Index

Note: Page numbers in italics denote figures, where they appear outside page ranges

A
acaricides
direct effects 83–87
environmental impact 82–89
indirect effects 84, 87–88
non-target organisms 87–88
sublethal effects 88–89
Acceptable Daily Intake (ADI), pesticide residues 356–357
Acute Reference Dose (ARfD), pesticide residues 356–357
acute toxicity, pesticides 254–257
ADI see Acceptable Daily Intake
adult neurological outcomes, pesticides 261–262
adults, cancers in 258–260
adverse effects, pesticide use 371–373
AES see agri-environment schemes
African countries, food safety 359–360, 362–363
Agricultural Health Study 254–255, 260
agri-environment schemes (AES) 385–399
cross-compliance 385–386, 387–388
organic farming 394
Switzerland 385–399, 412
Agrilus planipennis, emerald ash borer (EAB), biocontrol case study 112–115
agro-chemical companies, new compounds 351
agro-chemical industry impact, Integrated Pest Management (IPM) 11
agro-ecosystems climatic change implications 198, 202–206
Cytoscape network analysis 202–206
ALS see amyotrophic lateral sclerosis
alternative strategies, pest management 94–95, 409
American Phytopathological Society, Integrated Pest Management (IPM) 11
amyotrophic lateral sclerosis (ALS) 262–263
anaerobic soil disinfection (ASD), strawberry production 26, 27, 31, 36
aquatic systems impact, pesticide use 371
ARfD see Acute Reference Dose
arthropod biological control see biocontrol
arthropod natural enemies
global importance 155–156
natural enemy efficacy 161–162
pest management 155–156
ASD see anaerobic soil disinfection
attack rates vs. population impact, biocontrol 339
Australia, biocontrol 328
autism 261

B
beneficial species, transgenic crops 134–138
benefit function for pest control, pest management economics 61–62
benefits/costs see cost–benefit analysis
benefits/risks, quantifying, transgenic crops 140–142
benefits vs. hazards, biocontrol 336–337
Index

best management practices, transgenic crops 141–142
bioaccumulation, pesticides 88–89
bioconcentration, pesticides 88–89
biocontrol 105–120, 411–412
 see also ecosystem services (ES)
 arthropod natural enemies 155–156
 Australia 328
 benefits vs. hazards 336–337
 biodiversity/ecosystem effects 334
 Boreioglycaspis melalteae 109
 Cactoblastis cactorum 109
 Canada 328
 case study 112–119
 classification 70–71
 climatic change implications 110–111
 Compsilura concinnata 108
 Convention on Biological Diversity
 (CBD) 327–329
 cost–benefit analysis 111–112
 data robustness, risk assessment 333–334
 decision making 336–337
 ecological impact assessment 111–112
 ecological processes 107–111
 emerald ash borer (EAB), Agrilus planipennis 112–115
 environmental impact 107–111, 409
 environmental safety 325–326
 experimental design, risk assessment 333–334
 future for regulation 340
 global importance 155–156
 herbivore-induced plant volatiles (HIPVs) 157
 host specificity 107–108
 hyperparasitism 110
 impacts evidence 338
 international organisations 327–329
 intraguild interactions 157–158
 intraguild predation 109–110
 ladybird Harmonia axyridis 109
 landscape complexity 161–162
 landscape scale 160–161
 landscape use 163–164
 legislation 326–329
 maximizing 163–164
 Melaleuca quinquenervia 109
 methodology 106–107
 moth species 108–109
 multitrophic chemical interactions 156–157
natural enemy efficacy 161–162
New Zealand 328, 329
non-native 105–107
non-target effects 108, 333–334
pest management economics 70–71
poisoning of biological control agents 372
policy 325
population impact vs. attack rates 339
postrelease validation of predicted outcomes 337–339
predicting outcomes 336–339
preimportation evidence, risk assessment 330–331
prickly pear cacti (Opuntia spp.) 109
public input 335
quarantine, testing in 332–333
regulation 325, 326–329, 339–340
retrospective case studies 338
risk assessment 326–327, 329–337
risks/benefits 334–335
South Africa 327
spatial dynamics of spread 108–109
species interactions 109–110
spread of biocontrol agents 108–109
stakeholder input 335
Switzerland 327
technical expert input 335
temporal dynamics of spread 108–109
types 325
unmanaged vegetation 158–164
USA 328, 329
vegetation, unmanaged 158–164
biodiversity/ecosystem effects, biocontrol 334
biodiversity protection
 Ecological Focus Areas (EFA) 388–394
 Switzerland 388–394
biological factors, climatic change implications 211
biological invasions 225–240, 410–411
 see also invasive alien species
case study 236–238
citizen science 239
commodities mechanism 226–228
control mechanisms 235–236
dispersal, natural 233–234
dispersal corridors 228–229
eradication vs. management 235
establishment stage 229–232
founding population size 229–232
Index

glassy-winged sharpshooter, Homalodisca vitripennis 236–237
hybridization 231
impact stage 233
International Plant Protection Convention (IPPC) 239
introduction stage 226–229
key stages 225–226
management strategies 225–226
management vs. eradication 235
mechanisms 226–229, 239
natural process 233–234
‘omics’ technologies 238
preadaptation 231
propagule pressure 229–230
red tomato spider mite, Tetranychus evansi 237
research areas 238–239
risk assessment 239–240
species interactions 232
spread stage 232–233
temporal issues 235
vectors 228
yellow fever mosquito, Aedes aegypti 237–238
biological pest control see biocontrol
bird and mammal poisoning 371
birth outcomes 264–265
border control
European Union (EU) 361
food safety 360–361
Rapid Alert System for Food and Feed (RASFF) 361
Boreiglycaspis melaleucae, biocontrol 109
bottom-up pest control 2, 8, 9, 11–12, 407–408
Bt (Bacillus thuringiensis)-modified crops vs. non-modified crops, pest management economics 69–70
buffer zones, pesticide-free, Danish Pesticide Regulation 310–311, 313, 314

C
Cactoblastis cactorum, prickly pear cacti (Opuntia spp.) biocontrol 109
California Department of Pesticide Regulation’s Pesticide Use Reports database (CDPR 2015), Integrated Pest Management (IPM) 32–33
Canada, biocontrol 328
cancer 257–260
carcinogenicity, pesticides 257–258
children 258
DDT 260
leukaemia 258–260
non-Hodgkin lymphoma 258–260
carcinogenicity, pesticides 257–258, 259
cardiovascular outcomes 265
case study
biocontrol 112–119
biocontrol, retrospective case studies 338
biological invasions 236–238
emerald ash borer (EAB), Agrilus planipennis 112–115
glassy-winged sharpshooter, Homalodisca vitripennis 236–237
red tomato spider mite, Tetranychus evansi 237
tamarisk (Tamarix spp.) 115–119
yellow fever mosquito, Aedes aegypti 237–238
CBD see Convention on Biological Diversity
CDPR 2015 see California Department of Pesticide Regulation’s Pesticide Use Reports database
changes adaptation, Integrated Pest Management (IPM) 10
chemical class, pesticides 252
childhood cancers 258
childhood development, pesticides 261
chronic consumption, GM foods, risk assessment 288
chronic effects, pesticides 257–265
citizen science, biological invasions 239
classification
biocontrol 70–71
pest control techniques 64–65
pesticides 251, 252
climatic change implications 197–214, 410
agro-ecosystems 198, 202–206
biocontrol 110–111
biological factors 211
crop diversification 210–211
crop rotation 210–211
cultural changes 210
desertification 198
endosymbionts 202
food security 353–354
future research 214
insect responses to climate change 198–202
climatic change implications (cont'd)
Integrated Pest Management (IPM) 210–214
intraguild predation 208
life-histories responses 200–201
long-term monitoring 213–214
overwintering responses of insects 207
pest–crop plant interactions 207–208
pesticides 212
pest–pathogen interactions 209
pest population dynamics 207
phenological impact 200
reproductive control 213
semiochemicals 212–213
species adaptation rate 201
structural diversity 211
tritrophic interactions 208–209
Clinton-era IPM criteria, Integrated Pest Management (IPM) 37
commercial traits, GM foods 277–280
commodities mechanism, biological invasions 226–228
Compsilura concinnata, biocontrol 108
conservation vs. restoration, unmanaged habitats 185–186
consumer sovereignty 379–380
Contingent Valuation Method (CVM), ecological impact assessment 375–376
Convention on Biological Diversity (CBD) see also Convention on Biological Diversity and Cartagena Protocol on Biosafety (SCBD 2000)
biocidal 327–329
Convention on Biological Diversity and Cartagena Protocol on Biosafety (SCBD 2000) see also Convention on Biological Diversity (CBD)
risk assessment, GM foods 282–283
cost–benefit analysis
biocontrol 111–112
ecosystem disservices (EDS) 188–189
ecosystem services (ES) 188–189
cost minimization, pest management 65–66
costs, externalities 376–378
country comparisons
GM foods 277–279, 280
pesticide policies 315–318
crop diversification, climatic change implications 210–211
crop protection approaches see plant protection approaches
crop rotation, climatic change implications 210–211
cross-compliance, agri-environment schemes (AES) 385–386, 387–388
Cry1Ab Bt rice, transgenic crops 137
Cry3Bb Bt maize, transgenic crops 136–137
cultural changes, climatic change implications 210
CVM see Contingent Valuation Method
cyclamen mite (Phytonemus pallidus) 23–26, 28, 29
Cytoscape network analysis, agro-ecosystems 202–206
d
Danish Pesticide Regulation 1986–2015 299–319
aims cf. goals 313–315
buffer zones, pesticide-free 310–311, 313, 314
country comparisons 315–318
effects 306–315
fifth plan 2013–2015 (2016) 305
first plan 1986–2000 300–302
fourth plan 2009–2013 304
Green Growth Plan 304
leaching, pesticide 312–313
organic farmland increase 311
reduction in pesticide use 306–310
restrictive pesticide approval system 311–312
second plan 2000–2004 302–303
third plan 2004–2009 303
treatment frequency index (TFI) 300–309, 313–315, 317
data robustness, biocontrol risk assessment 333–334
DDT 257, 258–260
banning 29
bioaccumulation 88
cancer 260
persistence 82
decomposer fauna, transgenic crops 134–135
decomposer micro-organisms, transgenic crops 135–137
Denmark see Danish Pesticide Regulation 1986–2015
depression 260, 262
desertification, climatic change implications 198
developing countries GM foods 280
pesticide use vs. EU pesticide use 357–358
diabetes 264
dispersal corridors, biological invasions 228–229
diversification strategies, Integrated Pest Management (IPM) 43
domestic animals poisoning 372

E
EAB see emerald ash borer
ecological complexity impact, Integrated Pest Management (IPM) 9–10
ecological damage, pesticide use 374–375
Ecological Focus Areas (EFA) arable land 391–393
biodiversity protection 388–394
ecosystem services (ES) 394–395, 396
Switzerland 388–395
ecological impact assessment biocontrol 111–112
Contingent Valuation Method (CVM) 375–376
economic injury level (EIL), Integrated Pest Management (IPM) 32, 39
economics, pest management see pest management economics
ecosystem disservices (EDS) 154–155, 175–190, 410
barriers to movement 184–185
corridors to movement 184–185
cost–benefit analysis 188–189
defining 175
vs. ecosystem services (ES) 175–177
future research 189–190
hyperparasitoids 181–182
intraguild predation 182–184
landscape context 186–188
landscape scale 186–188
pathways 177, 179
unmanaged habitats 178–190
ecosystem services (ES) 153–165, 410
see also biocontrol
barriers to movement 184–185
corridors to movement 184–185
cost–benefit analysis 188–189
Ecological Focus Areas (EFA) 394–395, 396
vs. ecosystem disservices (EDS) 175–177
flower strips 395–398
future research 189–190
landscape use 163–164
pathways 177, 179
spatial scales 163
Switzerland 394–398
transgenic crops 140–141
value 153
ecosystem-wide perspective, Integrated Pest Management (IPM) 21
EDS see ecosystem disservices
EFA see Ecological Focus Areas
EIL see economic injury level
emerald ash borer (EAB), *Agrilus planipennis*, biocontrol case study 112–115
endosymbions, climatic change implications 202
Entomological Society of America, Integrated Pest Management (IPM) 11
environmental harm pesticides 80–82
seed dressing 80–82
environmental impact acaricides 82–89
biocontrol 107–111, 409
chemical control 409
ecological processes 107–111
fungicides 92–94
herbicides 89–92
insecticides 82–89
pesticides 82–95
rodenticides 82–89
transgenic crops 409–410
environmental load indication, treatment frequency index (TFI) 300–309,
313–315, 317
environmental pest management Integrated Pest Management (IPM) 11–13
top-down 9, 12, 38, 105, 414–415
environmental safety
biocontrol 325–326
risk assessment 326–327
Epiphyas postvittana see light brown apple moth
ES see ecosystem services
establishment stage, biological invasions 229–232
European Union (EU)
border control 361
pesticide use vs. developing countries
pesticide use 357–358
Sustainable Use of Pesticides Directive 299
experimental design, biocontrol risk assessment 333–334
extensions of previous threshold models, pest management 66
external costs see externalities
externalities 369–370, 412
see also pesticide residues
costs 376–378
ecological damage 374–375
estimating 369–370, 373–376
estimation methods 375–376
existing studies 376–378
health issues 373–374
human health 373–374
impact on neighbouring farms 375
information role 379–380
Integrated Pest Management (IPM) 378–379
market values 373
negative 369
positive 369, 370–371

f
farming systems 348–353
‘Green Revolution’ 352
Integrated Pest Management (IPM) 352–353
intensive sustainable farming (ISF) 352–353
organic farming 352–353
plant protection products 348–353
rational pesticide use (RPU) 352–353
farm-level modelling, pest management economics 71–72
Federal Insecticide, Fungicide and Rodenticide Act (FIFRA 1947) 29
FIFRA see Federal Insecticide, Fungicide and Rodenticide Act
flower strips, ecosystem services (ES) 395–398
food insecurity, statistics 1
food price, food security 356
food safety
African countries 359–360, 362–363
border control 360–361
defining 347
vs. food security 347–364, 412
global market 356–362
GM foods 275–276
judicious use of pesticides 362–363
low-residue farming 363–364
maximum residue level (MRL) 356, 358–359, 360
pesticide residues 356–357
Rapid Alert System for Food and Feed (RASFF) 361
secondary standards 361–362
sustainability 362–364
trade guidelines 359–360
food security
climatic change implications 353–354
defining 347
food price 356
vs. food safety 347–364, 412
food waste 354
land degradation 355
restricted land use 355
water scarcity 354–355
food waste 354
functional groups, pesticides 252
fungicides
direct effects 93
environmental impact 92–94
indirect effects 93–94
sublethal effects 94
future for biocontrol regulation 340
future research
climatic change implications 214
ecosystem disservices (EDS) 189–190
ecosystem services (ES) 189–190
g
GAP see Good Agricultural Practices
glassy-winged sharpshooter, *Homalodisca vitripennis*, invasive alien species 236–237
global perspective, GM foods 277–279
glyphosate 90, 91, 92, 132, 137, 139–140
GM foods 282
GM crops/foods
see also human health; transgenic crops
commercial traits 277–280
country comparisons 277–279, 280
developing countries 280
food safety concerns 275–276
global perspective 277–279
glyphosate 282
health risks 281–282
history 275–276
human health 275–290, 411
in vivo evaluation 283–286
mutations 281
nutrigenetics 289
nutrigenomics 289
perceptions 275–276
risk assessment 280
risk assessment, nutritional genomic approach 287–290
risk assessment, research needs 286–290
risk assessment guidelines 282–283, 286–287
Roundup Ready soybean 281
status, GM crops 277–280
substantial equivalence for testing safety 286–287
unintended health risks 281–282
use 351–352
GM herbicide-resistant crops vs. non-resistant ones, pest management economics 67–69
Good Agricultural Practices (GAP), pesticide residues 356–357
governmental commitment 407–415
Integrated Pest Management (IPM) 10, 407–409
Governments’ role in pest management 412–414
Integrated Pest Management (IPM) 412–414
legislation 327–329
granular formulations, pesticides 80–81, 85
Green Growth Plan, Danish Pesticide Regulation 1986–2015 304
‘Green Revolution’ 352
grower-generated research priorities, Integrated Pest Management (IPM) 38–39
h
habitat, unmanaged see unmanaged habitats
hazards vs. benefits, biocontrol 336–337
health, human see human health
herbicides
direct effects 89–90
environmental impact 89–92
indirect effects 90–92
sublethal effects 90–92
herbivore-induced plant volatiles (HIPVs), biocontrol 157
HIPVs see herbivore-induced plant volatiles
history
GM foods 275–276
pest management 1–2, 407–408
plant protection approaches 22–31
host specificity, biocontrol 107–108
host switching, unmanaged habitats 180
human health 251–266, 411
see also GM crops/foods
acute toxicity, pesticides 254–257
Agricultural Health Study 254–255, 260
amyotrophic lateral sclerosis (ALS) 262–263
autism 261
birth outcomes 264–265
cancer 257–260
cardiovascular outcomes 265
childhood development 261
chronic effects, pesticides 257–265
depression 260, 262
diabetes 264
externalities 373–374
GM crops/foods 411
GM foods, health risks 281–282
impact of pesticide use 370–373
neurological consequences, pesticide exposure 260–263
human health (cont’d)
oestrogen interaction with pesticides 372–373
online pesticide information resources 255–256
pesticide exposure 251–254
pesticide information resources 255–256
recommendations 266
respiratory outcomes 263–264
suicide 262
human poisoning 372–373
hybridization, biological invasions 231
hyperparasitism, biocontrol 110
hyperparasitoids
ecosystem disservices (EDS) 181–182
unmanaged habitats 181–182

i
imazapyr 118
impact
see also environmental impact pesticides 79–95
pesticide use 370–373
impacts evidence, biocontrol 338
infestation level, pest management economics 62–64
information resources, pesticide 255–256
insecticides
direct effects 83–87
environmental impact 82–89
indirect effects 84, 87–88
non-target organisms 87–88
sublethal effects 88–89
Integrated Pest Management (IPM) 2–12
agro-chemical industry impact 11
American Phytopathological Society 11
California Department of Pesticide Regulation’s Pesticide Use Reports database (CDPR 2015) 32–33
changes adaptation 10
climatic change implications 210–214
Clinton-era IPM criteria 37
core actions 32–36
defining 3, 4–8, 378–379
disillusionment 3–11
diversification strategies 43
ecological complexity impact 9–10
economic injury level (EIL) 32, 39
ecosystem-wide perspective 21
Entomological Society of America 11
environmental pest management 11–13
externalities 378–379
failure causes 8–11
farming systems 352–353
governmental commitment 10, 407–409
governments’ role in pest management 412–414
grower-generated research priorities 38–39
incentivizing 36–41
interpretations 379
monitoring pests 32–33, 34
multiple tactics 9
pesticide compatibility 35–36
pesticides 80
rational pesticide use (RPU) 353
requirements 31–41
semiochemicals 212–213
spatial scales 9
strategies 33–36, 55–73, 94–95
strawberry production 31–40
technological innovations 40–41
transformational agriculture 41–43
Weed Science Society of America 11
integrated production
organic farming 394
Switzerland 394
intensive sustainable farming (ISF) 352–353
international organisations, biocontrol regulation 327–329
International Plant Protection Convention (IPPC), biological invasions 239
intraguild interactions, biocontrol 157–158
intraguild predation
biocontrol 109–110
climatic change implications 208
ecosystem disservices (EDS) 182–184
unmanaged habitats 182–184
invasive alien species 225–240
see also biological invasions
case study 236–238
control mechanisms 235–236
defining 225
glassy-winged sharpshooter, Homalodisca vitripennis 236–237
perceptions 234
red tomato spider mite, Tetranychus evansi 237
value 234
yellow fever mosquito, *Aedes aegypti* 237–238

in vivo evaluation

- GM foods 283–286
- risk assessment, GM foods 287–290

IPM see Integrated Pest Management

IPPC see International Plant Protection Convention

ISF see intensive sustainable farming

l

- ladybird *Harmonia axyridis*, biocontrol 109
- land degradation, food security 355
- landscape complexity
 - biocontrol 161–162
 - natural enemy efficacy 161–162
- landscape context
 - ecosystem disservices (EDS) 186–188
 - unmanaged habitats 186–188
- landscape scale
 - biocontrol 160–161
 - ecosystem disservices (EDS) 186–188
 - unmanaged habitats 186–188
- landscape use
 - biocontrol 163–164
 - ecosystem services (ES) 163–164
- LBAM see light brown apple moth
- leaching, pesticide, Danish Pesticide Regulation 312–313
- legislation
 - see also governments' role in pest management
 - biocontrol 326–329
 - leukaemia 258–260
 - life-histories responses, climatic change implications 200–201
- light brown apple moth (LBAM) (*Epiphyas postvittana*), strawberry production 31, 36
- long-term monitoring, climatic change implications 213–214
- low-residue farming
 - food safety 363–364
 - pesticide residues 363–364
- *Lygus hesperus* see western tarnished plant bug (WTPB)

m

- maximum residue level (MRL) 356, 360
- harmonization 358–359
- *Melaleuca quinquenervia*, biocontrol 109

- minimizing non-target effects of pesticides 32–33
- minimizing usage of pesticides 32–33
- misuse/use, pesticides 79–80, 349–350
- non-optimal application dose 349–350
- non-optimal frequency of application 349
- non-optimal pesticide formulation 350
- non-optimal spatial application 350
- non-optimal timing of pesticide application 349
- pesticide mismatch with targeted damage-causing agents 349

modelling, pest management economics 56–60, 66, 71–72

models of interaction, transgenic crops 132–133

monitoring pests

- California Department of Pesticide Regulation's Pesticide Use Reports database (CDPR 2015) 32–33, 34
- Integrated Pest Management (IPM) 32–33, 34
- long-term monitoring, climatic change implications 213–214
- moth species, biocontrol 108–109
- motives, pest management economics 71–72

MRL see maximum residue level

multitrophic chemical interactions, biocontrol 156–157

n

- natural enemy efficacy
 - biocontrol 161–162
 - landscape complexity 161–162
- new compounds, pesticides 351
- New Zealand, biocontrol 328, 329
- non-crop plants, transgenic crops 133–134
- non-Hodgkin lymphoma 258–260
- non-native biocontrol 105–107
- non-optimal application dose 349–350
- non-optimal frequency of application 349
- non-optimal pesticide formulation 350
- non-optimal spatial application 350
- non-optimal timing of pesticide application 349
- non-target effects, biocontrol 108, 333–334
- non-target herbivorous insects, transgenic crops 132–133
- non-target micro-organisms, transgenic crops 135–137
non-target organisms, pesticides 87–88
nutrigenetics, GM foods, risk assessment 289
nutrigenomics, GM foods, risk assessment 289

o
oestrogen interaction with pesticides 372–373
‘omics’ technologies, biological invasions 238
optimal choice of techniques, pest management economics 67–70
organic farming 352–353
agri-environment schemes (AES) 394
integrated production 394
Switzerland 394
organic farmland increase, Danish Pesticide Regulation 311
overview, this book 12–13

p
perceptions
GM foods 275–276
invasive alien species 234
pesticides 348
persistence
DDT 82
pesticides 82
pest control techniques, classification 64–65
pest–crop plant interactions, climatic change implications 207–208
pesticide exposure, human health 251–254
pesticide information resources 255–256
pesticide policies
see also Danish Pesticide Regulation 1986–2015
country comparisons 315–318
pesticide residues
see also externalities
Acceptable Daily Intake (ADI) 356–357
Acute Reference Dose (ARfD) 356–357
food safety 356–357
Good Agricultural Practices (GAP) 356–357
low-residue farming 363–364
maximum residue level (MRL) 356, 358–359, 360
supermarket produce 373
pesticide resistance 370
resistance development 350
selection for pest resistance 372
pesticides
acaricides 82–89
acute toxicity 254–257
adult neurological outcomes 261–262
in agriculture 79–82
amyotrophic lateral sclerosis (ALS) 2
62–263
autism 261
bioaccumulation 88–89
bioconcentration 88–89
birth outcomes 264–265
cancer 257–260
carcinogenicity 257–258, 259
cardiovascular outcomes 265
chemical class 252
childhood development 261
chronic effects 257–265
classification 251, 252
climatic change implications 212
compatibility 35–36
depression 260, 262
diabetes 264
direct effects 83–87, 89–90, 93
environmental harm 80–82
environmental impact 82–95
exposure 251–254
fate 80–82
functional groups 252
fungicides 92–94
granular formulations 80–81, 85
herbicides 89–92
impact 79–95
indirect effects 84, 87–88, 90–92, 93–94
insecticides 82–89
minimizing non-target effects 32–33
minimizing usage 32–33
misuse/use 79–80, 349–350
neurological consequences, pesticide exposure 260–263
new compounds 351
non-target organisms 87–88
perceptions 348
persistence 82
respiratory outcomes 263–264
rodenticides 82–89
seed dressing 80–82
strawberry production 35–36
sublethal effects 88–89, 90–92, 94
suicide 262
transport 80–82
use/misuse 79–80
pesticide use
adverse effects 371–373
aquatic systems impact 371
California Department of Pesticide Regulation's Pesticide Use Reports database (CDPR 2015) 32–33
Danish Pesticide Regulation 1986–2015 306–310
ecological damage 374–375
EU use vs. developing countries use 357–358
impact 370–373
rational pesticide use (RPU) 352–353
water contamination 371
yield reduction 371–372
pest management
see also Integrated Pest Management (IPM)
alternative strategies 94–95, 409
arthropod natural enemies 155–156, 161–162
history 1–2, 407–408
strategies 33–36, 55–73, 94–95
pest management economics 55–73
area size of treatment 59
benefit function for pest control 61–62
biocontrol 70–71
Bt (Bacillus thuringiensis)-modified crops vs. non-modified crops 69–70
classification of pest control techniques 64–65
cost minimization 65–66
density of the pest 59
extensions of previous threshold models 66
farm-level modelling 71–72
GM herbicide-resistant crops vs. non-resistant ones 67–69
implications of models 60
infestation level 62–64
modelling 56–60, 66, 71–72
motives 71–72
optimal choice of techniques 67–70
quality of the produce 58–59
timing of treatment 59, 67
uncertainties 60–64
pest–pathogen interactions, climatic change implications 209
pest population dynamics, climatic change implications 207
pest–symbiont interactions, climatic change implications 209–210
phenological impact, climatic change implications 200
Phytomonas pallidus see cyclamen mite
plant protection approaches 21–31
history 22–31
strawberry production 22–31
plant protection products, farming systems 348–353
poisoning
biological control agents 372
bird and mammal 371
domestic animals 372
humans 372–373
pollinators 372
pollinators poisoning 372
transgenic crops 134
population, world 348
population impact vs. attack rates, biocontrol 339
postrelease validation of predicted outcomes, biocontrol 337–339
preadaptation, biological invasions 231
predators, transgenic crops 135
predicting outcomes, biocontrol 336–339
prickly pear cacti (Opuntia spp.) biocontrol
biocontrol 109
Cactoblastis cactorum 109
probabilistic regional geospatial environmental risk assessment, transgenic crops 139–140
propagule pressure, biological invasions 229–230
public input, biocontrol 335
q
quantitative uncertainty analysis, transgenic crops 142
quarantine testing, biocontrol 332–333
r
Rapid Alert System for Food and Feed (RASFF)
border control 361
food safety 361
rational pesticide use (RPU) 352–353
red tomato spider mite, *Tetranychus evansi*, invasive alien species 237
reduction in pesticide use, Danish Pesticide Regulation 306–310
regulation see also California Department of Pesticide Regulation’s Pesticide Use Reports database (CDPR 2015); Danish Pesticide Regulation 1986–2015
biocontrol 325, 326–329, 339–340
reproductive control, climatic change implications 213
research needs, GM foods, risk assessment 286–290
residues, pesticide see pesticide residues
resistance see pesticide resistance
respiratory outcomes 263–264
restoration vs. conservation, unmanaged habitats 185–186
restricted land use, food security 355
restrictive pesticide approval system, Danish Pesticide Regulation 311–312
retrospective case studies, biocontrol 338
risk assessment
biocontrol 326–327, 329–337
biological invasions 239–240
chronic consumption, GM foods 288
data robustness, biocontrol 333–334
environmental safety 326–327
experimental design, biocontrol 333–334
GM foods 280, 282–283, 286–290
nutrigenetics 289
nutrigenomics 289
preimportation evidence, biocontrol 330–331
probabilistic regional geospatial environmental risk assessment 139–140
purpose for biocontrol 329–330
quarantine testing, biocontrol 332–333
research needs, GM foods 286–290
risks/benefits, biocontrol 334–335
shortcomings 286–290
substantial equivalence for testing safety 286–287
transgenic crops 137–143
variation among countries 143
in vivo evaluation 287–290
risk management
transgenic crops 141–144
variation among countries 143
rodenticides
direct effects 83–87
environmental impact 82–89
indirect effects 84, 87–88
non-target organisms 87–88
sublethal effects 88–89
Roundup Ready soybean 281
RPU see rational pesticide use

s
seed dressing
environmental harm 80–82
pesticides 80–82
selection for pest resistance 372
semiochemicals
c climatic change implications 212–213
Integrated Pest Management (IPM) 212–213
social costs see externalities
soil contamination, pesticide use 371
South Africa, biocontrol 327
spatial dynamics of spread, biocontrol 108–109
spatial scales
ecosystem services (ES) 163
Integrated Pest Management (IPM) 9
transgenic crops 137–140
species adaptation rate, climatic change implications 201
species interactions
biocontrol 109–110
biological invasions 232
spread of biocontrol agents 108–109
spread stage, biological invasions 232–233
stakeholder input, biocontrol 335
statistics
food insecurity 1
strawberry production 30
strawberry production
anaerobic soil disinfection (ASD) 26, 27, 31, 36
crop protection approaches 22–31
Integrated Pest Management (IPM) 31–40
light brown apple moth (LBAM) (Epiphyas postvittana) 36
pesticides compatibility 35–36
statistics 30
‘Tioga’ strawberries 24, 30
structural diversity, climatic change implications 211
substantial equivalence for testing safety of GM foods 286–287
suicide 251, 260, 262
supermarket produce, pesticide residues 373
sustainability, food safety 362–364
Switzerland
agri-environment schemes (AES) 385–399, 412
biocontrol 327
biodiversity protection 388–394
Ecological Focus Areas (EFA) 388–395
ecosystem services (ES) 394–398
integrated production 394
organic farming 394
policy context 386–388

t
Tamarisk (Tamarix spp.), biocontrol case study 115–119
technical expert input, biocontrol 335
 technological innovations, Integrated Pest Management (IPM) 40–41
tefluthrin pesticide, transgenic crops 136–137
temporal scales, transgenic crops 137–140
TFI see treatment frequency index
timing of treatment, pest management economics 59, 67
‘Tioga’ strawberries 24, 30
top-down environmental pest management 9, 12, 38, 105, 414–415
toxicity, pesticides
acute toxicity 254–257
chronic effects 257–265
trade guidelines, food safety 359–360
transformational agriculture, Integrated Pest Management (IPM) 41–43
transgenic crops 131–144

see also GM crops/foods
beneficial species 134–138
benefits/risks, quantifying 140–142
best management practices 141–142
Cry1Ab Bt rice 137
Cry3Bb Bt maize 136–137
decomposer maize 134–135
decomposer micro-organisms 135–137
ecosystem services (ES) 140–141
environmental impact 409–410
models of interaction 132–133
non-crop plants 133–134
non-target herbivorous insects 132–133
non-target micro-organisms 135–137
pollinators 134
predators 135
primary effects 132–134
probabilistic regional geospatial environmental risk assessment 139–140
quantitative uncertainty analysis 142
range 131–132
risk assessment 137–143
risk management 141–144
risks/benefits, quantifying 140–142
scope 131–132
secondary effects 134–137
spatial scales 137–140
tefluthrin pesticide 136–137
tertiary effects 134–137
temporal scales 137–140
triazophos 137
uncertainty analysis 142
variation among countries 143
treatment frequency index (TFI)
300–309, 313–315, 317
triazophos, transgenic crops 137
tritrophic interactions, climatic change implications 208–209

u
uncertainties, pest management economics 60–64
uncertainty analysis, transgenic crops 142
unmanaged habitats
barriers to movement 184–185
benefits to pests 179–181
unmanaged habitats (cont’d)
conservation vs. restoration 185–186
corridors to movement 184–185
defining 178
ecosystem disservices (EDS)
178–190
food resources 179–180
host switching 180
hyperparasitoids 181–182
intraguild predation 182–184
landscape context 186–188
landscape scale 186–188
managing for EDS 188–189
resources 179–181
unmanaged vegetation, biocontrol
158–164
USA, biocontrol 328, 329
use/misuse, pesticides 79–80

v
vectors, biological invasions 228
vegetation, unmanaged, biocontrol 158–164

w
water contamination, pesticide use 371
water scarcity, food security 354–355
Weed Science Society of America, Integrated
Pest Management (IPM) 11
western tarnished plant bug (WTPB) Lygus
thesperus 24–27, 29–30, 35, 42, 178
world population 348
WTPB see western tarnished plant bug

y
yellow fever mosquito, Aedes aegypti, invasive
alien species 237–238
yield reduction, pesticide use 371–372