CONTENTS

List of Contributors xi
Preface xiii

1 Nanomaterials for Medicine 1
Mustafa O. Guler and Ayse B. Tekinay

1.1 Introduction, 1
1.2 Nanoscale Material Properties, 2
1.3 Nanomaterials for Understanding Disease Pathways, 2
1.4 Nanomaterials for Therapy, 3
1.5 Challenges and Future Prospects, 5

2 Nanosized Delivery Systems for Tissue Regeneration 7
Goksu Cinar, Didem Mumcuoglu, Ayse B. Tekinay, and Mustafa O. Guler

2.1 Introduction, 7
2.2 Delivery of Protein Therapeutics with Nanocarriers for Tissue Regeneration, 10
2.2.1 GFs and Cytokines, 10
2.3 Gene and siRNA Delivery with Nanocarriers for Tissue Regeneration, 13
2.3.1 Gene Delivery, 13
2.3.2 siRNA Delivery, 15
2.4 Systemic Targeting and Cellular Internalization Strategies for Tissue Regeneration, 15
2.4.1 Targeted Delivery, 15
2.4.2 Cellular Internalization Strategies, 18
2.5 Future Perspectives, 20
References, 22

3 Nanomaterials for Neural Regeneration 33
Melike Sever, Busra Mammadov, Mevhibe Gecer, Mustafa O. Guler, and Ayse B. Tekinay

3.1 Introduction, 33
3.1.1 Extracellular Matrix of Central Nervous System, 33
3.1.2 ECM of Peripheral Nervous System, 37
3.1.3 Urgent Need for Materials to Induce Regeneration in Nervous Tissue, 39

3.2 Nanomaterials for Neural Regeneration, 40
3.2.1 Physical Functionalization of Nanomaterials to Induce Neural Differentiation, 40
3.2.2 Effects of Mechanical Stiffness on Cellular Behavior, 40
3.2.3 Effects of Dimensionality on Cellular Behavior, 42
3.2.4 Effects of Substrate Topography on Cell Behavior, 43
3.2.5 Effects of Electrical Conductivity on Cell Behavior, 44

3.3 Chemical and Biological Functionalization of Nanomaterials for Neural Differentiation, 45
3.3.1 Effects of Biologically Active Molecules on Cell Behavior, 45
3.3.2 Effects of Chemical Groups on Cellular Behavior, 46
3.3.3 Effects of Biofunctionalization on Cellular Behavior Through ECM-Derived Short Peptides, 48

3.4 Conclusion, 50
References, 51

4 Therapeutic Nanomaterials for Cartilage Regeneration 59
Elif Arslan, Seher Ustun Yaylacı, Mustafa O. Guler, and Ayse B. Tekinay

4.1 Introduction, 59
4.2 Current Treatment Methods for Cartilage Injuries, 63
4.3 Tissue Engineering Efforts, 66
4.3.1 Natural Polymers, 67
4.3.2 Synthetic Polymers, 69
4.3.3 Composite Materials, 70
4.3.4 Physical Stimuli, 71

4.4 Clinical Therapeutics for Cartilage Regeneration, 72
4.5 Conclusions and Future Perspectives, 73
References, 78
5 Wound Healing Applications of Nanomaterials

Berna Senturk, Gozde Uzunalli, Rashad Mammadov, Mustafa O. Guler, and Ayse B. Tekinay

5.1 Introduction, 87
 5.1.1 The Structure of Healthy Mammalian Skin, 88
 5.1.2 The Mechanisms of Wound Healing, 89
 5.1.3 Repair Process in Chronic Wounds, 94

5.2 Applications of Nanomaterials for the Enhancement of Wound Healing Process, 95
 5.2.1 Artificial Skin, 96
 5.2.2 Natural Nanomaterials for Wound Healing, 97
 5.2.3 Synthetic Nanomaterials for Wound Healing, 100
 5.2.4 Wound Dressings Containing Growth Factors, 101
 5.2.5 Biomimetic Materials, 102
 5.2.6 Current Challenges in the Design of Nanomaterials for Chronic Wound Management, 103

5.3 Peptide Nanofiber Gels for Wound Healing, 105
 5.3.1 Relevance of Nanofibrous Structure of Peptide Gels for Wound Healing, 106
 5.3.2 Engineered PA Nanofiber Gels for Wound Healing and Insights into Various Designs, 107

References, 110

6 Nanomaterials for Bone Tissue Regeneration and Orthopedic Implants

Gulcihan Gulseren, Melis Goktas, Hakan Ceylan, Ayse B. Tekinay, and Mustafa O. Guler

6.1 Introduction, 119
6.2 Bone Matrix, 120
 6.2.1 Organic Matrix and Bioactivity, 120
6.3 Inorganic Matrix, Mineralization, and Bone Organization, 122
 6.3.1 Mechanical Properties and Structural Hierarchy of Bone Tissue, 123
6.4 Regulation of Bone Matrix in Adult Tissue, 125
 6.4.1 Angiogenic Factors in Bone Remodeling, 126
6.5 Strategies for Bone Tissue Regeneration, 127
 6.5.1 Hard Grafts for Bone Regeneration, 127
6.6 Soft Grafts for Bone Regeneration, 131
 6.6.1 Peptide-Based Bone Grafts, 132
 6.6.2 Polymer Nanocomposites as Bone Grafts, 134
6.7 Future Perspectives, 138

References, 138
7 Nanomaterials for the Repair and Regeneration of Dental Tissues

Gulistan Tansık, Alper Devrim Ozkan, Mustafa O. Guler, and Ayse B. Tekinay

7.1 Introduction, 153
7.2 Formation of Dental and Osseous Tissues, 155
7.3 Dental Implants, 156
 7.3.1 Metallic Implants, 158
 7.3.2 Ceramic Implants, 158
 7.3.3 Polymeric Implants, 159
7.4 Osseointegration of Dental Implants, 159
7.5 Uses of Nanotechnology in the Development of Dental Implants, 160
 7.5.1 Enhancement of the Osseointegration Process, 161
 7.5.2 Pulp and Dentin Tissue Regeneration, 162
 7.5.3 Whole Tooth Regeneration, 165
7.6 Conclusions and Future Perspectives, 166
References, 166

8 Nanomaterials as Tissue Adhesives

I. Ceren Yasa, Hakan Ceylan, Ayse B. Tekinay, and Mustafa O. Guler

8.1 Introduction, 173
8.2 Tissue Adhesives Based on Synthetic Polymers, 176
8.3 Naturally Derived Tissue Adhesives, 180
8.4 Bioinspired Strategies, 182
8.5 Nanoenabled Adhesives, 186
8.6 Conclusion and Future Prospects, 186
References, 189

9 Advances in Nanoparticle-Based Medical Diagnostic and Therapeutic Techniques

Melis Sardan, Alper Devrim Ozkan, Aygul Zengin, Ayse B. Tekinay, and Mustafa O. Guler

9.1 Introduction, 197
9.2 NPs used in MRI, 200
 9.2.1 T_1 CAs, 201
 9.2.2 T_2 CAs, 205
 9.2.3 Dual Modal Contrast Agents, 207
9.3 NPs used in Computed Tomography, 208
 9.3.1 Noble Metal-Based NPs, 209
 9.3.2 Heavy Metal-Based NPs, 211
9.4 NPs used in Optical and Fluorescence Imaging, 213
 9.4.1 Quantum Dots, 214
10 **Biosensors for Early Disease Diagnosis**

Ahmet E. Topal, Alper Devrim Ozkan, Aykutlu Dana, Ayse B. Tekinay, and Mustafa O. Guler

10.1 Introduction, 235
10.2 Biosensor Elements, 237
 10.2.1 Recognition Elements, 237
 10.2.2 Output Type and Detection Techniques, 239
 10.2.3 Optical Biosensors, 248
 10.2.4 Electrical and Electrochemical Biosensors, 250
 10.2.5 Mechanical Biosensors, 251
 10.2.6 Other Biosensor Types, 252
10.3 The Impact of Nanotechnology and Nanomaterials in Biosensor Design, 253
10.4 Early Diagnosis and Biosensor-Based Disease Detection, 255
10.5 Conclusion and Future Directions, 258
References, 259

11 **Safety of Nanomaterials**

Nuray Gunduz, Elif Arslan, Mustafa O. Guler, and Ayse B. Tekinay

11.1 Introduction, 271
11.2 Characterization, Design, and Synthesis of Nanomaterials, 272
 11.2.1 Chemical Identity and Physicochemical Properties, 272
 11.2.2 Biological Identity, 275
11.3 Interactions at the Cell–Material Interface, 277
 11.3.1 Intracellular Activity, 278
 11.3.2 Cellular Uptake Mechanisms, 283
11.4 Assays for Cell Viability/Proliferation, 283
 11.4.1 Assays for Oxidative Stress and Apoptosis Mechanisms, 284
 11.4.2 Evaluation of Uptake and Accumulation of ENMs, 284
 11.4.3 Genotoxicity Assays, 285
11.5 Animal Models and Long-Term Risk Assessment, 286
 11.5.1 The Blood–Brain Barrier, 286
11.6 Conclusions and Future Perspectives, 290
References, 291

Index 299