Contents

Foreword XIII
Epilogue XVII
List of Contributors XIX

Part One Fuel Cells 1

1 The Direct Ethanol Fuel Cell: a Challenge to Convert Bioethanol Cleanly into Electric Energy 3
Claude Lamy, Christophe Coutanceau, and Jean-Michel Leger

1.1 Introduction 3
1.2 Principles and Different Kinds of Fuel Cells 4
1.2.1 Working Principles of a Fuel Cell 4
1.2.1.1 The Thermodynamics of Fuel Cells 5
1.2.1.2 The Kinetics of Fuel Cells 6
1.2.1.3 Catalysis of Fuel Cell Reactions 9
1.2.2 Different Types of Fuel Cells 14
1.2.2.1 Fuels for Fuel Cells 14
1.2.2.2 Hydrogen-fed Fuel Cells 16
1.2.2.3 Methanol- and Ethanol-fed Fuel Cells 16
1.3 Low-temperature Fuel Cells (PEMFCs and DAFCs) 17
1.3.1 Proton Exchange Membrane Fuel Cell (PEMFC) 17
1.3.1.1 Principle of a PEMFC 17
1.3.1.2 The Proton Exchange Membrane 18
1.3.1.3 The Electrode Catalysts 19
1.3.1.4 The Membrane–Electrode Assembly 19
1.3.1.5 The Bipolar Plates 19
1.3.1.6 Auxiliary and Control Equipment 19
1.3.2 Direct Ethanol Fuel Cell (DEFC) 21
1.3.2.1 Principle of the Direct Ethanol Fuel Cell 21
1.3.2.2 Reaction Mechanisms of Ethanol Oxidation 22
1.3.2.3 DEFC Tests 26
1.4 Solid Alkaline Membrane Fuel Cell (SAMFC) 29
1.4.1 Development of a Solid Alkaline Membrane for Fuel Cell Application 29
1.4.2 Anodic Catalysts in Alkaline Medium 32
1.4.3 Cathodic Catalysts in Alkaline Medium 38
1.5 Conclusion 42
References 42

2 Performance of Direct Methanol Fuel Cells for Portable Power Applications 47
Xiaoming Ren
2.1 Introduction 47
2.2 Experimental 49
2.3 Results and Discussion 51
2.3.1 Water Balance, Maximum Air Feed Rate and Implications for Cathode Performance 51
2.3.2 Stack Performance 57
2.3.3 Thermal Balance and Waste Heat Rejection 64
2.3.4 Stack Life Test Results 65
2.4 Conclusions 67
References 68

3 Selective Synthesis of Carbon Nanofibers as Better Catalyst Supports for Low-temperature Fuel Cells 71
Seong-Hwa Hong, Mun-Suk Jun, Isao Mochida, and Seong-Ho Yoon
3.1 Introduction 71
3.2 Preparation and Characterization of CNFs and Fuel Cell Catalysts 73
3.2.1 Preparation of Typical CNFs 73
3.2.2 Preparation of Nanotunneled Mesoporous H-CNF 73
3.2.3 Preparation of Fuel Cell Catalysts 74
3.2.4 Performance Characterization of Fuel Cell Catalysts 74
3.3 Results 74
3.3.1 Structural Effects of CNFs 74
3.3.2 Catalytic Performance of CNFs in Half and Single Cells 76
3.3.3 Structure of Nanotunneled Mesoporous Thick H-CNF 78
3.3.4 Catalytic Performance of Nanotunneled Mesoporous Thick H-CNF 78
3.3.5 Effect of the Dispersion of Thin and Very Thin H-CNFs on the Catalyst Activity 81
3.4 Discussion 84
References 86

4 Towards Full Electric Mobility: Energy and Power Systems 89
Pietro Perlo, Marco Ottella, Nicola Corino, Francesco Pitzalis, Mauro Brignone, Daniele Zanello, Gianfranco Innocenti, Luca Belforte, and Alessandro Ziggiotti
4.1 Introduction 89
4.2 The Current Grand Challenges 89
4.3 Power–Energy Needed in Vehicles 90
4.3.1 Basic Formulation 90
4.3.2 Well to Wheel Evaluations 92
4.3.3 Specific Calculations for Ideal Electric Powertrains 92
4.3.4 A Roadmap of Feasibility with Batteries and Supercapacitors 95
4.3.5 The Need for Range Extenders 96
4.3.5.1 Direct Thermoelectric Generators 98
4.4 A Great New Opportunity for True Zero Emissions 101
4.5 Advanced Systems Integration 102
4.6 Conclusion and Perspectives 103
References 104

Part Two Hydrogen Storage 107

5 Materials for Hydrogen Storage 109
Andreas Züttel
5.1 The Primitive Phase Diagram of Hydrogen 109
5.2 Hydrogen Storage Methods 109
5.3 Pressurized Hydrogen 111
5.3.1 Properties of Compressed Hydrogen 112
5.3.2 Pressure Vessel 113
5.3.3 Volumetric and Gravimetric Hydrogen Density 114
5.3.4 Microspheres 115
5.4 Liquid Hydrogen 117
5.4.1 Liquefaction Process 118
5.4.2 Storage Vessel 119
5.4.3 Gravimetric and Volumetric Hydrogen Density 120
5.5 Physisorption 121
5.5.1 Van der Waals Interaction 121
5.5.2 Adsorption Isotherm 122
5.5.3 Hydrogen and Carbon Nanotubes 123
5.6 Metal Hydrides 128
5.6.1 Interstitial Hydrides 128
5.6.2 Hydrogen Absorption 130
5.6.3 Empirical Models 133
5.6.4 Lattice Gas Model 137
5.7 Complex Hydrides 141
5.7.1 Tetrahydroalanates 143
5.7.2 Tetrahydroborates 148
5.8 Chemical Hydrides (Hydrolysis) 154
5.8.1 Zinc Cycle 154
5.8.2 Borohydride 156
5.9 New Hydrogen Storage Materials 157
5.9.1 Amides and Imides (\textendash}NH$_2$, =NH) 158
Part Three H₂ and Hydrogen Vectors Production 171

6 Catalyst Design for Reforming of Oxygenates 173
Loredana De Rogatis and Paolo Fornasiero

6.1 Introduction 173
6.2 Catalyst Design 179
6.2.1 Impregnated Catalysts: the Role of Metal, Support and Promoters 181
6.2.2 Emerging Strategies: Embedded Catalysts 183
6.3 Reforming Reactions: Process Principles 185
6.3.1 Catalytic Steam Reforming 185
6.3.2 Catalytic Partial Oxidation 188
6.3.3 Autothermal Reforming 189
6.3.4 Aqueous Phase Reforming 190
6.4 Key Examples of Oxygenate Reforming Reactions 193
6.4.1 Methanol 193
6.4.2 Ethanol 197
6.4.3 Dimethyl Ether 203
6.4.4 Acetic Acid 207
6.4.5 Sugars 210
6.4.6 Ethylene Glycol 214
6.4.7 Glycerol 219
6.5 Conclusions 222
6.6 List of Abbreviations 223
References 224

7 Electrocatalysis in Water Electrolysis 235
Edoardo Guerrini and Sergio Trasatti

7.1 Introduction 235
7.2 Thermodynamic Considerations 237
7.3 Kinetic Considerations 239
7.3.1 Equilibrium Term (ΔE) 240
7.3.2 Ohmic Dissipation Term (IR) 240
7.3.2.1 Cell Design 241
7.3.3 Stability Term (ΔVₙ) 242
7.3.4 Overpotential Dissipation Term (Ση) 243
7.3.5 Electrocatalysis 244
7.3.5.1 Theory of Electrocatalysis 245
7.4 The Hydrogen Evolution Reaction 248
7.4.1 Reaction Mechanisms 248
7.4.2 Electrocatalysis 249
7.4.3 Materials for Cathodes 251
7.4.4 Factors of Electrocatalysis 252
7.5 The Oxygen Evolution Reaction 255
7.5.1 Reaction Mechanisms 255
7.5.2 Anodic Oxides 256
7.5.3 Thermal Oxides (DSA) 257
7.5.4 Electrocatalysis 259
7.5.5 Factors of Electrocatalysis 260
7.5.6 Intermittent Electrolysis 263
7.6 Electrocatalysts: State-of-the-Art 264
7.7 Water Electrolysis: State-of-the-Art 265
7.8 Beyond Oxygen Evolution 265
References 267

8 Energy from Organic Waste: Influence of the Process Parameters on the Production of Methane and Hydrogen 271
Michele Aresta and Angela Dibenedetto
8.1 Introduction 271
8.2 Experimental 273
8.2.1 Methanation of Residual Biomass 273
8.2.2 Bioconversion of Glycerol 274
8.2.2.1 Characterization of Strains K1–K4 274
8.2.2.2 Use of Strains K1, K2 and K3 274
8.2.2.3 Use of Strain K4 274
8.2.2.4 Tests Under Aerobic Conditions 275
8.2.2.5 Tests Under Microaerobic or Anaerobic Conditions 275
8.3 Results and Discussion 275
8.3.1 Biogas from Waste 275
8.3.2 Dihydrogen from Bioglycerol 279
References 284

9 Natural Gas Autothermal Reforming: an Effective Option for a Sustainable Distributed Production of Hydrogen 287
Paolo Ciambelli, Vincenzo Palma, Emma Palo, and Gaetano Iaquaniello
9.1 Introduction 287
9.2 Autothermal Reforming: from Chemistry to Engineering 294
9.2.1 The Catalyst 294
9.2.2 Kilowatt-scale ATR Fuel Processors 298
9.3 Thermodynamic Analysis 299
9.3.1 Effect of Preheating the Reactants 300
9.3.2 Effect of O₂:CH₄ and H₂O:CH₄ Molar Feed Ratios 300
9.4 A Case Study 303
9.4.1 Laboratory Apparatus and ATR Reactor 303
9.4.2 ATR Reactor Setup: Operating Conditions 306
9.4.3 ATR Reactor Setup: Start-up Phase 306
9.4.4 ATR Reactor Setup: Influence of Preheating the Reactants 307
9.4.5 Catalytic Activity Test Results 309
9.5 Economic Aspects 313
9.6 Conclusions and Perspectives 316

Part Four Industrial Catalysis for Sustainable Energy 321

10 The Use of Catalysis in the Production of High-quality Biodiesel 323
Nicoletta Ravasio, Federica Zaccheria, and Rinaldo Psaro
10.1 Introduction 323
10.2 Heterogeneous Transesterification and Esterification Catalysts 328
10.2.1 Heterogeneous Basic Catalysts 328
10.2.2 Heterogeneous Acid Catalysts 330
10.3 Selective Hydrogenation in Biodiesel Production 336
10.4 Conclusions and Perspectives 341
References 342

11 Photovoltaics – Current Trends and Vision for the Future 345
Francesca Ferrazza
11.1 Introduction 345
11.2 Market: Present Situation and Challenges Ahead 346
11.3 Crystalline Silicon Technology 348
11.3.1 From Feedstock to Wafers 348
11.3.2 From Wafers to Cells and Modules 349
11.3.3 Where to Cut Costs 351
11.4 Thin Films 353
11.4.1 Technology and Improvement Requirements 354
11.5 Other Technology-related Aspects 355
11.6 Advanced and Emerging Technologies 357
11.7 System Aspects 359
11.8 Conclusions 361
References 362

12 Catalytic Combustion for the Production of Energy 363
Gianpiero Groppi, Cinzia Cristiani, Alessandra Beretta, and Pio Forzatti
12.1 Introduction 363
12.2 Lean Catalytic Combustion for Gas Turbines 364
12.2.1 Principles and System Requirements 364
12.2.2 Design Concepts and Performance 366