interferometer 300
polytetrafluoroethylene (PTFE) 192
power coupling coefficient 194
power range 309
power wave amplitudes 153
Poynting vector 124
profile reconstruction 92–93
proton-proton-chain (pp-chain) 2
pulse radar technique 339–342
pyramidal horn 212–213

q
Q-factor 9
quenched-domain mode 206

r
R-wave 37
radiation generation and detection 201–250
radiation transfer 58–62
 – multiple chords, imaging 61–62
 – plasma emitting and absorbing 60–61
 – transparent plasma 58–60
radio detection and ranging (RADAR) 15
ray refractive index 60, 132
ray tracing 53–54
Rayleigh–Jeans limit 132, 222, 262
Rayleigh length 56
ray refraction 51–53
realized millimeter-wave diagnostic systems
 architecture 315–378, See also
 interferometer; polarimeter; reflectometer;
 Radiometry of electron cyclotron emission;

Detection of electron Bernstein waves;
Coherent Thomson scattering
receiver noise temperature 262
reciprocal device 277
rectangular waveguides 163–170
rectangular waveguides, attenuation in 166–167
recurrence formula 297
redundancy 10
reflection measurement 287–288
reflectometer 332–348
 – fluctuation measurements 345–346
 – heterodyne version of 358
 – multifrequency systems 332–338
 – ultrashort pulse radar 342–343
reflectometry 83–100
 – density fluctuations influence 95–100
 – localization of reflecting layer 93–94
 – phase change at cutoff 89–92
 – profile reconstruction 92–93
 – relativistic corrections 95–96
 – time delay measurement 86–87
refraction 51–53
refractive index 22
relativistic corrections 46–48
relativistic incoherent scattering spectrum 106–107
return loss 156
rotational transform 4

s
safety factor 6
saturation 304–305
scaling law 9
scattering 100–115
 – coherent scattering 108–109
 – density fluctuations role 108
 – Doppler shift 102–103
 – electron and ion feature 110–113
 – form factor 104
 – incoherent scattering 104–106
 – parameters 275–277
 – relativistic incoherent scattering spectrum 106–107
 – single-particle Thomson scattering 101–102
 – Thomson scattering 100
Schottky detector noise 233–236
Schottky diode 227–229
 – dot matrix Schottky diode 228
 – frequency multiplier 229–231
Schott–Trubnikov formula 126, 127
sensitivity limits 256–264
– bandwidth influence 259–260
– minimum detectable temperature 263–264
– noise-equivalent power 260–261
– coherent detection 263–265
– incoherent detection 260–261
– shot noise term 254–257
– thermal radiation term 259–259
shear 4
shot noise 256–260
signal linearity 304–308
– gain compression 304–305
– intermodulation 305–308
signal sources 201–207, See also Antennas; Correlation radiometry; Detection
– backward-wave oscillator (BWO) 201–203
– multiplier chain 206–207
– solid-state oscillators 203–206, See also individual entry
single-chord interferometry 68
single-disk window 196–197
single-particle Thomson scattering 101–102
single sideband (SSB) 360
single sideband modulation (SSBM) techniques 320
slightly oblique propagation 41–42
slow X-wave 146
‘smearing out’ effect 353
Snell’s law 59
software, phase determination by 303–304
solid-state oscillators 203–206, See also
Gunn oscillator; IMPATT oscillator
spatial dispersion 28
square law mixer 237–238
stellarator 6–7
Stix geometry 24
Stokes equation 89
Stokes vector 78, 79, 326
stub 157
substitution measurement 288–289
subsystems 275–313, See also Two-port characterization
susceptibility 109
superconductor–insulator–superconductor (SIS) 239
surface currents 160–161
sustainable fusion power 3
swept frequency interferometer 324
swept single-frequency system 333–337
– bistatic arrangement 334
– monostatic arrangement 334
system impedance 276
system noise temperature 255

\(t \)

– tangential sensitivity 236
terminated transmission line 153–157
thermal noise 246–255, 264
– noise temperature 247–249, See also individual entry
thermal radiation term 258–259
thin window 198
third-order intercept point 307
Thomson scattering 100
– coherent Thomson scattering (CTS) 106
– single-particle Thomson scattering 101–102
time-of-flight (TOF) measuring system 342
tokamak 5–6
toroidal field coils 7
torus 4–5
total power receiver 357
transmission lines 151–161
– classification of 157–159
– properties 151–161
– surface currents 160–161
– terminated transmission line 153–157
– two-conductor transmission line 152
– waves on a lossy transmission line 151–153
transmission measurement 286–287
transparent plasma 58–60
transverse electric (TE) waves 159, 164–165, 173–175
– fundamental TE\(_{10}\)-wave 167–170
– mono-mode propagation, TE\(_{11}\) 180–191
– TE\(_{11}\) mode in overmoded circular waveguides 180–181
transverse electromagnetic (TEM) wave 40
transverse magnetic (TM)-waves 40, 166, 172–173
triple product 8
tritium 3
two-color-interferometer 322
two-port characterization 275–286
– directional coupler 281–283
– nonreciprocal devices 283–286
– reflection 278–279
– scattering parameters 275–277
– transmission 278–281
two-port mixer 241–244
two-tone test 306

\(u \)

ultrashort pulse radar 342–343
– distance calibration 344–345
– spurious reflections 344–345
upper hybrid frequency 39
upper sideband (USB) 358, 361

ν
vacuum windows 196–199
– antireflection coating 198, See also individual entry
– half-wave window 198
– mounted inside a circular waveguide 197
– single-disk window 196–197
– thin window 198
van Cittert-Zernike theorem 268–269
varactor multipliers 233
video bandwidth 235
visibility depth and localization, in electron cyclotron emission 140
Vlasov equation 25, 32, 46
Voigt effect 39
voltage-controlled oscillator (VCO) 311
voltage standing wave ratio (VSWR) 156

w
warm plasma approximation 44–46
wave heating 10
wave noise 266
waveguide band-stop filter 294–295
wavelength 316–317
waveguide attenuation 393–395
wave-packet 340
weakly relativistic model 46
Wentzel–Kramers–Brioullin (WKB) approximation 49–51
wire diameter 300

x
X-B mode conversion 143, 146
X-mode 42

y
Y-factor method 255, 349