Index

achievable region of two design indexes, 189, 205
adaptive algorithm, 237
adaptive feed-forward cancellation (AFC), 237
adjust the slope of the Nyquist curve, 68
all stabilizing PID controllers, 178
AMIGO tuning rule, 215
anti-windup control, 384
approximate IOS, 158
artificial time delay, 71, 87
ARX model, 369
auto-tuning of fractional order controllers, 79
auto-tuning scheme, 79
backlash, 128, 309, 322
band-limit implementation, 103, 156
basic fractional order control actions, 10
binomial coefficient, 4
Bode plot validation, 123
Caputo definition, 5, 29, 152, 239, 259, 294, 351
Cauchy integral formula, 4
Clegg conditional integrator (CCI), 347, 348
cogging effect, 257, 258, 260, 266, 272, 276, 298–300, 302
cogging-like disturbance, 276, 279, 283
Cohen-Coon PID controller, 27
comparisons on the achievable regions, 212
complete achievable region, 192, 206, 211
complete feasible region, 200
complete information of the achievable design indexes, 192
complete information on design specifications, 177
complete set of PID controllers, 181
complete set of the stabilizing controllers, 178
complete stability region, 183, 184, 186, 200, 203, 206
complete stabilizing set, 178
complex root boundary (CRB), 182, 183, 201
constant dead-time, 134
controller design procedures, 30, 48, 49, 102, 116, 186, 206
controller design specifications, 178
Coulomb friction, 309, 322
CRONE controller, 14
damping ratio, 14
DC motor position servo system, 99
deadband, 322
deadzone, 309
describing function, 332, 337, 339
design example and Bode plot validation, 170
design of general PD controller, 100
design procedures, 48, 156, 170, 186, 391
design specifications, 153
designed PID controller, 195
different time delays, 211
disturbance attenuation, 228, 229
disturbance observer (DOB), 225
disturbance rejection performance, 22
dynamometer, 56, 107, 129, 160, 162, 252, 273, 301, 342
elastic shaft, 309
emulation of the fractional order system, 161
experiment, 56, 107, 129, 145, 160, 252, 273, 301, 342, 382, 401
fair comparison, 168
feasible design specifications, 178
feasible parameter conditions, 134
finite dimensional approximation, 103, 119, 156
finite impulse response (FIR) filter, 228
first order plus integrator plus time delay control systems, 133
first order plus time delay (FOPTD) system, 27, 177, 178, 180, 199, 366
first stability condition, 298
fit transfer function, 233
flat phase, 29, 46, 64, 65, 99, 177, 179, 195, 200, 204, 211, 390, 400
flat phase stable point, 186, 189, 192, 205, 211
flat phase tuning rule, 180, 185
flight control, 365, 367
FOPD controller, 114, 154, 158, 159, 162, 163, 170, 332, 333, 339
FO[PD] controller, 114, 147, 168, 170
FO[PI] controller, 87, 90, 92
FO[PI] controller auto-tuning, 84
FOPI controller, 87, 90, 91, 216
FOPI controller auto-tuning, 81
FOPTD plant normalization, 192, 211
Fourier transform for the fractional order derivative and integral, 6
fractional lead-lag compensator, 20
fractional order adaptive compensator, 257, 258, 266, 267, 279, 291
fractional order adaptive control, 294
fractional order adaptive feed-forward cancellation, 237–239, 241
fractional order adaptive updating law, 239, 242
fractional order conditional integrator (FOCI), 347, 351
fractional order control (FOC), 9, 22, 28
fractional order differential equations, 7
fractional order differentiator $s^{
u}$, 107
fractional order disturbance observer, 225, 226, 231
fractional order internal model principle, 238
fractional order linear time-invariant system, 8
fractional order low-pass filter, 119, 147, 231
fractional order operator, 42, 51, 56, 103, 119, 156, 216, 231, 248, 359, 378, 392
fractional order PD controller, 99, 104, 106, 107, 109, 117, 389
fractional order [PD] controller, 113, 114, 133, 134, 167
fractional order [PI] controller, 35, 46, 79
fractional order [proportional integral] (FO[PI]) controller, 28
fractional order Q-filter, 226, 231
fractional order periodic adaptive learning compensation, 291, 300, 302
fractional order PI controller, 32, 46, 375
fractional order PID controller, 28, 79, 309, 313
fractional order position system (FOPS), 152, 167
fractional order proportional derivative (FOPD) controller, 99, 152, 167
fractional order proportional integral (FOPI) controller, 28, 199, 200
fractional order system (FOS), 152, 158
frequencies range of interest, 232
frequency domain fitting, 235
Index

frequency range of practical interest, 104, 107, 119, 156, 270, 283
frequency response data (FRD) model, 391
friction, 331, 332, 339
gain crossover frequency, 29, 46, 72, 104, 107, 134–136, 154, 156, 170, 177, 185, 188, 192, 200, 203, 211, 332, 391, 398, 400
gain-phase margin tester, 180, 200
general control system model, 195
general multi-harmonic Fourier expansion, 258
Grünewald-Letnikov definition, 4
graphical method, 102, 116, 156, 170, 374, 375, 377
graphical stability criterion, 179
hard-disk-drive, 228, 237, 389, 391
hardware-in-the-loop (HIL) control system, 56, 107, 129, 145, 160
high frequency noise, 238
high order harmonic, 239, 348, 351, 354
higher-order harmonics, 240
HIL emulation of the FOVS, 56
historical review of fractional order controls, 10
implementation of three designed controllers, 124
impulse response invariant discretization (IRID) method, 42, 50, 56, 57, 119, 124, 147, 216, 231, 248, 359, 378, 392
infinity root boundary (IRB), 183
initial condition, 262
integer order adaptive feed-forward cancellation, 238
integer order ordinary differential equation, 7
integer order PD controller, 154
integer order periodic adaptive learning compensation, 299, 302
integer order PID (IOPID) controller, 113
integer order PID controller, 28, 30, 46, 79, 117, 141, 167, 179, 216, 313, 371, 376
integer order adaptive controller, 260, 267, 279
integer order system (IOS), 152, 158
integral absolute error (IAE), 27
integral-time absolute error (ITAE), 27, 313
integral of squared error (ISE), 313
internal conditional integrator (ICI), 347, 349
internal model principle, 237
iso-damping property, 44, 63, 65, 74–76, 79, 99, 105, 114, 179, 204, 390
ITAE optimal P controller, 104, 109, 158, 162
ITAE optimal PI controller, 106, 109
ITAE optimization, 141, 333
ITAE optimal PID controller, 142
ITAE performance index, 141
iterative method, 71, 87
Laplace transform for the fractional order derivative and integral, 6
lateral directional control, 365
linear time-invariant (LTI), 8
LuGre dynamic friction model, 336
Matignon’s stability theorem, 8
measurements for auto-tuning, 86
Mittag-Leffler function, 153
modified approximate realization method for fractional derivative, 311
modified dynamometer FOS, 162, 163
modified intelligent conditional integrator (MICI), 347
modified Ziegler-Nichols method, 64, 72, 74, 76
modified Ziegler-Nichols PI controller, 371, 373
multi-frequency disturbance cancellation, 244
natural frequency, 14
nonlinear system analysis, 331
nonlinearity of backlash, 128
normalization of the FOPTD system, 179
Nyquist curve, 68
Nyquist plot comparison, 72
online auto-tuning rules, 143
online computation, 138, 142
open-loop gain varying, 104, 125, 129
open source Paparazzi autopilot, 367
optimal IOPI controller, 216
optimality criteria, 354
optimized fractional order conditional integrator (OFOCI), 348, 351
optimized IOPI controller, 332, 333, 339
oscillation frequency, 71, 87
Oustaloup Recursive Algorithm, 103, 119, 156, 159, 231, 270, 283, 377
periodic disturbances, 237
permanent magnetic synchronous motor, 257
phase and magnitude measurement, 70
phase delay, 348, 351, 355, 357, 398
phase loss, 392
phase margin, 29, 46, 104, 134, 135, 154, 156, 170, 177, 184, 187, 192, 200, 203, 211, 332, 391, 397, 399
phase margin loss, 226, 229
PID controller design synthesis, 195
plant with a time delay, 69
plant with both integrators and a time delay, 69
plant with integrators, 69
position system, 99, 113, 134
positional error signal (PES), 230
properties of fractional order calculus, 5
pure time delay, 127
Q-filter, 225, 228
Quanser and WinCon, 56
real root boundary (RRB), 183, 201
realization of fractional lead-lag compensator, 21
realtime workshop (RTW), 145
relative degree, 225, 228, 230
relative stability curve, 185, 188, 204–206, 211
relative stability line, 184, 187, 203, 206
relative stability surface, 184, 187, 203, 206
relay auto-tuning techniques, 63
relay feedback test, 70, 87
relay feedback tuning, 63
Riemann-Liouville definition, 4
robust control system tuning rules, 134
robust controller, 134, 142
robust FOPI controller, 199
robust oscillatory mode, 14
robust PID auto-tuning algorithm, 63
robust PID controller, 63, 180, 185
robustness against load variations, 317
robustness to elasticity parameter change, 323
robustness to loop gain variations, 30, 46, 101, 103, 107, 155, 156, 169, 179, 185, 204, 216
robustness to mechanical nonlinearities, 322
robustness to time-constant variations, 134, 135, 136
Routh table technique, 119, 262
sampling delay, 393
second generation CRONE control, 15
second stability condition, 298
sensitivity circle, 72, 79
simulation, 42, 71, 87, 103, 120, 156, 195, 212, 248, 266, 298, 313, 339, 358, 377
single-frequency disturbance cancellation, 241
sinusoidal disturbance, 237
slope of the Nyquist curve, 82, 85
small fixed-wing UAV, 365, 366
Small Gain Theorem, 297
small unit step response tests, 163
solution existence range, 138
specified frequency, 87
stability analysis, 260, 262, 294
stability and design feasibility, 199
stability and robustness, 80, 178
stability of LTI fractional order systems, 8
stability region, 180, 181, 200
stabilizing and robust FOPI controller, 200, 206
stabilizing controller, 177
stabilizing PID parameter-space, 179
stable and unstable regions, 183
stable minimum-phase frequency domain fitting, 231
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>stable minimum-phase frequency domain implementation method, 232</td>
</tr>
<tr>
<td>stable PID controller design, 179</td>
</tr>
<tr>
<td>state-dependent periodic disturbance, 291–293, 301</td>
</tr>
<tr>
<td>static and dynamic models of friction, 334</td>
</tr>
<tr>
<td>strength of low frequency vibration suppression, 226</td>
</tr>
<tr>
<td>synthesis of robust PID controllers, 177</td>
</tr>
<tr>
<td>system identification, 368</td>
</tr>
<tr>
<td>systematic design scheme, 152</td>
</tr>
<tr>
<td>tangent frequency, 80, 82, 85</td>
</tr>
<tr>
<td>three-dimensional parameter-space, 184, 185, 205, 211</td>
</tr>
<tr>
<td>three-dimensional stability region, 203</td>
</tr>
<tr>
<td>three specifications, 80, 114, 154, 168, 170, 179, 190</td>
</tr>
<tr>
<td>tilted-integral-derivative (TID) controller, 10</td>
</tr>
<tr>
<td>time-constant robust analysis and design, 133</td>
</tr>
<tr>
<td>track mis-registrations (TMR), 402</td>
</tr>
<tr>
<td>traditional IOPID controller, 114, 200</td>
</tr>
<tr>
<td>traditional PD controller, 101</td>
</tr>
<tr>
<td>traditional Ziegler-Nichols PID (ZN-PID) controller, 195</td>
</tr>
<tr>
<td>tuning specifications and rules, 135</td>
</tr>
<tr>
<td>typical second-order plant, 99, 104</td>
</tr>
<tr>
<td>ultra low-speed position tracking, 332, 339</td>
</tr>
<tr>
<td>uncertain time-constant, 134</td>
</tr>
<tr>
<td>uncertainty of the plant, 185</td>
</tr>
<tr>
<td>uncoupling methods of linear and nonlinear parts, 336</td>
</tr>
<tr>
<td>unique controller solution, 178</td>
</tr>
<tr>
<td>unique FOPI controller, 211</td>
</tr>
<tr>
<td>unique PID controller, 185, 189</td>
</tr>
<tr>
<td>unit ramp responses, 106, 108, 109</td>
</tr>
<tr>
<td>unit step responses, 104, 107, 109, 129</td>
</tr>
<tr>
<td>unknown plant, 69</td>
</tr>
<tr>
<td>unmanned aerial vehicle (UAV), 365</td>
</tr>
<tr>
<td>velocity system, 27</td>
</tr>
<tr>
<td>voice coil motor (VCM), 389</td>
</tr>
<tr>
<td>waterbed effect, 226</td>
</tr>
<tr>
<td>Ziegler-Nichols PID controller, 27</td>
</tr>
<tr>
<td>zig-zag line approximation, 312</td>
</tr>
</tbody>
</table>