Index

Note: Page numbers with prefix ‘f’ refers to figures and ‘t’ refers to tables.

A
abdominal organs
 MRI applications in, 215, 215f, 216f
acquisition matrix, 91
acquisition parameter modification
 in motion artifact reduction, 126–7, 127f, 128f
actively shielded gradient coil, 184
ADC. See analog-to-digital converter (ADC)
advanced imaging applications, 147–61. See also specific types, e.g.,
diffusion, 147–53, 148f, 150f, 152f
diffusion-weighted imaging–related, 151–3
fMRI, 156–7
noble gas imaging, 159–61, 160f
perfusion, 153–5, 154f–6f
ultra-high field imaging, 158–9
AET. See Applications Entity Title (AET)
agitated patients
 MRI in, 221
aliasing, 105, 107–8, 107f–10f
amplitude
 in RV waveform characterization, 40
analog-to-digital converter (ADC), 12–13
Applications Entity Title (AET), 180
arterial spin labeling (ASL)
 continuous, 153
 in perfusion studies, 153
 pulsed, 153
artifact(s), 103–25. See also specific types, e.g., motion artifacts
 “blooming,” 120
chemical shift, 108–111, 109f, 111f, 111r
coherece, 113, 115–17, 115f–18f
described, 103
diffusion-weighted imaging, 151–3
external, 119–25
flow misregistration, 104, 105f, 106f
magnetic susceptibility difference, 117, 118f, 120–1, 121f
motion, 103–5, 105f, 106f
phase cancellation, 110–11, 111f, 111r
radial, 119, 120f
sequence protocol–related, 105, 107–19
truncation, 112, 112f–14f
ASL. See arterial spin labeling (ASL)
atom
 structure of, 2

B
b value
 in diffusion, 148
base magnetic field
 safety precautions related to, 197
benzoxypropionic tetraacetate (BOPTA)
 in MRI, 191
black-blood MRA techniques, 135
BLADE, 134, 134f
“blooming” artifact, 120
BOLD fMRI studies, 157
Bolzmann distribution, 7
BOPTA. See benzoxypropionic tetraacetate (BOPTA)
bowel
 MRI applications in, 215, 215f
brain
 MRI applications in, 203, 203f, 204f
breast
 MRI applications in, 209–10
bright-blood MRA images, 145, 146f
Brownian motion, 147
bulk magnetic susceptibility, 8–9

C
Carr–PURcell–Meiboom–Gill (CPMG) technique, 184
CASL. See continuous arterial spin labeling (CASL)
center frequency
 in RV waveform characterization, 40
cerebral ischemia
 diffusion-weighted imaging in evaluation of, 151–3
chemical shift
 in MR, 14–16, 15f, 16f
 in MRS, 162–4, 163f, 164f
chemical shift artifacts, 108–10, 109f
 of second kind, 110–11, 111f, 111r
chemical shift imaging (CSI), 169
chronic kidney disease (CKD)
classification of, 193, 193r
CKD. See chronic kidney disease (CKD)
clinical applications, 200–21
 abdominal organs, 215, 215f, 216f

Brian M. Dale, Mark A. Brown and Richard C. Semelka.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
clinical applications (continued)
 brain, 203, 203f, 204f
 breast, 209–10
 common bile duct, 215, 216f
 for ETSE, 220
 examination design considerations in, 202
 general principles of, 200–2
 great vessels, 210–11, 211f, 212f
 heart, 210–11, 211f, 212f
 kidneys, 215, 216f
 knee, 207f, 208f
 liver, 211–15, 213f, 214f
 musculoskeletal, 206, 207f–9f
 neck, 204–5
 for out-of-phase gradient echo, 219
 pelvis, 215, 217f, 217f, 218f
 in sedated or agitated patients, 221
 shoulder, 209f
 for single-echo spin echo sequence, 218–19
 specific sequences and clinical situations,
 218–21
 spine, 205–6, 205f, 206f
 for spoiled gradient echo, 219
 for standard multiecho spin echo, 220
 for T1-weighted techniques, 218–20
 fat saturation, 219–20
 for T2-weighted techniques, 220–1
 fat saturation, 221
 thorax, 206–9
 coherence artifacts, 113, 115–17, 115f–18f
 coil(s)
 actively shielded gradient, 184
 phased-array, 58–9, 60f, 61f
 surface, 59, 60f
 common bile duct
 MRI applications in, 215, 216f
 composite pulses, 44–5, 45f
 computer systems
 in MRI system, 177–80, 178f, 187f
 continuous arterial spin labeling (CASL), 153
 continuous wave (CW) mode operation
 in RF selective excitation, 39–44, 41f–3f
 contrast agents, 189–95
 advantages of, 189
 adverse reactions to, 192–3, 193f
 BOPTA in, 191
 categorization of, 189
 Feridex, 194–5
 GBCAs, 190–3, 191f, 192r–3r
 intravenous agents, 190–5, 191f, 192r–3r, 194f
 negative agents, 195
 oral agents, 195
 safety precautions related to, 199
 T1 relaxation agents, 190–3, 191f, 192r–3r
 T2 relaxation agents, 194–5, 194f
 contrast-to-noise ratio, 91
 CPMG technique. See Carr–Purcell–Meiboom–Gill
 (CPMG) technique
 crosstalk, 89–90, 90f
 cryogen(s)
 described, 197
 safety precautions related to, 197–8
 CSI. See chemical shift imaging (CSI)
 CW. See continuous wave (CW)

D
 data acquisition system
 in MRI system, 178f, 186–8
 data collection methods, 54–5, 54f–6f
 demodulated signal, 13–14
 DICOM (digital imaging and communications in
 medicine), 179–80
 DICOM Service Class Uses and Service Class
 Provider, 180
 diffusion, 147–53, 148f, 150f, 152f
 defined, 147
 described, 147–8, 148f
 measurements of, 148–9
 diffusion-weighted imaging
 applications of, 151–3
 digital imaging and communications in medicine
 (DICOM), 179–80
 directional dependence
 in diffusion measurement, 149–50, 152f
 Dixon method
 for fat suppression, 102, 102f
 duration
 in RV waveform characterization, 40

E
 echo planar imaging (EPI) sequences, 75–7, 76f
 MP pulses incorporated into, 82–5, 83f–5f
 echo spacing, 88
 echo time (TE), 87–8, 88f
 echo train inversion recovery sequence, 79f, 80
 echo train length, 88
 echo train spin echo (ETSE), 69–70, 69f
 clinical applications for, 220
 encoding
 phase, 33–5, 33f, 34f
 energy absorption
 macroscopic, 10, 11f
 microscopic, 10, 11f
 EPI sequences. See echo planar imaging (EPI)
 sequences
 ETSE. See echo train spin echo (ETSE)
 excitation
 RF
 in MR, 10–12, 11f
 RF selective, 39–44, 41f–3f
 excitation angle, 88
 excitation order
crosstalk and, 89–90, 90f
 described, 90
 external artifacts, 119–25
 described, 119
 magnetic field distortions, 120–2, 121f, 122f
 magnetic susceptibility difference artifact, 120–1, 121f
 measurement hardware, 122–4
 noise, 123f–4f, 124–5
extrinsic parameters, 89–91, 90f
 effects of, 92t
 variables in, 93
extrinsic variables, 93

F
fat saturation techniques
 T1-weighted
 clinical applications for, 219–20
 T2-weighted
 clinical applications for, 221
FDA. See Food and Drug Administration (FDA)
Feridex
 in MRI, 194–5
 ferumoxides, 194–5, 194f
FID. See free induction decay (FID)
field of view (FOV), 91
FLAIR. See fluid-attenuated inversion recovery (FLAIR)
flip angle, 88
flow compensation
 in motion artifact reduction, 132–3, 133f
 flow misregistration artifact, 104, 105f, 106f
fluid-attenuated inversion recovery (FLAIR), 81
fMRI. See functional MRI (fMRI)
Food and Drug Administration (FDA)
on MRI safety, 196
4D time-resolved MR angiography with keyhole (4D-TRAK), 138
4D-TRAK (4D time-resolved MR angiography with keyhole), 138
Fourier imaging
 partial, 53, 53f
 Fourier transformation, 103, 169, 171–3, 171f, 172f, 174f, 175f
 FOV. See field of view (FOV)
free induction decay (FID), 12–13, 13f
frequency encoding, 30–2, 31f, 32f
frequency selective pulses
 in RV waveform characterization, 41–4, 42f, 43f
 frequency selective saturation, 99–101, 99f, 100f
 full-width at half-maximum height (FWHM), 165
 functional brain imaging, 156–7
 functional MRI (fMRI), 156–7
 functional MRI (fMRI) studies
 BOLD, 157
FWHM. See full-width at half-maximum height (FWHM)

G
gadolinium-based contrast agents (GBCAs)
 in MRI, 190–3, 191f, 192t–3t
 gating
 in motion artifact reduction, 127–32, 130f, 131f
 Gaussian pulses
 in RV waveform characterization, 42, 43f
GBCAs. See gadolinium-based contrast agents (GBCAs)
Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA), 63–4, 64f
GMR. See gradient motion rephasing (GMR)
gradient(s), 182
 safety precautions related to, 198
gradient coil
 actively shielded, 184
 gradient echo sequences, 70–5, 71t, 72f–5f. See also specific types
 absence of 180° RF pulse in, 70–1, 71t
 acronyms for, 71t
 described, 70
 MP pulses incorporated into, 82–5, 83f–5f
 refocused, 71t, 72–5, 72f–5f. See also refocused gradient echo sequences
 spoiled, 71–2, 71t
 steady-state, 71t, 72–5, 72f–5f
 types of, 71–5, 71t, 72f–5f
 gradient fields, 26–8, 27f, 182
 gradient motion rephasing (GMR), 132–3, 133f
 gradient pulses, 183
 gradient system
 in MRI system, 178f, 182–4, 188
 GRAPPA (Generalized Autocalibrating Partially Parallel Acquisition), 63–4, 64f
 great vessels
 MRI applications in, 210–11, 211f, 212f

H
 hard pulses, 41, 41f
 heart
 MRI applications in, 210–11, 211f, 212f
 Hermitian symmetry, 53
 hydrogen MRS, 162–76. See also magnetic resonance spectroscopy (MRS)
 hyperbolic secant pulses
 in RV waveform characterization, 42, 43f

I
IEC. See International Electrotechnical Commission (IEC)
image-based parallel techniques, 62, 63f
image contrast
 measurement parameters and, 86–93
image data matrices
 raw data in, 46–7, 46f, 47f
image processing computer
 in MRI system, 178, 178f
instrumentation, 177–88. See also specific components and magnetic resonance imaging (MRI) system
International Electrotechnical Commission (IEC)
on MRI safety, 196
intravenous agents
 in MRI, 190–5, 191f, 192t–3t, 194f
intravoxel incoherent motion, 148–9
intrinsic parameters, 87–9, 87f–9f
 effects of, 92t
 variables in, 92–3
 intrinsic variables, 92–3
inversion recovery (IR) looping modes, 79f, 80
inversion recovery (IR) pulse sequences, 78–80, 78f, 78t
 acronyms for, 78t
 image reconstruction process in, 80, 81f, 82f
inversion time (TI), 88–9, 89f
IR. See inversion recovery (IR)
J

- **J coupling**
 - in MRS, 164–5, 166f

K

- **k-space**
 - raw data and, 48–50, 49f, 51f
 - k-space filling techniques, 51–8
 - reduced, 51–3, 52f, 53f
 - reordered, 54–5, 54f–6f
 - types of, 56–8, 57f–9f
 - k-space formalism, 49–50, 51f
 - k-space trajectory, 54–5, 54f–6f
 - k-space-based techniques
 - GRAPPA, 63–4, 64f
 - parallel, 62, 63f
 - SMASH, 63–4
 - SNR in, 64
 - kidney(s)
 - MRI applications in, 215, 216f
 - knee
 - MRI applications in, 207f, 208f

L

- **Larmor equation**, 6, 27
- **Larmor precession**, 4–6, 5f
- **liver**
 - MRI applications in, 211–15, 213f, 214f
 - localization techniques
 - in MRS, 167–9, 168f
 - loop(s)
 - sequence, 35–8, 36f, 37f

M

- **magnet(s)**
 - in MRI system, 178f, 180–2, 187
 - magnet system, 178f, 180–2, 187
 - magnetic field(s), 1–2
 - magnetic field distortions, 120–2, 121f, 122f
 - magnetic field gradients, 26–7, 27f
 - magnetic resonance (MR)
 - chemical shift in, 14–16, 15f, 16f
 - concepts of, 10–16
 - described, 1
 - RF excitation in, 10–12, 11f
 - RF signal detection in, 12–14, 13f, 14f
 - magnetic resonance angiography (MRA), 135–46
 - approaches to, 135–46
 - described, 135–6
 - flow selection in, 135, 136f
 - MIP, 144–6, 145f, 146f
 - phase contrast, 141–4, 143f–4f
 - problems associated with, 136
 - techniques, 135–46
 - time-of-flight, 137–40, 137f–42f
 - magnetic resonance imaging (MRI)
 - advanced imaging applications for, 147–61. See also specific types and advanced imaging applications
 - in agitated patients, 221
 - artifacts in images, 103–25. See also artifact(s)
 - clinical applications of, 200–21. See also clinical applications
 - composite pulses in, 44–5, 45f
 - confusing aspects of, 65
 - contrast agents in, 189–95. See also contrast agents
 - data collection methods, 54–5, 54f–6f
 - functional, 156–7
 - gradient fields in, 26–8, 27f
 - initial step in, 28
 - k-space filling techniques in, 51–8. See also k-space filling techniques
 - nonrectilinear sampling in, 56
 - parallel acquisition methods in, 60–4, 63f, 64f
 - phase encoding in, 33–5, 33f, 34f
 - phased-array coils in, 58–9, 60f, 61f
 - principles of, 26–64
 - projection reconstruction in, 57, 58f
 - pulse sequences in, 65–85. See also pulse sequence(s)
 - radial scanning in, 57, 58f
 - ramped sampling in, 56–7, 57f
 - raw data in
 - image data matrices and, 46–7, 46f, 47f
 - k-space and, 48–50, 49f, 51f
 - readout or frequency encoding in, 30–2, 31f, 32f
 - reduced k-space techniques in, 51–3, 52f, 53f
 - reordered k-space filling techniques in, 54–5, 54f–6f
 - RF selective excitation in, 39–44, 41f–3f
 - safety precautions in, 196–9. See also safety precautions
 - in sedated patients, 221
 - sequence looping in, 35–8, 36f, 37f
 - slice selection in, 28–9, 28f–30f
 - SNR and tradeoffs in, 47–8
 - two-dimensional spiral sampling in, 58, 59f
 - magnetic resonance imaging (MRI) protocols
 - principles in development of, 200
 - magnetic resonance imaging (MRI) system, 177–88. See also specific components
 - actively shielded gradient coil, 184
 - components list, 187–8
 - computer systems, 177–80, 178f, 187
 - data acquisition system, 178f, 186–8
 - diagram of, 178f
 - gradient system, 178f, 182–4, 188
 - magnet system, 178f, 180–2, 187
 - RF transmitter system, 178f, 184–6, 185f, 188
 - magnetic resonance (MR) signal, 12, 13f
 - magnetic resonance spectroscopy (MRS), 162–76
 - chemical shift in, 162–4, 163f, 164f
 - concepts, 162–7, 163f, 164f, 166f
 - hydrogen, 162–76
 - localization techniques, 167–9, 168f
 - multiple voxel techniques, 169, 170f
 - single voxel techniques, 167–9, 168f
 - spectral analysis and postprocessing steps, 169, 171–3, 171f, 172f, 174f, 175f
 - spectral linewidth in, 163f, 165–7, 166f
 - spin coupling in, 164–5, 166f
 - SVS in, 167–9, 168f

Index

- See also specific components
ultra-high field spectroscopy, 173, 175–6, 176f
magnetic susceptibility, 8–9
magnetic susceptibility difference artifact, 117, 118f, 120–1, 121f
magnetization materials susceptibility and, 8–9
magnetization-prepared (MP) pulses incorporated into gradient echo and EPI sequences, 82–5, 83f–5f
magnetization-prepared (MP) sequences, 77–85, 78f, 79f, 81f–4f
example of, 78, 78f, 79t
magnetization transfer (MT) pulse, 96
in time-of-flight MRA, 138
magnetization transfer (MT) suppression, 96–9, 97f, 98f
MAST. See motion artifact suppression techniques (MAST)
maximum intensity projection (MIP)
MRA–related, 144–6, 145f, 146f
maximum signal content site of, 48
measurement controller in MRI system, 178, 178f
measurement hardware as artifact, 122–4
measurement parameters, 86–93
extrinsic parameters, 89–91, 90f
effects of, 92t
intrinsic parameters, 87–9, 87f–9f
effects of, 92t
modification of, 86
parameter tradeoffs, 91–3, 92t
measurement protocol criteria in determining, 91–2
measurement techniques differentiating, 35–7
MIP. See maximum intensity projection (MIP)
modulation in RV waveform characterization, 40
motion Brownian, 147
intravoxel incoherent, 148–9
motion artifact(s), 103–5, 105f, 106f
appearance of, 104
causes of, 103–4
flow misregistration artifact, 104, 105f, 106f
respiratory, 104–5, 106f
types of, 104, 105f, 106f
motion artifact reduction techniques, 126–34
acquisition parameter modification, 126–7, 127f, 128f
flow compensation, 132–3, 133f
radial-based motion compensation, 134, 134f
triggering gating, 127–32, 130f, 131f
motion artifact suppression techniques (MAST) in motion artifact reduction, 132–3, 133f
MP sequences. See magnetization-prepared (MP) sequences
MR. See magnetic resonance (MR)
MRA. See magnetic resonance angiography (MRA)
MRI. See magnetic resonance imaging (MRI)
MRS. See magnetic resonance spectroscopy (MRS)
MT. See magnetization transfer (MT)
multiecho spin echo sequences, 67, 68f
multiple voxel techniques in MRS, 169, 170f
musculoskeletal system
MRI applications in, 206, 207f–9f
N
nature of synthesizer mixing
in RV waveform characterization, 40
neck
safety precautions related to, 204–5
negative agents in MRI, 193
net magnetization described, 6–7, 7f, 8f
production of, 1–9
NMR. See nuclear magnetic resonance (NMR)
noble gas imaging, 159–61, 160f
noise as artifact, 123f–4f, 124–5
nonrectilinear sampling, 56
nonsaturation methods, 101–2, 101f, 102f
nonselective pulses in RV waveform characterization, 41, 41f
nuclear magnetic moments, 3f, 4
nuclear magnetic resonance (NMR), 1
nuclear spin, 2–4, 3f, 3t, 5f
nucleus(i)
spin of, 2–4, 3f, 3t
null time for tissue, 80
Nyquist frequency, 14, 32
O
oral agents in MRI, 195
out-of-phase gradient echo clinical applications for, 219
oversampling, 91
effects of, 107, 107f
P
PACS (picture archiving and communications system) unit, 178–9
parallel acquisition methods, 60–4, 63f, 64f
requirements for, 62, 64f
types of, 62, 63f
partial Fournier imaging, 53, 53f
pelvis MRI applications in, 215, 217, 217f, 218f
Perflubron (perfluorocyclylbromide [PFOB]), 195
perfluorocyclylbromide (PFOB), 195
perfusion, 153–5, 154f–6f
perfusion blood flow in diffusion measurement, 148–9
perfusion studies approaches to, 153
applications of, 154–5, 154f–6f
PFOB. See perfluorocyclylbromide (PFOB)
PGSE. See pulsed gradient spin echo (PGSE) method
Index

phase
 in RV waveform characterization, 40
phase cancellation artifact, 110–11, 111f, 111r
phase contrast MRA, 141–4, 143f–4f
phase encoding
 in MRS, 33–5, 33f, 34f
 phased-array coils, 58–9, 60f, 61f
picture archiving and communications system (PACS) unit, 178–9
point resolved spectroscopy (PRESS), 167–9, 168f
postprocessing
 in MRS, 169, 171–3, 171f, 172f, 174f, 175f
pregnancy
 MRI during, 196
PRESS. See point resolved spectroscopy (PRESS)
projection reconstruction, 57, 58f
PROPELLER, 134, 134f
PSAL. See pulsed arterial spin labeling (PSAL)
pseudodiffusion, 149
pulse(s)
 composite, 44–5, 45f
 frequency selective, 41–4, 42f, 43f, 99–101, 99f, 100f
 frequency selective soft, 41–4, 42f, 43f
 Gaussian, 42, 43f
 gradient, 183
 hard, 41, 41f
 hyperbolic secant, 42, 43f
 MP
 incorporated into gradient echo and EPI sequences, 82–5, 83f–5f
 MT, 96–9, 97f, 98f
 in time-of-flight MRA, 138
 nonselective, 41, 41f
 in RV waveform characterization, 41, 41f
 RF excitation, 44
 in RV waveform characterization, 39–44, 41f–3f.
 See also specific types
 sinc, 41–2, 42f, 43f
 soft, 41–4, 42f, 43f
 spatial presaturation, 94–6, 95f
pulse sequence(s), 65–85. See also specific types
 comparison of, 65–7, 66f
 defined, 65
 EPI sequences, 75–7, 76f
 gradient echo sequences, 70–5, 71f, 72f–5f
 implementation of, 65
 IR pulse sequences, 78–80, 78f, 78t
 MP sequences, 77–85, 78f, 78t, 79f, 81f–4f
 spin echo sequences, 67–70, 67f, 68f, 69f
 timing diagrams in comparison of, 66–7, 66f
pulse shape
 in RV waveform characterization, 41, 41f
 pulsed arterial spin labeling (PSAL), 153
 pulsed gradient spin echo (PGSE) method, 148, 148f

R
radial artifact, 119, 120f
radial-based motion compensation
 in motion artifact reduction, 134, 134f
 radial scanning, 57, 58f
radiofrequency (RF) excitation
 in MR, 10–12, 11f
 selective, 39–44, 41f–3f
radiofrequency (RF) excitation pulses criteria for, 44
radiofrequency (RF) power deposition
 safety precautions related to, 198–9
radiofrequency (RF) signal detection
 in MR, 12–14, 13f, 14f
radiofrequency (RF) transmitter system
 in MRI system, 178f, 184–6, 185f, 188
radiofrequency (RF) waveform
 parameters in characterizing, 39–44, 41f–3f
 ramped sampling, 56–7, 57f
 raw data, 46–7, 46f, 47f
 k-space and, 48–50, 49f, 51f
 readout, 30–2, 31f, 32f
 reduced k-space techniques, 51–3, 52f, 53f
 refocused gradient echo sequences, 71f, 72–5, 72f–5f
 described, 72
 signals measured from, 73–5, 73f, 74f
relaxation, 17–25
 defined, 17
 spin–spin, 21–2, 21f
 T1
 saturation and, 17–21, 18f–20f
 T2, 21–5, 21f, 22f, 25f
 T2*, 22f, 23–4, 25f
relaxation agents
 in MRI. See specific agents and contrast agents
reordered k-space filling techniques, 54–5, 54f–6f
repetition time (TR), 87, 87f
respiratory motion artifact, 104–5, 106f
RF. See radiofrequency (RF)
rise time, 183

S
safety precautions, 196–9
 base magnetic field, 197
 contrast agents, 199
 cryogens, 197–8
 FDA on, 196
 gradients, 198
 IEC on, 196
 pregnancy-related, 196
 RF power deposition, 198–9
saturation
 T1 relaxation and, 17–21, 18f–20f
scanner controller
 in MRI system, 177–8, 178f
 “schimming,” 122
sedated patients
 MRI in, 221
“seed” region, 146
Send/Receive, 180
sequence looping, 35–8, 36f, 37f
sequence protocol–related artifacts, 105, 107–19
 aliasing, 105, 107–8, 107f–10f
 chemical shift artifacts, 108–10, 109f
 coherence artifacts, 113, 115–17, 115f–18f
magnetic susceptibility difference artifact, 117, 118f
phase cancellation artifact, 110–11, 111f, 111r
radial artifact, 119, 120f
truncation artifacts, 112, 112f–14f
shoulder
MRI applications in, 209f
signal suppression techniques, 94–102
Dixon method, 102, 102f
frequency selective saturation, 99–101, 99f, 100f
MT suppression, 96–9, 97f, 98f
nonsaturation methods, 101–2, 101f, 102f
spatial presaturation, 94–6, 95f
water excitation, 101, 101f
signal-to-noise ratio (SNR), 14
increase in, 91
k-space–based techniques, 64
in parallel acquisition methods, 61–2
tradeoffs, 47–8
Simultaneous Acquisition of Spatial Harmonics (SMASH), 63–4
sinc pulses
in RV waveform characterization, 41–2, 42f, 43f
single-echo spin echo sequence, 67, 68f
clinical applications for, 218–19
single voxel spectroscopy (SVS)
in MRS, 167–9, 168f
single voxel techniques
in MRS, 167–9, 168f
slice gap, 89–90, 90f
slice selection
in MRI, 28–9, 28f–30f
slice thickness (TH), 89
SMASH (Simultaneous Acquisition of Spatial Harmonics), 63–4
SNR. See signal-to-noise ratio (SNR)
splines
in RV waveform characterization, 41–4, 42f, 43f
spatial presaturation, 94–6, 95f
spatial presaturation pulse, 94–6, 95f
spectral analysis
in MRS, 169, 171–3, 171f, 172f, 174f, 175f
spectral linewidth
in MRS, 163f, 165–7, 166f
spike(s)
defined, 123f, 125
spin coupling
in MRS, 164–5, 166f
spin echo(es), 21–5, 21f, 22f, 25f
spin echo sequences, 67–70, 67f, 68f, 69f. See also specific types
acronyms for, 67f
ETSE, 69–70, 69f
multiecho, 67, 68f
single-echo, 67, 68f
types of, 67–8, 67t
spin echo–based sequences, 82–3
spine
MRI applications in, 205–6, 205f, 206f
spin–spin relaxation, 21–2, 21f
SPIO. See superparamagnetic iron oxide (SPIO)
spoiled gradient echo
clinical applications for, 219
spoiled gradient echo sequences, 71–2, 71f
standard multiecho spin echo
clinical applications for, 220
steady-state gradient echo sequences, 71t, 72–5, 72f–5f. See also refocused gradient echo sequences
STEAM. See stimulated echo acquisition method (STEAM)
Stejskal–Tanner method, 148, 148f
stimulated echo acquisition method (STEAM), 167–8, 168f
STIR imaging
clinical applications for, 220
stroke
diffusion-weighted imaging in evaluation of, 151–3
subloop(s)
in sequence looping, 35–6
superparamagnetic iron oxide (SPIO) particulate molecules, 194–5, 194f
surface coils, 59, 60f
susceptibility
bulk magnetic, 8–9
magnetic, 8–9
magnetization materials and, 8–9
SVS. See single voxel spectroscopy (SVS)
T
TCP/IP (Transmission Control Protocol/Internet Protocol)
in MRI system, 179
TE. See echo time (TE)
TH. See slice thickness (TH)
thorax
MRI applications in, 205–6
TI. See inversion time (TI)
time-of-flight MRA, 137–40, 137f–42f
time-resolved angiography with interleaved stochastic trajectories (TWIST), 138
time-resolved imaging of contrast kinetics (TRICKS), 138
timing diagram
in pulse sequence comparison, 66–7, 66f
T1 relaxation
defined, 17
saturation and, 17–21, 18f–20f
TI relaxation agents
in MRI, 190–3, 191f, 192r–3r
T1-weighted imaging studies
in perfusion studies, 153
T1-weighted techniques
clinical applications for, 218–20. See also specific techniques
fat saturation
clinical applications for, 219–20
TR. See repetition time (TR)
Transmission Control Protocol/Internet Protocol (TCP/IP)
in MRI system, 179
TRICKS (time-resolved imaging of contrast kinetics), 138
Index

trig**ering gating**
 in motion artifact reduction, 127–32, 130f, 131f
truncation artifacts, 112, 112f–14f

T2 effects
 in diffusion measurement, 149, 150f
T2 relaxation, 21–5, 21f, 22f, 25f
T2+ relaxation, 22f, 23–4, 25f
defined, 23

T2 relaxation agents
 in MRI, 194–5, 194f
T2-weighted imaging studies
 in perfusion studies, 153
T2-weighted techniques
 clinical applications for, 220–1
 fat saturation
 clinical applications for, 221
turbo factor, 88

TWIST (time-resolved angiography with interleaved stochastic trajectories), 138
two-dimensional spiral sampling, 58, 99f

U
ultra-high field imaging, 158–9
ultra-high field spectroscopy
 in MRS, 173, 175–6, 176f

W
water excitation
 for signal suppression, 101, 101f
water suppression
 in MRS, 167

Z
Zeeman interaction, 6–7, 7f
zero filling, 171, 171f