Index

A
- Aalto, Alvar, 71
- Abbey church of St-Philibert (Tournus, France), 6
- Access flooring systems, 325
- Active damping mechanisms, 302–303
- Adams Kara Taylor, 250
- Aerodynamic damping mechanisms, 304
- Air Force Academy Chapel (Colorado Springs, USA), 18
- Air-handling units, 312
- Air-inflated structures, 267
- Air-supported structures, 267
- Air-water HVAC systems, 314–315
- All-air HVAC systems, 313, 315
- All-water HVAC systems, 313, 315
- Alvastra (Sweden), 3
- American Society for Testing and Materials (ASTM), 35
- Anchorage, defined, 97
- Ando, Tadao, 151
- Angus Glen Community Center and Library (Markham, Canada), 161
- Arched frames, 257
- Arches, 254–259
 - Concrete, 240–241
 - Corbeled, 3
 - Fixed, 254
 - Funicular, 254
 - Glue-laminated, 240–241, 256, 258
 - Masonry, 4
 - Rigid, 255
 - Steel, 240–241
 - Three-hinged, 244, 256, 258, 264
 - Trussed, 9, 239, 257
 - Two-hinged, 265
- Architectural structures
 - Celebrating the structure, 18–19
 - Concealing the structure, 17
 - Correspondence between structural form and spatial composition, 20
- Arena Minore, Yoyogi National Gymnasium (Tokyo, Japan), 265
- Arup, 300–301
- Aspdin, Joseph, 9
- Asplund, Erik Gunnar, 63
- ASTM (American Society for Testing and Materials), 35
- Auer + Weber Associates, 63
- Austria, 71
- Axial loads, 158–160, 283

B
- Banff Community Recreation Center (Banff, Canada), 245
- Bank of China Building (Hong Kong, China), 295
- Banpo (China), 2
- Barlow, William, 9
- Barnes House (Nanaimo, Canada), 151
- Base isolation, 232, 302
- Bauerfeld, Walter, 11
- Beach House (Victoria, Australia), 138
- Beam-and-girder system, steel, 116, 119
- Beams, 90–91
- Bending moments, 90–91
- Bending stress, 90–91
- Cantilevered buildings, 137
- Castellated, 323
- Collector, 51–53, 56
- Column supports for, 168
- Column-beam connections, 168
- Deflection, 90–91
- Feeder, 51–53, 56
- High-rise structures, 281
- Lateral buckling, 91
- Load tracing, 97
- Load-bearing structures, 90
- Roof, 192
- Shear walls, 42, 48, 79, 97, 152
- Columns, 169
- Concrete, 153, 170–171
- Masonry, 153, 172–173
- Belgian trusses, 246
- Bell, Alexander Graham, 11
- Belt trusses, 293
- Bending moments, 136
- Corner bays, 144
- High-rise structures, 290
- Horizontal spans, 90–91, 96, 102, 111, 157
- Lateral stability, 199, 212–213
- Roof structures, 195
- Systems integration strategies, 323
- Wind loads, 202

- Bending stress, 90–91
- Berg, Max, 11
- Bernoulli, Daniel, 8
- Bessemer, Henry, 9
- Bibliotheca Alexandrina (Alexandrian Library) (Alexandria, Egypt), 62
- Blowers, 312
- Boilers, 312
- Bolted connections, 28
- Bowstring trusses, 246
- Box girders, 263
- Braced core structures, 283, 286, 291
- Braced frames, 207–209, 218–220, 222
- Chevron bracing, 209
- Diagonal bracing, 208
- Diagonal tension-counter systems, 209
- Eccentric bracing, 210
- High-rise structures, 287–288
- Horizontal, 231
- K-bracing, 209
- Knee braces, 208
- Multi-bay arrangements, 211
braced frames (continued)
 stabilizing, 292
 V-bracing, 209
 X-bracing, 209
braced tube structures, 294
bracketing, 146
Bramah, Joseph, 8
Bramante, Donato, 7
Brunelleschi, Filippo, 6–7
building traps, 308
bulk-active structures, 26
bundled tube structures, 287–288, 295
Burj Dubai (United Arab Emirates), 13
butt joints, 28, 162
cable net systems, 185
cable structures, 237, 260–265
cable-restrained pneumatic structures, 267
cable-stayed structures, 263–264
caissons, 84
Calatrava, Santiago, 259, 273
Can Lis (Majorca, Spain), 75
Candela, Felix, 18
cantilevers, 136–139
cantilevered buildings, 137–139, 300–301
high-rise structures, 281
overhanging beams, 136, 138
Cappadocia (Turkey), 2
cap-truss structures, 283
Casa del Fascio (Como, Italy), 20
cast iron, 4, 6, 8, 10
castellated beams, 323, 338
Catal Hüyük (Turkey), 2
catenary, defined, 260
Cathedral of Florence (Florence, Italy), 7
CATIA (Computer Aided Design, Engineering, and Manufacturing), 17
cave dwellings, 2–5
ceiling plane, 150, 152
celebrating the structure, 18–19
cellular decking, 122, 322
cement
 hydraulic, 8
 Portland, 9
Centra at Metropark (Iselin, USA), 161
Centraal Beheer Insurance Offices (Apeldoorn, Netherlands), 52
central heating, 8
Centre Le Corbusier/Heidi Weber Pavilion (Zurich, Switzerland), 16
Chan Chan (Peru), 6
chevron bracing, 209
Chile, 62–63
chimneys, 312
China Central Television (CCTV) Headquarters (Beijing, China), 300–301
Chrysler Building (New York, USA), 10
circuitous load paths, 38
CMU (concrete masonry units), 172–173
code requirements, 29
coffered concrete domes, 5
collector beams
 defined, 51
 modifying grid proportions, 56
 radial grids, 53
 rectangular grids, 51
 tartan grids, 52
 collector elements, 233
Colosseum (Rome, Italy), 4
column-and-beam (trabeated) stone structures, 3
columns, 158–169
 base supports, 168
 bearing walls, 169
 column-and-beam frames, 42, 48–49
 column-beam connections, 168
 composite, 164
 concrete, 162–163
 earthquake resistance, 164
 effective length, 159
 high-rise structures, 281, 283–284, 290
 inclined, 160–161
 loads, 158
 reinforcement of, 162–163
 slenderness ratio, 158
 steel, 164–165
 stone, 3
 struts, 160
 supports for beams, 168
 tributary area, 154
 tributary load, 154
 vertical continuity, 156
 wind loads, 164
 wood, 166–168
 composite columns, 164
 composite decking, 122–123
 compound steel columns, 164
Computer Aided Design, Engineering, and Manufacturing (CATIA), 17
concealing the structure, 17
concentrated loading, 96
beams and girders, 91
bearing walls, 169
bracketing, 146
columns, 42, 155, 158, 160
long-span structures, 237, 260, 271
masonry walls, 173
mat foundations, 84
parking structures, 87
roof structures, 194
scale, 47
shear walls, 214
steel spanning systems, 117, 124
studding, 214–215
transverse beams, 156–157
wood spanning systems, 92, 128–131
concrete, 4
 corner structural bays, 144
 flat plates, 108–107, 236
 hydraulic, 9
 joists, 104–105
 prestressed, 100, 114–115, 329
 reinforced, 11, 243
 reinforced, 9–12, 179
concrete arches, 240–241
concrete beams, 91, 102–103, 243
 precast, 115
 slabs with, 110–111
 spanning ranges, 100, 240–241
concrete domes, 5, 11–12, 240–241
concrete masonry units (CMU), 172–173
concrete planks, 92, 94, 115, 329
concrete roof vaults, 10
concrete slabs, 92
 with beams, 100, 110–111
 diaphragms, 217
 flat, 100, 108–109, 115, 280
 hollow core, 115
 joist, 100, 104–105, 328
 one-way spanning systems, 100, 102–103
 precast, 100, 114–115
 spanning ranges, 98, 100
 two-way spanning systems, 99–100, 110–111
 waffle, 100, 112–113, 240–241, 328
concrete support systems, 152
 bearing walls, 153, 170–171
 columns, 162–163
 moment frames, 213
 reinforced frames for curtain walls, 179
 shear walls, 214
 structural frames, 153
concrete walls, 170–171
 bearing, 153, 170–171
 curtain walls, 179
 shear, 214
contextual patterns, defined, 40
continuity, 38
continuous load paths, 38
contrasting geometry, 54, 60–63, 82
contrasting orientation, 64–67, 82
Cook, Peter, 71
cooling towers, 312
corbel brackets, 3, 5
corbeled arches, 3
corners, 80–83
curved, 80, 83
 emphasized, 80, 82
 with equivalent sides, 80–81
 with one side dominant, 80–81
 reentrant, 226–227
 as void, 80, 83
 coupled shear walls, 292
crescent trusses, 246
Crystal Palace (London, England), 9
curtain walls, 176–183
 corners, 144
 curvilinear, 77
 fire resistance, 177
 loads, 176–183
 structural frames, 179–183
 sunlight exposure, 177
 temperature, 177
 water, 177
 wind loads, 176
D
Daly Genik Architects, 67
damping mechanisms, 206, 302–304
active, 302–303
aerodynamic, 304
passive, 304
Darby, Abraham, 8
INDEX

David Chipperfield Architects, 73
dead loads
 building scale, 149
defined, 97
earthquake resistance, 204
lateral stability, 198
long-span structures, 243, 261, 263
shear walls, 214
decking
 cellular, 122, 322
 composite, 122–123
 form, 122–123
 load tracing, 97
 roof, 122–123
 steel, 92, 100, 122–123, 217
 structural layers, 94
 wood, 100, 130–131
deflection, 90–91
 base isolation, 232
 cantilevers, 136, 138
 concrete spanning systems, 107
 diaphragms, 216
 distributed loading, 96
 high-rise structures, 278–279, 282–284, 302–303
 long-span structures, 236–237, 243, 252, 256
 moment frames, 212, 219
 overhanging beams, 136
 reentrant corners, 226
 shear walls, 219
 steel spanning systems, 116
 walls, 176, 182
 wind loads, 202
 wood spanning systems, 126, 131
Della Porta, Giacomo, 7
deluge sprinkler systems, 309
detailing of building components, 233–234
determinate structures, 36
diagonal bracing, 38
 braced frames, 208
 columns, 164
 corner bays, 146
 curtain walls, 183
 high-rise structures, 292
 long-span structures, 247, 255, 263
 steel spanning systems, 116
 walls, 153, 180
 wood spanning systems, 126, 128
diagonal tension-counter systems, 209
diagrids, 186–187, 287–288, 297–300
diaphragms, 207, 216–218, 223
 concrete slabs, 217
 discontinuities in, 228
 flexible, 216
 light-frame construction, 217
 metal decking, 217
 rigid, 216
direct load paths, 38
The Discourses and Mathematical Demonstrations Relating to Two New Sciences (Galileo), 7
distributed loading, 42, 96
 bearing walls, 169
 cantilevers, 136
 concrete spanning systems, 104
 load tracing, 97
 long-span structures, 237, 260
 overhanging beams, 136
 regular structural grids, 51
 steel spanning systems, 117
 structural layers, 94
 walls, 99, 174
 wood spanning systems, 128, 132
distribution ribs, 104
Ditherington Flax Mill (Shrewsbury, England), 8
domes, 274–276
 concrete, 5, 11–12, 240–241
defined, 274
diastrophes, 11, 275–276
 lattice, 275
 loading, 237
 ribbed steel, 240–241
 Schwedler, 275
double-curve structures, 261
drag, 198, 200, 304
drift
 eccentric bracing, 210
 high-rise structures, 278–279, 283, 290, 292, 297
 reentrant corners, 227
 story, 232
torsional irregularity, 224
dry-pipe sprinkler systems, 309
eccentric loads, 158
Eden Project Bio Domes (Cornwall, England), 276
 effective length, 159
effective length factor, 159
Eiffel, Gustave, 10
Eiffel Tower (Paris, France), 10
electrical circuits, 311
electrical systems, 306, 310–311
electrical wiring, 311
elevators (lifts), 9, 306
Empire State Building (New York, USA), 11
energy conservation, 12
Willis, Faber & Dumas Headquarters, 77
EOS Housing (Helsingborg, Sweden), 75
ESO (European Southern Observatory) Hotel (Chile), 62–63
 exposing the structural system, 16
text
 exterior high-rise structures, 286–289

F
Factory Mutual, 35
fan cable-stayed structures, 263
fan rooms, 312, 316
fan-coil units, 313, 315
feeder beams
 defined, 51
 modifying grid proportions, 56
 radial grids, 53
 rectangular grids, 51
 tartan grids, 52
Fink trusses, 248
Finland, 71
fire protection systems, 309
fire resistance
 floor systems, 95
 horizontal span materials, 93
 long-span structures, 238
 parking structures, 87
 precast concrete slabs, 114
 ratings, 31–32, 34–35
 steel columns, 184
 steel joist structures, 117
 vertical support systems, 152–153
 walls, 169–170, 174, 177
 wood construction, 126
fire-baked brick structures, 3
Fitzpatrick + Partners, 187
fixed arches, 254
flat plates, 156–157, 326
flat roofs, 189
flat slabs, 100, 108–109, 115, 280
flat trusses, 240–241, 246
flexing buttresses, 6
folded plate structures, 240–241, 269
form decking, 122–123
form-active structures, 26
Foster, Norman, 19, 77, 298–299
Foster + Partners, 77, 185, 298–299
foundation grids, 84
foundations, 23
Fourier, Colin, 71
Fox, Kohn Pedersen, 77
Freyssinet, Eugène, 11
friction dampers, 304
Fuller, Buckminster, 11
fundamental period of vibration, 205
funicular arches, 254

G
gable roofs, 193
Galileo, 7
GEC Architecture, 245
Gehry, Frank, 17, 251
Gehry Partners, 251
galvanized domes, 11, 275–276
irregular building configurations, 224–230
moment frames, 212–213, 219
regular building configuration, 220–223
shear walls, 214–215, 219
wind loads, 198–202
lateral-force-resisting systems, 207–234
braced frames, 208–211, 219, 231
continuity in, 38
detailing of building components, 233–234
diaphragms, 216–217
irregular building configurations, 224–230
moment frames, 212–213, 219
pattern of, 41
redundancy in, 36
regular building configuration, 220–223
shear walls, 214–215, 219
lattice domes, 275
Le Corbusier, 14, 16, 59, 69
Lee, C.Y., 13
Leatherdale, J., 12
Los Manantiales (Xochimilco, Mexico), 18
London City Hall (London, England), 185
London County Hall (London, England), 185
...
structural patterns, 39–88. See also structural grids
assembling structural units, 44

vertical distribution, 316–319
water supply systems, 307

T
Taipei 101 (Taiwan), 13
Taiwan, 13
Taj Mahal (Agra, India), 8
Tange, Kenzo, 12, 73, 265
tartan grids, 52
temperature differential
high-rise structures, 279
long-span structures, 255
walls, 173, 177, 179, 183
Temple of Amun (Karnak, Egypt), 3
tendon damping systems, 303
Tenerife Concert Hall (Santa Cruz de Tenerife, Spain),
273
tent structures, 266
terminal reheat systems, 313, 315
Terragni, Giuseppe, 20
30 St. Mary Axe (The Gherkin; Swiss Re Building)
(London, England), 299
tensional irregularity, 224–225
torsional moments, 222, 225, 284
Tower Verre (New York, USA), 300
Toyo Ito and Associates, 187
trabeated (column-and-beam) stone structures, 3
transformers, 310–311
transitional (interstitial) spaces
to mediate between structures of contrasting
grid, 60–63
to mediate between structures of contrasting
orientation, 64–67
to mediate between structures of sheared grids,
79
transitional structural patterns, 80–83
translational shell surfaces, 271
transverse shear, 50
tributary area, 97, 154, 171
tributary loads
defined, 97
long-span structures, 237
vertical support systems, 154
triple-layer system, 121
trussed arches, 9, 239, 257
trussed joists
high-rise structures, 280
wood, 100, 134–135
trussed tube structures, 287–288
trusses
Belgian, 246
belt, 293
bowstring, 246
bracing, 247
cabled, 185
cantilevered buildings, 137, 139
crescent, 246
Fink, 246
flat, 240–241, 246
Howe, 246
long-span structures, 239–241, 244–253
mast, 185
open-web, 249
INDEX

trusses (continued)
 parallel-chord, 249
 planar, 184–185
 Pratt, 246
 scissors, 246
 shaped, 240–241
 spacing, 247
 steel, 120, 240–241, 249
 structural layers, 94
 transfer, 156–157
 vertical, 141
 Vierendeel, 252
 Warren, 246
 wood, 134–135, 240–241, 249
 tube structures, 287–288, 291, 293
 tube-in-tube structures, 287, 294
 tuned liquid dampers, 302–303
 tuned mass dampers, 302–303
 vertical support systems. See supports
 vertical transportation systems, 9, 306
 Vierendeel frames, 137
 Vierendeel trusses, 252
 Vincent James Associates, 245
 viscoelastic and viscous dampers, 304
 vortices, 201

W
 Wachsmann, Konrad, 11
 waffle slabs, 100, 112–113, 240–241, 328
 walls, 150, 170–187
 concrete, 153, 170–171, 179, 214
 curtain walls, 77, 144, 176–183
 diagrids, 186–187
 masonry, 152–153, 172–173
 platform framing, 175
 shear, 207, 214–215, 218–222, 233, 284, 286,
 288, 290–292
 steel, 153, 174–175
 structural glass facades, 184–185
 wood, 153, 174–175
 Walt Disney Concert Hall (Los Angeles, USA), 251
 Warren trusses, 246
 water heaters, 307
 water supply systems, 306–307
 Waterman, Henry, 9
 watt-hour meters, 310
 weak stories, 229
 welded connections, 28
 Western Wood Structures, 258
 wet-pipe sprinkler systems, 309
 wide-flange steel beams, 100, 116, 164, 240–241,
 243
 Wilhelmson, Anders, 75
 Willis, Faber & Dumas Headquarters (Ipswich,
 England), 77

wind loads
 bearing walls, 169
 building scale, 149
 cable structures, 260, 262, 264
 columns, 164
 curtain walls, 176, 178–179
 direct pressure, 200
 distributed loading, 96
 drag, 200
 eddies, 201
 high-rise structures, 280, 282, 290, 300, 302–303
 lateral stability, 198–202
 long-span structures, 237, 253
 overturning, 200
 roof structures, 188, 190
 sliding, 200
 steel beams and girders, 116

substructure, 22
 suction, 200
 tall, slender structures, 202
 turbulence, 201
 vertical support systems, 152
 vortices, 201
 wiring chases, 317
 wood
 heavy timber framing, 34, 93, 126, 128, 153, 242
 light wood framing, 126, 132, 175
 timber framework structures, 5–6
 wood beams, 91–92
 glue-laminated timber, 100, 126–127, 240–242
 laminated veneer lumber, 100, 126–127
 parallel strand lumber, 100, 126–127
 plank-and-beam systems, 128–129
 solid sawn lumber, 100, 126–127
 spanning ranges, 100
 wood spanning systems, 92–93, 98, 100, 126–135
 beams, 126–127
 construction depth, 95
 corner bays, 146
 decking, 130–131
 heavy timber framing, 126
 joists, 132–133
 light wood framing, 126
 plank-and-beam systems, 128–129
 prefabricated joists and trusses, 134–135
 structural layers, 94–95
 wood stilt structures, 3
 wood trusses, 134–135, 240–241, 249
 wood vertical support systems
 columns, 166–168
 moment frames, 213
 shear walls, 214
 stud walls, 153
 wood walls
 platform framing, 175
 structural frames, 153
 stud walls, 153, 174
 World Trade Center Towers (New York, USA), 293
 Wright, Frank Lloyd, 12
 wrought iron structures, 9

X
 X-bracing, 209

Y
 Yeang, Ken, 151
 Young, Thomas, 8
 Yoyogi National Gymnasium (Tokyo, Japan), 73
 Yungang Grottoes (China), 5

Z
 Zaha Hadid Architects, 67, 251
 zoning ordinances, 30–31
 Züblin, Eduard, 10