Contents

List of Contributors xvii
Preface xix
Introduction: Millets – The Miracle Grains xxi
C. Aruna Reddy

1 Sorghum, Sorghum bicolor (L.) Moench 1
 P. Sanjana Reddy
 1.1 Introduction 1
 1.2 Origin and Taxonomy 1
 1.3 Germplasm Resources and Utilisation 2
 1.4 Genetics and Cytogenetics 4
 1.4.1 Cytogenetics 5
 1.5 Reproductive Biology 5
 1.6 Production Constraints 7
 1.7 Breeding Objectives 7
 1.7.1 Grain Sorghum 8
 1.7.1.1 Breeding for Yield 8
 1.7.1.2 Breeding for Abiotic Stress Resistance 9
 1.7.1.3 Breeding for Biotic Stress Resistance 15
 1.7.1.4 Breeding for Grain Quality 19
 1.7.2 Forage Sorghum 21
 1.7.3 Sweet Sorghum 23
 1.8 Sorghum Improvement Across Diverse Parts of the World 24
 1.8.1 Sorghums of India 24
 1.8.1.1 Rainy / kharif Sorghum 24
 1.8.1.2 Post-rainy / winter Sorghum 25
 1.8.1.3 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) 28
 1.8.2 Sub-Saharan Africa 30
 1.8.3 Western and Central Africa (WCA) 30
 1.8.4 Eastern and Southern Africa (ESA) 30
 1.8.5 Latin America 31
 1.8.6 China 32
 1.9 Future Prospects 32
References 33
2 Pearl Millet, *Pennisetum glaucum* (L.) R. Br. 49
 P. Sanjana Reddy
 2.1 Introduction 49
 2.2 Origin and Taxonomy 51
 2.2.1 Taxonomy 51
 2.2.2 Origin 51
 2.3 Genetic Resources 52
 2.3.1 Genetic Diversity 53
 2.3.2 Germplasm Utilisation 53
 2.4 Genetics of Important Traits 55
 2.4.1 Quantitative Traits 55
 2.4.1.1 Gene Effects 56
 2.4.2 Qualitative Traits 57
 2.5 Morphology and Reproductive Biology 58
 2.6 Selfing and Crossing 59
 2.7 Breeding Methods 60
 2.8 Cultivar Development 62
 2.8.1 Open Pollinated Varieties 62
 2.8.2 Hybrids 63
 2.9 CMS Systems in Pearl Millet 64
 2.10 Production Constraints 65
 2.10.1 Breeding for Abiotic Stresses 65
 2.10.1.1 Drought 65
 2.10.1.2 Heat Tolerance 70
 2.10.2 Breeding for Biotic Stress Resistance 71
 2.10.2.1 Downy Mildew (DM) 71
 2.10.2.2 Other Biotic Constraints 72
 2.11 Grain Quality 73
 2.12 Alternate Uses of Pearl Millet 73
 2.13 Future Research Thrust Areas 74
 References 75

3 Improvement in Finger Millet: Status and Future Prospects 87
 K.N. Ganapathy
 3.1 Introduction 87
 3.2 Area Production and Productivity 87
 3.3 Origin and Domestication 88
 3.4 Botanical Features and Breeding Behaviour 89
 3.4.1 Botanical Classification 89
 3.4.2 Botanical Description 89
 3.4.3 Floral Biology and Breeding Behaviour 90
 3.5 Emasculation and Pollination Techniques 90
 3.5.1 Hand Emasculation 90
 3.5.2 Hot-water Treatment 91
 3.5.3 Gametocide-induced Male Sterility 91
 3.5.4 Use of Genetic Male Sterility 91
 3.6 Genetics of Traits 91
 3.7 Gene Pool of *Eleusine coracana* 93
3.7.1 Sub-species Africana 93
3.7.2 Subspecies Coracana 93
3.7.2.1 Race Elongata 93
3.7.2.2 Race Plana 94
3.7.2.3 Race Vulgaris 94
3.7.2.4 Race Compacta 94
3.8 Germplasm and Genetic Diversity 94
3.9 Varietal Improvement in India 96
3.10 Varietal Development in Africa 98
3.11 Genetic Improvement for Blast Resistance 100
3.12 Development of Genetic Male Sterility 102
3.13 Mutation Breeding 103
3.14 Strategies to Bridge Research Gaps for Enhancing Productivity and Utilisation of Finger Millet 104
3.14.1 Germplasm Evaluation 104
3.14.2 Participatory Selection and Varietal Development 104
3.14.3 Interspecific Hybridisation and Search for Novel Traits 105
3.14.4 Development of Early-maturing, Photoperiod-insensitive Varieties for Different Cropping Systems 105
3.14.5 Genetic Improvement for Drought Tolerance 105
3.14.6 Stover Yield and Quality Improvement 105
3.14.7 High-yielding White Finger Millet Varieties 106
3.14.8 Nutritional Improvement 106
3.14.9 Breeding for Blast Resistance and Other Pests 106

References 107

4 Foxtail Millet, Setaria italica (L.) P. Beauv. 112
K. Hariprasanna
4.1 Introduction 112
4.2 Origin and Taxonomy 116
4.3 Germplasm Resources and Utilisation 118
4.3.1 International Status 118
4.3.2 National Status 119
4.3.3 Core Collection 120
4.4 Genetics and Cytogenetics 122
4.4.1 Inheritance of Agronomic Traits 122
4.4.2 Genetic Control of Branching 123
4.4.3 Genetic Control of Flowering and Inflorescence Branching 123
4.4.4 Cytogenetic Studies 124
4.4.5 Molecular Markers and Genetic Maps 125
4.5 Reproductive Biology 126
4.5.1 Inflorescence Morphology 126
4.5.2 Anthesis, Flowering Behaviour and Seed 127
4.6 Breeding Objectives 128
4.6.1 Agronomic Traits 128
4.6.2 Biotic and Abiotic Factors 129
4.7 Breeding Methods 129
4.7.1 Pure-Line Selection 129
4.7.2 Recombination Breeding 130
4.7.3 Heterosis Breeding and Male Sterility 130
4.7.4 Disease Resistance Breeding 131
4.8 Breeding Efforts in the United States 131
4.9 Breeding Efforts in China 132
4.10 Breeding Efforts in India 133
4.10.1 Improved Varieties 134
4.11 New Tools for Genetic Improvement 135
4.12 Future Prospects 140

References 140

5 Proso Millet, Panicum miliaceum (L): Genetic Improvement and Research Needs 150

Sunil Shriram Gomashe

5.1 Introduction 150
5.2 Origin and Taxonomy 150
5.3 Botany and Reproductive Biology 151
5.3.1 Roots 152
5.3.2 Stem/Culm 152
5.3.3 Leaves 152
5.3.4 Panicle 152
5.3.5 Seed 152
5.4 Growth and Development 153
5.5 Cytogenetics 153
5.6 Genetic Resources and Utilisation 155
5.7 Genetic Improvement of Proso Millet: Achievements and Status 158
5.7.1 India 158
5.7.2 United States 158
5.7.3 Russia 158
5.7.4 China 161
5.7.5 Kenya 162
5.8 Breeding Objectives and Research Strategies 163
5.8.1 Development and Evaluation of Core Sets for Biotic and Abiotic Stresses as well as Quality Traits 163
5.8.2 DUS Characterisation of Varieties 163
5.8.3 Identification of Location and Trait-Specific Germplasm for Utilisation in Crop Improvement 163
5.8.4 Development of Varieties with Abiotic and Biotic Stress Tolerance/Resistance 163
5.8.5 Developing Lodging- and Shattering-Resistant Varieties 164
5.8.6 Development of Varieties with Early Vigour and Short Duration 164
5.8.7 Identification of Elite Germplasm and Varieties with Superior Nutritional Traits and Bio-Fortification of Existing Elite Lines 164
5.8.8 Grain Quality Improvement 164
5.8.9 Protein Content and Quality 165
5.8.10 Inducing Cytoplasmic Genetic Male Sterility 165
5.8.11 Wide Hybridisation 165
6 Genetic Improvement in Little Millet 170
K.N. Ganapathy
6.1 Introduction 170
6.2 Floral Biology 171
6.3 Cytogenetics and Morphological Variation in the Genus 172
6.4 Improvement in Little Millet 173
6.4.1 Genetic Variability 174
6.4.2 Germplasm Variability for Various Economic Traits 174
6.4.3 Varietal Improvement 176
6.4.4 Improvement in Grain Smut Resistance 176
6.4.5 Drought-Tolerance Studies 179
6.4.6 Nutritional Improvement 180
6.4.7 Mutational Approaches 180
6.5 Critical Research Gaps 181
6.6 Strategies for Genetic Improvement 181
References 182

7 Barnyard Millet: Present Status and Future Thrust Areas 184
Sunil Shriram Gomashe
7.1 Introduction 184
7.2 Nutritional Composition and Food Value 184
7.3 Origin and Taxonomy 185
7.4 Reproductive Biology 186
7.4.1 Roots 186
7.4.2 Stem/Culm 186
7.4.3 Leaves 186
7.4.4 Panicle 186
7.4.5 Seed 186
7.4.6 Floral Biology 188
7.5 Cytogenetics 188
7.6 Genetic Resources and Utilisation 189
7.7 Breeding Objectives 191
7.7.1 Development and Evaluation of Core Collections 194
7.7.2 Exploitation of the Wild Relative Gene Pool 194
7.7.3 Breeding for Waxy Endosperm Genotypes 195
7.7.4 Breeding for Pests and Diseases 195
7.7.5 Breeding for Dual-Purpose Genotypes (Grain and Stover) 195
7.7.6 Breeding for Genotypes Suitable for Mechanical Harvesting and Post-Harvest Processing 195
7.8 Future Prospects 196
References 196
8 Kodo Millet, *Paspalum scrobiculatum* L. 199

K. Hariprasanna

8.1 Introduction 199
8.2 Origin and Taxonomy 201
8.2.1 Origin and Distribution 201
8.2.2 Taxonomy 202
8.2.3 Chromosome Number 203
8.3 Germplasm Resources and Utilisation 204
8.5 Genetics and Cytogenetics 206
8.5.1 Genetic Studies 206
8.5.2 Genetic Diversity 206
8.5.3 Genetic Variability 206
8.5.4 Correlation Studies 207
8.5.5 Cytogenetics 208
8.6 Reproductive Biology 208
8.6.1 Morphology and Floral Biology 208
8.6.2 Flowering Behaviour 210
8.7 Breeding Objectives 211
8.7.1 Agronomic Traits 211
8.7.2 Biotic and Abiotic Factors 211
8.8 Breeding Methods 212
8.8.1 Introduction and Selection 213
8.8.2 Pure-Line Selection 213
8.8.3 Recombination Breeding 213
8.8.3.1 Natural Hybridisation 213
8.8.3.2 Controlled Hybridisation 214
8.8.3.3 Contact Method of Hybridisation 214
8.8.4 Mutation Breeding 214
8.8.5 Improved Varieties 214
8.9 New Tools for Genetic Improvement 215
8.10 Future Prospects 219

References 219

9 Tef, *Eragrostis tef* (Zucc.) Trotter 226

Kebebew Assefa, Solomon Chanyalew and Zerihun Tadele

9.1 Introduction 226
9.2 Origin and Taxonomy 227
9.2.1 Origin 227
9.2.2 Taxonomy 230
9.3 Genetic Resources and Utilisation 232
9.3.1 Genetic Resources of Tef 232
9.3.2 Utilisation of Tef Genetic Resources 232
9.4 Genetics and Cytogenetics 236
9.4.1 Genetics of Qualitative Traits 236
9.4.1.1 Lemma Colour 236
9.4.1.2 Seed Colour 236
9.4.1.3 Panicle Form 236
9.4.2 Genetics of Quantitative Traits 236
9.4.3 Cytogenetics Studies 240
9.5 Reproductive Biology 240
9.5.1 Floral Morphology of Tef 240
9.5.2 Breeding Behaviour 242
9.6 Constraints in Tef Production 242
9.6.1 Technical Constraints 242
9.6.1.1 Relatively Low Productivity of Tef Crop 242
9.6.1.2 Susceptibility of the Crop to Lodging 243
9.6.1.3 Labour-Intensive Nature of Tef Husbandry 244
9.6.1.4 Biotic and Abiotic Constraints 244
9.6.2 Socio-Economic Constraints 244
9.6.2.1 Lack of Adequate Attention 244
9.6.2.2 Weak Seed and Extension Systems 245
9.6.2.3 Unavailability of Agricultural Inputs 245
9.7 Genetic Improvement of Tef 245
9.7.1 Historical Milestones 245
9.7.2 Breeding Objectives 246
9.7.3 Breeding Methods 246
9.7.3.1 Conventional Approaches 246
9.7.3.2 Modern and Novel Approaches 247
9.7.4 Variety Development and Dissemination 252
9.7.4.1 Improved Tef Varieties 252
9.7.4.2 Genetic Gain 254
9.7.4.3 Adoption of Improved Varieties 254
9.8 Crop and Pest Management 256
9.8.1 Land Preparation and Planting 256
9.8.2 Fertiliser Application 257
9.8.3 Important Weeds and Their Management 257
9.8.4 Important Insect Pests and Their Management 258
9.8.5 Important Diseases and Their Management 258
9.9 Future Prospects 259
10 Insect Pests of Millets and Their Host Plant Relations 267
A. Kalaisekar and P.G. Padmaja
10.1 Insect Pests 267
10.1.1 Sorghum 267
10.1.1.1 Seedling Pests 267
10.1.1.2 Stem and Leaf feeders 267
10.1.1.3 Sucking Pests 269
10.1.1.4 Aphids 269
10.1.1.5 Leaf Feeders 270
10.1.1.6 Earhead Pests 271
10.1.1.7 Root Feeders 272
10.1.2 Pearl Millet 273
10.1.2.1 Shoot Fly, Atherigona approximata 273
10.1.2.2 Stemborers 273
10.1.2.3 Leaf Feeders 274
Millets and Sorghum

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.2.4</td>
<td>Sucking Pests</td>
</tr>
<tr>
<td>274</td>
<td></td>
</tr>
<tr>
<td>10.1.2.5</td>
<td>Other Pests</td>
</tr>
<tr>
<td>274</td>
<td></td>
</tr>
<tr>
<td>10.1.3</td>
<td>Finger Millet</td>
</tr>
<tr>
<td>274</td>
<td></td>
</tr>
<tr>
<td>10.1.3.1</td>
<td>Root Feeders</td>
</tr>
<tr>
<td>274</td>
<td></td>
</tr>
<tr>
<td>10.1.3.2</td>
<td>Shoot and Stem Feeders</td>
</tr>
<tr>
<td>274</td>
<td></td>
</tr>
<tr>
<td>10.1.3.3</td>
<td>Leaf Feeders</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>10.1.4</td>
<td>Foxtail Millet</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>10.1.4.1</td>
<td>Shoot Fly, Atherigona atripalpis</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>10.1.4.2</td>
<td>Other Important Pests</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>10.1.5</td>
<td>Kodo Millet</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>10.1.5.1</td>
<td>Shoot Fly, Atherigona simplex</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>10.1.5.2</td>
<td>Other Pests</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>10.1.6</td>
<td>Proso Millet</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>10.1.6.1</td>
<td>Shoot fly, Atherigona pulla</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td>10.1.6.2</td>
<td>Other Pests</td>
</tr>
<tr>
<td>276</td>
<td></td>
</tr>
<tr>
<td>10.1.7</td>
<td>Little Millet</td>
</tr>
<tr>
<td>277</td>
<td></td>
</tr>
<tr>
<td>10.1.7.1</td>
<td>Shoot Fly, Atherigona miliaeae</td>
</tr>
<tr>
<td>277</td>
<td></td>
</tr>
<tr>
<td>10.1.7.2</td>
<td>Other Pests</td>
</tr>
<tr>
<td>277</td>
<td></td>
</tr>
<tr>
<td>10.1.8</td>
<td>Barnyard Millet</td>
</tr>
<tr>
<td>277</td>
<td></td>
</tr>
<tr>
<td>10.1.8.1</td>
<td>Shoot Fly, Atherigona falcata</td>
</tr>
<tr>
<td>277</td>
<td></td>
</tr>
<tr>
<td>10.1.8.2</td>
<td>Other Pests</td>
</tr>
<tr>
<td>277</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>Host-Plant Selection by Insect Pests</td>
</tr>
<tr>
<td>277</td>
<td></td>
</tr>
<tr>
<td>10.2.1</td>
<td>Host Preferences</td>
</tr>
<tr>
<td>279</td>
<td></td>
</tr>
<tr>
<td>10.2.2</td>
<td>Mechanisms of Host Plant Resistance</td>
</tr>
<tr>
<td>281</td>
<td></td>
</tr>
<tr>
<td>10.2.3</td>
<td>Antixenosis</td>
</tr>
<tr>
<td>281</td>
<td></td>
</tr>
<tr>
<td>10.2.4</td>
<td>Antibiosis</td>
</tr>
<tr>
<td>282</td>
<td></td>
</tr>
<tr>
<td>10.2.5</td>
<td>Tolerance</td>
</tr>
<tr>
<td>283</td>
<td></td>
</tr>
<tr>
<td>10.2.6</td>
<td>Sources of Insect Resistance</td>
</tr>
<tr>
<td>283</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>284</td>
</tr>
</tbody>
</table>

Millet Diseases: Current Status and Their Management

I.K. Das

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>291</td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>Sorghum Diseases</td>
</tr>
<tr>
<td>291</td>
<td></td>
</tr>
<tr>
<td>11.2.1</td>
<td>Grain mould</td>
</tr>
<tr>
<td>292</td>
<td></td>
</tr>
<tr>
<td>11.2.2</td>
<td>Anthracnose</td>
</tr>
<tr>
<td>294</td>
<td></td>
</tr>
<tr>
<td>11.2.3</td>
<td>Downy Mildew</td>
</tr>
<tr>
<td>295</td>
<td></td>
</tr>
<tr>
<td>11.2.4</td>
<td>Ergot or Sugary Disease</td>
</tr>
<tr>
<td>297</td>
<td></td>
</tr>
<tr>
<td>11.2.5</td>
<td>Rust</td>
</tr>
<tr>
<td>298</td>
<td></td>
</tr>
<tr>
<td>11.2.6</td>
<td>Leaf Blight</td>
</tr>
<tr>
<td>299</td>
<td></td>
</tr>
<tr>
<td>11.2.7</td>
<td>Leaf Spots</td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>11.2.8</td>
<td>Smuts</td>
</tr>
<tr>
<td>301</td>
<td></td>
</tr>
<tr>
<td>11.2.9</td>
<td>Charcoal Rot</td>
</tr>
<tr>
<td>302</td>
<td></td>
</tr>
<tr>
<td>11.2.10</td>
<td>Viral Diseases</td>
</tr>
<tr>
<td>303</td>
<td></td>
</tr>
<tr>
<td>11.3</td>
<td>Pearl Millet Diseases</td>
</tr>
<tr>
<td>305</td>
<td></td>
</tr>
<tr>
<td>11.3.1</td>
<td>Downy Mildew</td>
</tr>
<tr>
<td>305</td>
<td></td>
</tr>
<tr>
<td>11.3.2</td>
<td>Blast</td>
</tr>
<tr>
<td>307</td>
<td></td>
</tr>
</tbody>
</table>
13.3.4 QTL Mapping 357
13.3.4.1 Phenology and Morphological Traits 357
13.3.5 Marker-Assisted Selection (MAS) 360
13.4 Finger Millet 361
13.4.1 Genetic Diversity 361
13.4.1.1 Core and Reference Collections 362
13.4.2 Molecular Marker Resources 362
13.4.3 Genetic Maps, QTL Mapping and Marker-Assisted Selection (MAS) 363
13.5 Foxtail Millet 364
13.5.1 Genetic Diversity 364
13.5.1.1 Core and Reference collections 365
13.5.2 Molecular Marker Resources 365
13.5.3 Genetic Maps 366
13.5.4 QTL Mapping 368
13.6 Other Small Millets 369
13.6.1 Genetic Diversity 370
13.6.1.1 Core collections 371
13.6.2 Molecular Marker Resources, Mapping and Marker-Assisted Selection 372
13.7 Progress of Molecular Marker Research in Millets 372
13.8 Future Prospects 373

References 374

14 Strategies to Build Sustainable Millet Seed Systems 395

Vilas A. Tonapi and Ch. Ravinder Reddy

14.1 Introduction 395
14.2 Factors Leading to Sustainable Seed Security 397
14.2.1 Overview of Seed Systems 397
14.2.1.1 Formal Seed Systems 397
14.2.1.2 Informal Seed Systems 398
14.2.2 Seed Sources for Informal and Formal Seed Systems 398
14.2.3 Challenges for Seed Sector in Marginal Environments 399
14.2.4 Indian Scenario 399
14.2.5 Barriers to Seed Dissemination and Socio-Economic Constraints 401
14.2.5.1 Sound Informal Seed Systems: Most Suitable for Dry Land Ecosystems 402
14.2.5.2 Sustaining Viability of Informal Systems with Innovative Seed Delivery Models 402
14.2.5.3 Alternate Village-Based Seed Delivery Models 403
14.2.5.4 Small-Scale Seed Enterprises Models 405
14.3 Developing a Community-Based Millet Seed System 409
14.3.1 Steps for Strengthening Community Seed Production, Seed Saving and Storage 409
14.3.2 Seed Production 410
14.3.3 Seed Certification 410
14.3.4 Seed Storage 411
14.3.5 Developing a Community Seed Programme 412
14.3.6 Steps in Developing a Community Seed-System Module 412
14.3.6.1 Reconnaissance Survey 412
14.3.6.2 Participatory Selection of Crops/Varities 412
14.3.6.3 Selection of Seed Growers 413
14.3.6.4 Capacity Building 413
14.3.6.5 Procurement of the Basic Seed and Distribution 413
14.3.6.6 Formation of Seed Growers’ Association 414
14.3.6.7 Seed Marketing 414
14.4 The Alternative Integrated Seed-System Model 415
14.4.1 Step 1 415
14.4.2 Step 2 416
14.4.3 Sensitising Stakeholders 416
14.4.4 Formation of Village Seed Bank Committees 416
14.4.5 Farmer-Participatory Selection of Varieties 418
14.4.6 Capacity Building 418
14.4.7 Institutional Linkages 419
14.4.8 Funding 419
14.4.9 Advantages of Village Seed Banks 420
14.4.10 Constraints of Village Seed Banks 421
14.5 Need for a Policy Framework to Build a Viable Local Seed System 421
14.5.1 The Role NARS Has to Play in Strengthening the Community Seed Systems 422
14.5.2 The Role of the State and the Central Agencies 423
14.5.3 The Role of Public/Private Partnership in Local Seed Availability 423
14.5.4 Identification of the Components for Village-Based or Community Seed Production Systems 423
14.5.5 Strengthening Stakeholders of Community Seed Systems 425
14.5.6 Interventions Required for Developing Informal Seed Systems 426
14.6 Conclusion 428
References 429

Index 431