INDEX

ACI. *see* autologous chondrocyte implantation (ACI)

- acoustic biosensors, 252
- aerogels, 46
- AFM. *see* atomic force microscopy (AFM)
- alkaline phosphatase (ALP), 122
- allotransplantation, 97
- ALP. *see* alkaline phosphatase (ALP)
- Alzheimer’s disease (AD), 1, 12, 47, 248
- 2-aminoethyl methacrylate (AEMA), 67
- apligraf (graftskin), 98
- aptamers, 4, 239
- arginine–glycine–aspartic acid (RGD), 17, 42, 109, 120, 121, 130, 162, 215
- arthroscopic techniques, 63

articlar cartilage (AC), 60
- α-smooth muscle actin (α-SMA), 93
- aspartic acid–glycine–glutamic acid–alanine (DGEA), 120
- atomic force microscopy (AFM), 251
- attenuated total reflection (ATR), 248
- autologous chondrocyte implantation (ACI), 64

- basement membrane extract (BME), 46
- basic fibroblast growth factor (βFGF), 17
- BBB. *see* blood–brain barrier (BBB)
- beriplast, 181
- bevacizumab, 17
- biocol, 181
- biofunctionalization, 48–49
- BioGlue, 182

© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
biosensors, early diagnosis
“autoassay” devices, 236
bioreceptors, 236
biosensor-based disease detection, 255–258
electrical and electrochemical biosensors, 250–251
enzyme electrode, 237
histopathology, 236
mechanical biosensors, 251–252
medical imaging, 236
nanotechnology and nanomaterials, 253–255
optical biosensors, 248–249
output type and detection techniques, 239–247
recognition elements, 237–239
bisphosphonates, 161
blood–brain barrier (BBB), 12
chemotherapeutics, 289
CNS-related disorders, 287
curcumin, 289
drug manipulation, 287
protein corona, 290
secondary target organs, 287
surfactants, 288
targeting efficiency, 288
BME. see basement membrane extract (BME)
BMPs. see bone morphogenetic proteins (BMPs)
bone antiresorptive drugs, 161
bone marrow homing peptide 1 (BMHP1), 42
bone matrix
adult tissue
angiogenesis, 125
angiogenic factors, bone remodeling, 126–127
BRC, 125
osteoblasts and osteoclasts, 125
inorganic matrix, mineralization and bone organization

carbonated hydroxyapatite crystals, 122
mechanical properties and structural hierarchy, 123–124
organic matrix and bioactivity
insoluble factors, 120–121
soluble factors, 121–122
bone morphogenetic proteins (BMPs), 11, 70, 121, 161
bone remodeling compartments (BRCs), 125
bone tissue regeneration
bone matrix (see Bone matrix) strategies
hard grafts, 127–131
soft grafts, 131–137
type I collagen, 119
brain-derived neurotrophic factor (BDNF), 11
BRCs. see bone remodeling compartments (BRCs)
cadaveric skin allografts, 97
cAMP response element binding protein (CREB), 38
cantilever biosensors, 251
carbon nanotubes (CNTs), 44, 100
cartilage regeneration, therapeutic nanomaterials
articular cartilage, 60
chondrocytes, 61
clinical therapeutics, 72–73
ECM, 61
intermediary layer, 60
OA, 62
pericellular matrix, 61
pharmacological drugs, clinics, 74–75
proteoglycans, 60
therapeutics, preclinical and clinical trials, 76–77
tissue engineering, 62
tissue engineering efforts
clinical therapeutics, 72–73
composite materials, 70–71
natural polymers, 67–69
physical stimuli, 71–72
scaffold materials, 66
synthetic polymers, 69–70
treatment methods, 63–66
cell-penetrating peptides (CPPs), 18
cellular-allogeneic OrCel, 98
cementocytes, 154
central nervous system (CNS), 12, 38
chitosan, 68
chondroitin sulfate proteoglycans (CSPGs), 34
ciliary neurotrophic factor (CNTF), 45
CNS. see central nervous system (CNS)
CNTs. see carbon nanotubes (CNTs)
collagen-binding domain (CBD), 17
computed tomography (CT), 200, 208–213
confocal laser scanning microscopy (CLSM), 281
CoStasis, 181
CPPs. see cell-penetrating peptides (CPPs)
Crosseal™, 181
cross-linked magnetic nanoparticles, 253
CSPGs. see chondroitin sulfate proteoglycans (CSPGs)
curcumin, 289
cyclic adenosine monophosphate (cAMP), 37
cyclic olefin copolymer (COC), 44
dental pulp stem cells (DPSCs), 163
dental tissues
ameloblasts, 154
cementum, 154
dental implants
artificial materials, 156
biocompatibility, 158
ceramic implants, 158–159
endosteal implants, 157
metallic implants, 158
osseointegration, 159–160
polymeric implants, 159
single-stage implants, 157
subperiosteal implants, 157
transosteal/stable implants, 157
dental tubules, 154
enamel, 154
nanotechnology uses
nanotopography, 160
osseointegration process, 161–162
pulp and dentin tissue regeneration, 162–165
whole tooth regeneration, 165–166
odontoblasts, 154
and osseous tissues, 155–156
periodontal ligament, 154
trauma/periodontal disease, 154
dermatan sulfate proteoglycans (DSPGs), 34
dichlorofluorescein (DCF), 281
dimethylsulfoxide (DMSO), 288
disease modifying osteoarthritis drugs (DMOADs), 73
dorsal root ganglion (DRG), 46
doxorubicin, 289
DPSCs. see dental pulp stem cells (DPSCs)
ECM. see extracellular matrix (ECM)
electrospun scaffolds, 97
ELISA. see enzyme-linked immunosorbent assay (ELISA)
embryonic stem cell (ESC), 43
endothelial growth factor (EGF), 101
endothelial precursors (EPCs), 93
endothelial progenitor cells (EPC), 105
energy transfer upconversion (ETU), 217
gineered nanomaterials (ENMs), 272
enhanced permeability and retention (EPR), 8, 219
Environmental Protection Agency (EPA), 272
enzyme-linked immunosorbent assay (ELISA), 238
epidermal growth factor (EGF), 45, 90
European Commission, 272
excited state absorption (ESA), 217
extracellular matrix (ECM), 10, 33–36, 59, 88, 119
extremely small iron oxide nanoparticles (ESPIOns), 204
Fabry–Perot fringes, 254
FDA. see Food and Drug Administration (FDA)
fibrin glues, 180
fibroblast growth factors (FGFs), 10, 70, 92, 121
field-effect transistor (FET), 236
FloSeal agent, 181
focal adhesion complexes (FACs), 278
focal adhesion kinase (FAK), 42
Food and Drug Administration (FDA), 69
fourier transform infrared (FTIR), 248
gas chromatography–mass spectrometry (GC-MS), 253
gelatin–resorcin–formaldehyde/glutaraldehyde (GRF/GRFG), 182
giant magnetoresistance (GMR), 252
glial-derived neurotrophic factor (GDNF), 11
glycosaminoglycans (GAGs), 60
gold nanoclusters (GNCs), 216
graft hypertrophy, 63
growth factors (GFs), 7, 119
hard grafts, bone regeneration
artificial microenvironments, 130
bone anchoring, 127
bone–implant interface, 127
hydroxyapatite, 129
micro-and macrosand blasted surfaces, 129
mussel-inspired surface functionalization, 131
osseointegration, 127
osteoblast activity, 128
RGD ligand, 130
heparan sulfate proteoglycans (HSPGs), 34
human dental pulp cells (hDPCs), 164
human epidermal growth factor (hEGF), 103
human mesenchymal stem cells (hMSCs), 41
hyaluronan, 68
hyaluronic acid (HA), 34
hydrostatic pressure, 72
hydroxyapatite (HA), 155
ibritumomab tiuxetan, 17
induced pluripotent stem cells (ipSC), 19
insulin-like growth factor (IGF), 70, 121, 161
junctional epidermolysis bullosa (JEB), 99
keratan sulfate proteoglycans (KSPGs), 34
keratinocytes, 92
Kretschmann geometry systems, 249
lactate dehydrogenase (LDH), 281
low-density lipoprotein (LDL), 287
lysophosphatidylcholine, 38
magnetic hyperthermia treatment (MHT), 219
magnetic resonance imaging (MRI), 198, 200–208, 219
matrix-induced autologous chondrocyte implantation (MACI), 65
matrix metalloproteinases (MMPs), 94
medical imaging techniques
computed tomography, NPs
bismuth-based NPs, 211–212
gold nanoparticles, 209–211
radiocontrast agents, 208
silver NPs, 211
tantalum oxide NPs, 212–213
X-rays, 208
contrast agents, 198, 199
dual modal contrast agents, 207–208
histopathological analyses, 198
noninvasive diagnostic methods, 198
optical and fluorescence imaging
AuNPs, 216–217
NIR imaging, 213
organic fluorophores, 213
quantum dots, 214–215
UCNPs, 217–218
\(T_1 \) CAs
Fe-based CAs, 203–204
Gd-based CAs, 202
hybrid systems, 204–205
Mn-based CAs, 203
\(T_2 \) CAs
iron oxide NPs, 205–206
metal alloy NPs, 207
metal-doped iron oxides, 206–207
theranostic approaches and multimodal systems
camptothecin, 220
gadolinium, 220
HMOn, 220
NP alloys, 221
NPs advantages, 218
passive targeting, 219
Raman imaging, 221
SPIOns, 219
medicine
nanomaterials
disease pathways, 2–3
therapy, 3–4
nanometer scale, 1
nanoscale material properties, 2
mesenchymal stem cells (MSCs), 14, 46, 59, 102
mesoporous silica nanoparticles (MSNs), 280
metal-organic frameworks (MOFs), 202
methacrylamide chitosan (MAC), 41
microcantilever array biosensors, 251
microring resonators (MRR), 251
microscale bioactive glass (m-BG), 164
mouse embryonic stem cells (mESCs), 44
MRI. see magnetic resonance imaging (MRI)
MSNs. see mesoporous silica nanoparticles (MSNs)
multiwalled carbon nanotubes (MWCNTs), 100
myelin-associated glycoprotein (MAG), 36, 38
nanoelectromechanical systems (NEMS), 252
nanoscale bioactive glass (n-BG), 164
nanotopography, 43
National Institute for Occupational Safety and Health (NIOSH), 272
natural skin transplantation, 96
near-infrared (NIR), 213
NEMS. see nanoelectromechanical systems (NEMS)
nerve growth factor (NGF), 11, 43
neural regeneration
 central nervous system, ECM of astrocytes, 36
 chondroitinase treatment, 35
 CSPGs, 35
 lecticans, 34
 neural cells, 33
 PNN, 34
 semaphorins, 36
 chemical and biological functionalization
 biologically active molecules, cell behavior, 45–46
 Chemical Group, 46–48
 nanomaterials
 dimensionality effects, cellular behavior, 42–43
 electrical conductivity effects, cellular behavior, 44–45
 mechanical stiffness effects, cellular behavior, 40–42
 physical functionalization, cellular behavior, 43–44
 nervous tissue, 39
 peripheral nervous system, 37–39
 neural stem cells (NSCs), 40
 neural stem/progenitor cell (NSPC), 41
 NIOSH. see National Institute for Occupational Safety and Health (NIOSH)
 NLS. see nuclear localization sequence (NLS)
 Nogo receptor (NgR), 15
 nuclear localization sequence (NLS), 19

 One-cell biosensors, 253
 osteoarthritis (OA), 18, 62
 osteocalcin, 120, 121
 osteopontin, 120, 121, 133

 paclitaxel, 289
 PAD. see peripheral arterial disease (PAD)
 Parkinson’s disease, 1

 PCSA. see polyurea-crosslinked silica aerogels (PCSA)
 PDGF. see platelet-derived growth factor (PDGF)
 peptide amphiphile (PA), 42, 71
 peptide nucleic acids (PNAs), 238–239
 perineuronal nets (PNN), 34
 peripheral arterial disease (PAD), 105
 peripheral nervous system (PNS), 37–39
 PET. see positron emission tomography (PET)
 photothermal therapy (PTT), 221
 platelet-derived growth factor (PDGF), 12, 126, 161
 poly(D,L-glycolide) (PLG), 9
 poly(ethylene glycol) (PEG), 103, 136, 177
 poly(ethyleneimine) (PEI), 14, 280
 poly(glycolic acid) (PGA), 69, 163
 poly(l-lactic acid) (PLLA), 44
 poly(lactic acid) (PLA), 9, 69
 poly(lactic-co-glycolic acid) (PLGA), 8, 69, 278
 polydimethylsiloxane (PDMS), 43
 poly-ε-caprolactone (PCL), 9, 103
 polylactic acid (PLA), 163
 poly-l-lysine (PLL), 280
 polysorbate 80 (PS-80)
 polyurea-crosslinked silica aerogels (PCSA), 46
 positron emission tomography (PET), 198, 200
 Proceed agent, 181
 ProGel®, 182
 prostate-specific antigen (PSA), 238
 protein therapeutics, nanocarriers
 angiogenesis, 11
 bone regeneration, 11
 CNS, 12
 ECM, 10
 gelatin, 10
 inflammation process, 13
 neurotrophic factors, 11
platelet-rich plasma, 12
VEGF, 11

quartz crystal microbalance (QCM), 237
quaternary ammonium (QA), 16
reactive nitrogen species (RNS), 284
reactive oxygen species (ROS), 272, 274, 280, 281
REGRANEX™, 101

safety, nanomaterials
animal models and long-term risk assessment, 286–290
biological identity, 275–276
cell-material interface
cellular uptake mechanisms, 283
ENMs, toxicity of, 277
intracellular activity, 278–282
large-scale animal research, 277
in vitro models, 277
cell viability/proliferation genotoxicity assays, 285
oxidative stress and apoptosis mechanisms, 284
uptake and accumulation, ENMs, 284–285
chemical identity and physicochemical properties, 272–275
ENMs, 272
nanoparticles, 271
sandcastle worm (Phragmatopoma californica), 184
scanning electron microscopy (SEM), 281
Schwann cells, 38
self-assembled monolayer (SAM), 45
SERS. see surface-enhanced Raman spectroscopy (SERS)
short interfering RNAs (siRNA), 15
simulated body fluid (SBF), 136
single-cell gel electrophoresis (SCGE), 285
single-photon emission computed tomography (SPECT), 219
single-walled carbon nanotubes (SWCNTs), 100, 250, 278
sodium dodecylsulphate (SDS), 288
soft grafts, bone regeneration
biomimetic peptide and polymer materials, 131
peptide-based bone grafts, 132–134
polymer nanocomposites, 134–137
Solanum tuberosum lectin (STL), 12
SPIONs. see superparamagnetic iron oxide nanoparticles (SPIONs)
stem cells from apical papilla (SCAP), 163
stem cells from human exfoliated deciduous teeth (SHED), 163
superparamagnetic iron oxide nanoparticles (SPIONs), 207–208
surface-enhanced Raman spectroscopy (SERS), 221, 237
surface plasmon resonance (SPR), 216, 237
suspended microchannel resonators (SMR), 251
Tegaderm™, 101
TEM. see transmission electron microscopy (TEM)
TISSEEL, 181
Tissucol, 181
tissue adhesives
available types, 188
bioinspired strategies
biological adhesives, 182
Dopa residues, 183
gecko-inspired adhesives, 185
hydrophobic interaction, 183
mussels, underwater adhesion of, 183
polydopamine, 184
sandcastle worm glue analogs, 184
Van der Waals forces, 185
tissue adhesives (cont’d)
 hemostats, 173
 medical adhesives, 174
 medical and surgical practices, 174
 metal prosthetics/synthetic soft tissue, 175
 nanoenabled adhesives, 186
 natural tissue adhesives, 180–182
 skin adhesives, 173
 sutures, 174
 synthetic polymers
 acrylic adhesives, 176
cyanoacrylate adhesives, 176, 177
double bond, 177
 Duraseal, 178
 Isocyanate groups, 179
 PEG polymers, 178
 polyurethanes, 180
 TissuGluR surgical adhesive, 180
 urethane, 178
toxicity, 175
tissue inhibitors of metalloproteinases (TIMPs), 95
tissue plasminogen activator (tPA), 39
tissue regeneration, nanosized delivery systems
 biologics, 8
cellular internalization strategies, 18–19
 colloidal nanostructures, 9
 FDA-approved synthetic polymers, 8
gene delivery, 13–14
 GFs and cytokines, 10–13
 nanosized carriers, 8
 natural polymers, 9
 siRNA delivery, 15
 synthetic polymers, 8
 systemic targeting and cellular internalization strategies
 antibodies, 17
 chemical ligands, 16–17
 peptides and proteins, 17–18
topotecan (TPT), 280
transforming growth factor-α (TGF-α), 70, 90, 121
transforming growth factor-β (TGF-β), 10, 161
transmission electron microscopy (TEM), 274, 281, 284
trastuzumab, 17
triphenylphosphonium (TPP), 280
two photon luminescence (TPL), 221
upconverting nanoparticles (UCNPs), 205
vascular endothelial growth factor (VEGF), 11, 93, 121
vasculogenesis, 93
vesicular stomatitis virus (VSV), 248
volatile organic compounds (VOCs), 253
Wallerian degeneration, 39
World Health Organization (WHO), 87, 272
wound healing applications
 artificial skin, 96–97
 biomaterials, 88
 biomimetic materials, 102
 chronic wounds, 94–95
 growth factors, 101–102
 healthy mammalian skin, 88–89
 mechanisms
 angiogenesis, 92–93
 disadvantages, 90
 granulation tissue formation, 93
 inflammation, 90–91
 reepithelialization, 91–92
 scarless healing, 89
 “stopgap” approach, 89
 tissue remodeling, 94
 nanomaterials, 87
 diabetic wounds, 103–104
 PAD, 105
 natural nanomaterials
alginate-based nanomaterials, 99–100
antimicrobial AgNPs, 101
chitin and chitosan, 99
collagen, 98
laminin, 98–99
peptide nanofiber gels
 bioactive epitopes, 106
 cell adhesion, 109
growth factor binding, 107–108
mechanical properties, 109–110
topographical cues, 106–107
synthetic nanomaterials
 CNTs, 100
 hydrogels, 100–101
natural nanomaterials, 97–100
xenografts, 97