Contents

List of Contributors xxi
Preface xxiv

Part I MALDI-TOF Mass Spectrometry 1

1 A Paradigm Shift from Research to Front-Line Microbial Diagnostics in MALDI-TOF and LC-MS/MS: A Laboratory’s Vision and Relentless Resolve to Help Develop and Implement This New Technology amidst Formidable Obstacles 3
Haroun N. Shah and Saheer E. Gharbia

1.1 Introduction 3
1.1.1 Personal Experience at the Interface of Systematics and Diagnostics 4
1.1.2 MALDI-TOF MS: The Early Years 4
1.1.3 The Formidable Challenge to Gain the Confidence of the Clinical Microbiologist in MALDI-TOF MS 6
1.2 Overcoming the Variable Parameters of MALDI-TOF MS Analysis: Publication of the First Database in 2004 8
1.3 SELDI-TOF MS: A Powerful but Largely Unrecognized Microbiological MALDI-TOF MS Platform 16
1.4 MALDI-TOF MS as a Platform for DNA Sequencing 18
1.5 Insights into the Proteome of Major Pathogens 2005–2009: Field Testing of MALDI-TOF MS 21
1.6 2010–2011: The Triumph of MALDI-TOF MS and Emerging Interest in Tandem MS for Clinical Microbiology 22
1.7 Preparations for MALDI-TOF MS Analysis on a Grand Scale: The Looming London 2012 Olympics 25
1.8 Investigating the Detection and Pathogenic Potential of E. coli O104:H4 during Outbreak of 2011 26
1.8.1 The Transition from MALDI-TOF MS to High-Resolution LC-MS/MS: Merits of Bottom-Up and Top-Down Proteomics for Microbial Characterization 29
1.9 Conclusions 33
References 34
2 Criteria for Development of MALDI-TOF Mass Spectral Database 39
Markus Kostrzewa and Thomas Maier

2.1 Introduction 39
2.2 Commercially Available Databases 39
2.3 Establishment of User-Defined Databases 41
2.4 Species Identification/Control of Reference Strains to Be Included into a Database 42
2.5 Sample Preparation 43
2.5.1 Microorganism Cultivation 43
2.5.2 MALDI Sample Preparation 44
2.6 MALDI-TOF MS Measurement 45
2.7 Quality Control during Creation and after Establishment of Reference Libraries 46
2.8 Common Influencing Factors for MALDI-TOF MS 46
2.8.1 Influencing Factors, Specifically Weighted for MALDI Biotyper 46
2.8.2 Selection of Strains 47
2.8.3 Sample Preparation for Measurement 47
2.8.4 Mass Spectrometry Measurement 48
2.8.5 Spectra Analysis/Quality Control 48
2.8.6 MSP Creation and Analysis/Quality Control 50
2.9 User-Created and Shared Databases: Examples and Benefits 50
References 51

3 Applications of MALDI-TOF Mass Spectrometry in Clinical Diagnostic Microbiology 55
Onya Opota, Guy Prod’hom and Gilbert Greub

3.1 Introduction 55
3.2 Principle of Microorganisms Identification using MALDI-TOF MS 56
3.2.1 Soft Ionization and MS Applied to Microorganisms Identification 56
3.2.2 Biomarker Proteins 56
3.2.3 Current Commercial MALDI-TOF MS Instruments 58
3.2.4 Automated Colony Picking 59
3.3 Factors Impacting the Accuracy of MALDI-TOF MS Identifications 59
3.3.1 The Importance of the Database 59
3.3.2 Quality of the Spectrum and Standardization of the Pre-analytic 60
3.3.3 Limit of Detection 60
3.3.4 Errors and Misidentifications 60
3.3.5 Mixed Bacterial Populations 60
3.3.6 Closely Related Species 61
3.4 Identification of Microorganisms from Positive Cultures 61
3.4.1 Identification from Positive Cultures on Solid Media 61
3.4.2 Identification from Positive Blood Cultures 64
3.5 Identification of Microorganisms Directly from Samples 65
3.5.1 Urine 65
3.5.2 Cerebrospinal Fluid 67
Contents

3.6 Microorganisms Requiring a Specific Processing for MALDI-TOF MS Identification 68

3.6.1 *Nocardia* and Actinomycetes 68
3.6.2 Mycobacteria 68
3.6.3 Yeast and Fungi 69

3.7 Detection of Antimicrobial Resistance 70

3.7.1 Carbapenemase Detection 70
3.7.2 Methicillin-Resistant *S. aureus* 71
3.7.3 Vancomycin-Resistant Enterococci 71

3.8 Detection of Bacterial Virulence Factors 71

3.9 Typing and Clustering 72

3.9.1 MRSA Typing 72
3.9.2 Enterobacteriaceae Typing 73
3.9.3 Typing *Mycobacterium* spp. 73

3.10 Application of MALDI-TOF MS in Clinical Virology 73

3.11 PCR-Mass Assay 74

3.11.1 Application of PCR-Mass Assay in Clinical Bacteriology 74
3.11.2 Application of PCR-Mass Assay in Clinical Virology 74

3.12 PCR-ESI MS 75

3.13 Impact of MALDI-TOF MS in Clinical Microbiology and Infectious Disease 75

3.13.1 Time to Result 75
3.13.2 Impact on Patient Management 76
3.13.3 Impact on Rare Pathogenic Bacteria and Difficult-to-Identify Organisms 76
3.13.4 Anaerobes 77

3.14 Identification of Protozoan Parasites 77

3.15 Identification of Ticks and Fleas 77

3.16 Costs 78

3.17 Conclusions 78

References 79

4 The Challenges of Identifying *Mycobacterium* to the Species Level using MALDI-TOF MS 93

4A Modifications of Standard Bruker Biotyper Method 93

Graham Rose, Renata Culak, Timothy Chambers, Saheer E. Gharbia and Haroun N. Shah

4A.1 Taxonomic Structure of the Genus *Mycobacterium* 93
4A.2 Tuberculosis-Causing Mycobacteria 95
4A.3 Non-tuberculosis Mycobacteria 95
4A.4 MALDI-TOF MS Mycobacteria Library and Parameters for Identification 98

4A.5 Methods for Extraction 99

4A.5.1 Method: Bruker’s Protocol 99
4A.5.2 The Methods of Khéchine *et al.*, 2011 99
4A.5.3 Silica/Zirconium Bead Variation 101
4A.5.4 Results and Recommendations 101
4A.6 Protein Profiling of Cell Extracts using SELDI-TOF MS 104
4A.7 Conclusion 104
References 106

4B ASTA's MicroID System and Its MycoMp Database for Mycobacteria 110
Yangsun Kim and Jae-Seok Kim

4B.1 Introduction 110
4B.1.1 The Genus Mycobacterium, Disease and MALDI-TOF Mass Spectrometry 110
4B.2 MycoMp Database for Mycobacterium: The ASTA Mycobacterial Database 111
4B.3 MicroID Software 111
4B.4 Database 112
4B.5 MycoMP Database for Mycobacteria 113
4B.6 Conclusion 120
References 120

5 Transformation of Anaerobic Microbiology since the Arrival of MALDI-TOF Mass Spectrometry 123
Elisabeth Nagy, Mariann Ábrók, Edith Urbán, A.C.M. Veloo, Arie Jan van Winkelhoff, Itaru Dekio, Saheer E. Gharbia and Haroun N. Shah

5.1 Introduction 123
5.2 Identification in the Clinical Laboratory 125
5.3 Pre-analytical Requirements Influence Species Identification of Anaerobic Bacteria 126
5.4 Recent Database Developments for Anaerobes 129
5.5 Application of the MALDI-TOF MS Method for Routine Identification of Anaerobes in the Clinical Practice 131
5.6 The European Network for the Rapid Identification of Anaerobes (ENRIA) Project 134
5.7 Subspecies-Level Typing of Anaerobic Bacteria Based on Differences in Mass Spectra 135
5.8 Impact of MALDI-TOF MS on Subspecies Classification of Propionibacterium acnes: Insights into Protein Expression using ESI-MS-MS 136
5.9 Direct Identification of Anaerobic Bacteria from Positive Blood Cultures 140
References 140

6 Differentiation of Closely Related Organisms using MALDI-TOF MS 147
Mark A. Fisher

6.1 Introduction 147
6.2 Experimental Methods 149
6.2.1 Strains and Traditional Identification 149
6.2.2 PCR Identification 150
6.2.3 MALDI-TOF MS Identification 151
6.3 Results 153
6.3.1 Semiautomated Models 153
6.3.2 Automated Models 153
6.3.3 Hybrid Models 155
6.3.4 MALDI-TOF MS versus Traditional Identification Methods 156
6.4 Discussion and Implications 158
Acknowledgments 162
References 162

7 Identification of Species in Mixed Microbial Populations using MALDI-TOF MS 167
Pierre Mahé, Maud Arsac, Nadine Perrot, Marie-Hélène Charles, Patrick Broyer, Jay Hyman, John Walsh, Sonia Chatellier, Victoria Girard, Alex van Belkum, and Jean-Baptiste Veyrieras

7.1 Introduction 167
7.2 A New Algorithm to Identify Mixed Species in a MALDI-TOF Mass Spectrum 168
7.2.1 Mixed Spectrum Model 168
7.2.2 Algorithm Description 170
7.2.3 A Simulation Framework to Optimize the Model Parameters 172
7.3 Toward Direct-Sample Polymicrobial Identification from Positive Blood Cultures 172
7.3.1 Microbial Panel Considered 174
7.3.2 Qualifying the Success of the Identification 174
7.3.3 In Silico Experiments 175
7.4 In Vitro Experiments 178
7.5 Discussion and Perspectives 181
References 184

8 Microbial DNA Analysis by MALDI-TOF Mass Spectrometry 187
8A DNA Analysis of Viral Genomes using MALDI-TOF Mass Spectrometry 187
Christiane Honisch

8A.1 Introduction 187
8A.2 The Molecular Detection and Identification of Viruses 188
8A.3 Viral Quantification 189
8A.4 The Characterization of Viral Genetic Heterogeneity 190
8A.5 Viral Transmission Monitoring 192
8A.6 Additional Nucleic Acid Applications of MALDI-TOF MS 193
8A.7 Conclusion 193
References 193

8B Mass Spectral Analysis of Proteins of Nonculture and Cultured Viruses 197
Vlad Serafim, Nicola Hennessy, David J. Allen, Christopher Ring, Leonardo P. Munoz, Saheer E. Gharbia, Ajit J. Shah and Haroun N. Shah

8B.1 Introduction 197
8B.2 Norovirus Identification using MS 199
8B.3 Sample Preparation Considerations 200
8B.4 Experimental Workflow 200
8B.5 Detection of Intact VP1 using MALDI-TOF and SELDI-TOF MS 200
8B.6 Peptide Mass Fingerprinting 202
8B.7 Conclusions 203
8B.8 Bacteriophage Identification using MS 206
8B.9 Bacteriophages 206
8B.10 Protein Identification 206
8B.11 Conclusions 208
References 208

9 Impact of MALDI-TOF MS in Clinical Mycology; Progress and Barriers in Diagnostics 211
Cledir R. Santos, Elaine Francisco, Mariana Mazza, Ana Carolina B. Padovan, Arnaldo Colombo and Nelson Lima
9.1 Introduction 211
9.2 Evolution in Commercial Methodologies of Sample Preparation 213
9.2.1 Fungal Identification 213
9.2.2 MALDI Biotyper 214
9.2.3 VITEK® MS 217
9.2.4 MS LT2-ANDROMAS 218
9.3 Effect of In-House Sample Preparation on Database Reliability 218
9.3.1 Yeast Identification in Pure Culture 218
9.3.2 Filamentous Fungi Identification 222
9.4 Conclusion 225
References 226

10 Development and Application of MALDI-TOF for Detection of Resistance Mechanisms 231
Stefan Zimmermann and Irene Burckhardt
10.1 Attempts to Correlate Signature Mass Ions in MALDI-TOF MS Profiles with Antibiotic Resistance 231
10.2 Distribution and Spread of Carbapenems and Mass Spectrometry 233
10.3 Carbapenem-Resistant Enterobacteriaceae 234
10.4 MALDI-TOF MS Detection Based upon Changes in Antibiotic Structure due to Bacterial Degradation Enzymes 234
10.5 Optimization of the Carbapenemase MALDI-TOF MS-Based Assay to Minimize the Time-to-Result 236
10.6 Detection of Other Bacterial Enzymic Modifications to Antibiotic Structures 238
10.7 Isotopic Detection using MALDI-TOF MS 239
10.8 Multi-Resistant Pseudomonas aeruginosa 242
10.9 MALDI Biotyper Antibiotic Susceptibility Test Rapid Assay (MBT-ASTRA™) 242
10.10 The Potential Use of Mass Spectrometry for Antibiotic Testing in Yeast 244
References 245
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3 Results</td>
<td>321</td>
</tr>
<tr>
<td>13.3.1 16S rRNA Identification</td>
<td>321</td>
</tr>
<tr>
<td>13.3.2 MALDI-TOF MS Identification</td>
<td>321</td>
</tr>
<tr>
<td>13.4 Candidate Biomarker Discovery: Shotgun Sampling of Enterobacteriaceae Proteomes by GeLC-MS/MS</td>
<td>325</td>
</tr>
<tr>
<td>13.4.1 Database Optimization and Testing</td>
<td>325</td>
</tr>
<tr>
<td>13.4.2 Demonstrating Capability to Delineate Pathotypes using E. coli 0104:H4 as an Exemplar</td>
<td>325</td>
</tr>
<tr>
<td>13.5 Discussion</td>
<td>331</td>
</tr>
<tr>
<td>13.6 Highly Pathogenic Biothreat Agents</td>
<td>333</td>
</tr>
<tr>
<td>13.7 Bacillus anthracis</td>
<td>334</td>
</tr>
<tr>
<td>13.7.1 Methods: Strain Panel</td>
<td>335</td>
</tr>
<tr>
<td>13.7.2 Whole Cell Protein Extraction</td>
<td>335</td>
</tr>
<tr>
<td>13.7.3 One-Dimensional SDS-PAGE and In-Gel Digestion of Bacterial Proteins</td>
<td>336</td>
</tr>
<tr>
<td>13.7.4 In-Solution Protein Digestation Directly from Protein Extracts</td>
<td>336</td>
</tr>
<tr>
<td>13.7.5 1-D Nanoflow LC-MS/MS, Data-Dependent and Targeted MS Analysis</td>
<td>336</td>
</tr>
<tr>
<td>13.7.6 Bioinformatic Workflow for Biomarker Detection</td>
<td>337</td>
</tr>
<tr>
<td>13.7.7 Protein/Peptide Marker Identification</td>
<td>337</td>
</tr>
<tr>
<td>13.7.8 Procedure for DNA Extraction</td>
<td>338</td>
</tr>
<tr>
<td>13.7.9 DNA Extraction</td>
<td>338</td>
</tr>
<tr>
<td>13.7.10 Genetic Validation of Candidate Peptide Biomarkers</td>
<td>338</td>
</tr>
<tr>
<td>13.8 Summary of Results</td>
<td>342</td>
</tr>
<tr>
<td>13.9 Yersinia pestis</td>
<td>344</td>
</tr>
<tr>
<td>13.10 Method: Strain Panel</td>
<td>344</td>
</tr>
<tr>
<td>13.10.1 Procedure for Whole Cell Protein Extraction</td>
<td>344</td>
</tr>
<tr>
<td>13.10.2 One-Dimensional SDS-PAGE and In-Gel Digestion of Bacterial Proteins</td>
<td>344</td>
</tr>
<tr>
<td>13.10.3 One-Dimensional Nanoflow LC-MS/MS, Data-Dependent and Targeted MS Analysis</td>
<td>344</td>
</tr>
<tr>
<td>13.10.4 Bioinformatic Workflow for Biomarker Detection</td>
<td>345</td>
</tr>
<tr>
<td>13.10.5 Genetic Validation of Peptide Biomarkers</td>
<td>345</td>
</tr>
<tr>
<td>13.11 Summary of Results</td>
<td>345</td>
</tr>
<tr>
<td>13.12 Francisella tularensis</td>
<td>346</td>
</tr>
<tr>
<td>13.13 Method</td>
<td>346</td>
</tr>
<tr>
<td>13.13.1 Strain Panel</td>
<td>346</td>
</tr>
<tr>
<td>13.13.2 Procedure for Whole Cell Protein Extraction</td>
<td>346</td>
</tr>
<tr>
<td>13.13.3 One-Dimensional SDS-PAGE and In-Gel Digestion of Bacterial Proteins</td>
<td>347</td>
</tr>
<tr>
<td>13.13.4 One-Dimensional Nanoflow LC-MS/MS, Data-Dependent and Targeted MS Analysis</td>
<td>347</td>
</tr>
<tr>
<td>13.13.5 Bioinformatic Workflow for Biomarker Detection</td>
<td>347</td>
</tr>
<tr>
<td>13.13.6 Genetic Validation of Peptide Biomarkers</td>
<td>347</td>
</tr>
<tr>
<td>13.14 Summary of Results</td>
<td>348</td>
</tr>
<tr>
<td>13.15 Clostridium botulinum</td>
<td>350</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>13.34</td>
<td>Summary of Results</td>
</tr>
<tr>
<td>13.35</td>
<td>Assay Sensitivity in Relation to Bacterial Spore Numbers</td>
</tr>
<tr>
<td>13.36</td>
<td>Method</td>
</tr>
<tr>
<td>13.37</td>
<td>Summary of Results</td>
</tr>
<tr>
<td>13.38</td>
<td>Summary of Results for Biomarker Detection Sensitivity</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
</tbody>
</table>

14 **Mapping of the Proteogenome of *Clostridium difficile* Isolates of Varying Virulence**
Caroline H. Chilton, Saheer E. Gharbia, Raju V. Misra, Min Fang, Ian R. Poxton, Peter S. Borriello and Haroun N. Shah

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>379</td>
</tr>
<tr>
<td>14.2</td>
<td>Virulence of Clostridium difficile</td>
<td>380</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Virulence Factors</td>
<td>380</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Variation between Strains</td>
<td>380</td>
</tr>
<tr>
<td>14.3</td>
<td>Current Genomic and Proteomic Data</td>
<td>381</td>
</tr>
<tr>
<td>14.4</td>
<td>Comparison of Strains of Varying Virulence</td>
<td>381</td>
</tr>
<tr>
<td>14.5</td>
<td>Genomic Analysis of Clostridium difficile</td>
<td>382</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Using Roche's Flx and Junior</td>
<td>382</td>
</tr>
<tr>
<td>14.5.2</td>
<td>PacBio Genomic Analysis</td>
<td>383</td>
</tr>
<tr>
<td>14.6</td>
<td>Proteomic Analysis of Clostridium difficile</td>
<td>384</td>
</tr>
<tr>
<td>14.6.1</td>
<td>Two-Dimensional Reference Mapping</td>
<td>384</td>
</tr>
<tr>
<td>14.6.2</td>
<td>Differential In-Gel Electrophoresis (DIGE)</td>
<td>385</td>
</tr>
<tr>
<td>14.6.3</td>
<td>One-Dimensional Gel Electrophoresis Coupled with LC-MS/MS</td>
<td>387</td>
</tr>
<tr>
<td>14.7</td>
<td>Mapping the Proteogenome of Clostridium difficile to Phenotypic Profiles</td>
<td>388</td>
</tr>
<tr>
<td>14.7.1</td>
<td>Toxin Expression</td>
<td>388</td>
</tr>
<tr>
<td>14.7.2</td>
<td>Mucosal Adherence</td>
<td>389</td>
</tr>
<tr>
<td>14.7.3</td>
<td>Flagella</td>
<td>390</td>
</tr>
<tr>
<td>14.8</td>
<td>Antibiotic Resistance</td>
<td>394</td>
</tr>
<tr>
<td>14.9</td>
<td>Conclusion</td>
<td>395</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>395</td>
</tr>
</tbody>
</table>

15 **Determination of Antimicrobial Resistance using Tandem Mass Spectrometry**
Ajit J. Shah, Vlad Serafim, Zhen Xu, Hermine Mkrtchyan and Haroun N. Shah

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>Antibiotic Resistance Mechanisms</td>
<td>399</td>
</tr>
<tr>
<td>15.2</td>
<td>Detection of β-lactamase Activity</td>
<td>401</td>
</tr>
<tr>
<td>15.3</td>
<td>Other MALDI-TOF MS Methods</td>
<td>403</td>
</tr>
<tr>
<td>15.4</td>
<td>Liquid Chromatography Coupled with MS</td>
<td>404</td>
</tr>
<tr>
<td>15.5</td>
<td>Proteomics Approaches for Detection of Antibiotic Resistance</td>
<td>410</td>
</tr>
<tr>
<td>15.6</td>
<td>Conclusion</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>415</td>
</tr>
</tbody>
</table>
16 Proteotyping: Tandem Mass Spectrometry Shotgun Proteomic Characterization and Typing of Pathogenic Microorganisms 419

16.1 Introduction 419
16.2 MS and Proteomics 420
16.3 MALDI TOF MS 422
16.4 Tandem MS Shotgun Proteomic Analyses 426
16.5 Top-Down Proteomics 426
16.6 Bottom-Up Proteomics 428
16.7 Proteotyping 430
16.8 Matching MS Spectra to Peptides 434
16.9 Mapping Peptides to Reference Sequences 435
16.10 Taxonomic Assignment of Protein Sequences 436
16.11 Challenges Assigning Fragments to Lower Taxonomic Levels 437
16.12 Proteotyping for Diagnosing Infectious Diseases 439
16.13 Outlook 441
16.14 Conclusion 443
Acknowledgments 444
References 444

17 Proteogenomics of Pseudomonas aeruginosa in Cystic Fibrosis Infections 451
Liang Yang and Song Lin Chua

17.1 Introduction: Pseudomonas aeruginosa as a Clinically Important Pathogen 451
17.2 CF and Pathophysiology 452
17.3 CF Infections 452
17.4 Biofilm Formation in P. aeruginosa 453
17.5 Virulence of P. aeruginosa 454
17.6 Genomics to Study Bacterial Pathogenesis 455
17.7 Proteomics to Study Bacterial Pathogenesis 456
17.8 Genomics of P. aeruginosa in CF Infections 457
17.9 Interclonal Genome Diversity 458
17.10 Intraclonal Genome Diversity 458
17.11 Clonal Spread of P. aeruginosa in CF Patients 459
17.12 Parallel Evolution 459
17.13 Mutations in Early-Stage CF P. aeruginosa Isolates 460
17.14 Mutations in Late-Stage CF P. aeruginosa Isolates 461
17.15 Transcriptomics of P. aeruginosa in Chronic CF Infections 462
17.16 Proteomics of P. aeruginosa in Chronic CF Infections 464
17.17 Applications of Proteomics to P. aeruginosa Characterization 464
17.18 Comparative Proteomic Investigation of Bis-(3′-5′)-Cyclic-Dimeric-GMP (C-Di-GMP) Regulation in P. aeruginosa 465
20 Proteogenomics of Non-model Microorganisms 529
Jean Armengaud

20.1 Introduction 529
20.2 The “Proteogenomics” Concept 530
20.3 Applications to Non-model Organisms: From Bacteria to Parasites 531
20.4 Embracing Complexity with Metaproteogenomics 534
References 535

21A Analysis of MALDI-TOF MS Spectra using the BioNumerics Software 539
Katleen Vranckx, Katrien De Bruyne and Bruno Pot

21A.1 Introduction 539
21A.2 Typing with MALDI-TOF MS 540
21A.3 Preprocessing of Raw MALDI-TOF MS Data 540
21A.4 Downsampling 541
21A.5 Baseline Subtraction 542
21A.6 Curve Smoothing 543
21A.7 Peak Detection 546
21A.8 Biological and Technical Replicates 546
21A.9 Averaging of Replicates 549
21A.10 Spectrum Analysis 550
21A.11 Hierarchical Clustering 550
21A.12 Alternatives to Cluster Analysis 554
21A.13 Classifying Algorithms 559
21A.14 Conclusion 561
References 561

21B Subtyping of Staphylococcus spp. Based upon MALDI-TOF MS Data Analysis 563
Zhen Xu, Ali Olkun, Katleen Vranckx, Hermine V. Mkrtchyan, Ajit J. Shah, Bruno Pot,
Ronald R. Cutler and Haroun N. Shah

21B.1 Introduction 563
21B.2 Sample Collection 564
21B.3 MALDI-TOF Mass Spectrometry 564
21B.4 Cluster Analysis of Environmental Staphylococci 565
21B.5 Antibiotic Susceptibility Test 565
21B.6 Cluster Analysis of Staphylococcus spp. Recovered from Different Sites 566
21B.7 Correlation of Staphylococci Recovered from Different Sites 567
21B.8 Cluster Analysis of S. epidermidis Isolated from Different Sites 568
21B.9 Cluster Analysis of S. aureus Isolated from Different Sites 569
21B.10 Cluster Analysis of Staphylococcus spp. Combined with Antibiotic Susceptibility 569
21B.11 Antibiotic Resistance Patterns of Closely Related S. epidermidis 570
21B.12 Antibiotic Resistance Patterns of Closely Related S. aureus 570
21B.13 Variations of Antibiotic Susceptibility of Closely Related S. epidermidis 572
21B.14 Percentage of Multiple-Resistant Staphylococci Recovered from Each Site 572
21B.15 Conclusion 573
References 575

21C Elucidating the Intra-Species Proteotypes of Pseudomonas aeruginosa from Cystic Fibrosis 579
Ali Olkun, Ajit J. Shah and Haroun N. Shah

21C.1 The Emergence of Pseudomonas aeruginosa as Key Component of the Cystic Fibrosis Lung Flora 579
21C.2 Diversity and Rational for Proteotyping 580
21C.3 Selecting Representative Strains for Profiling 580
21C.4 Selection of Strains against a Background of Their Variable Number Tandem Repeat (VNTR) Designation 581
21C.5 Potential to Type P. aeruginosa using MALDI-TOF MS 581
21C.6 Data Processing: Analyzing Data using BioNumerics 7 582
21C.7 Discussion and Data Interpretation 583
21C.8 Going Forward – Reproducibility the Salient Determinant 587
References 588

Index 593