CONTENTS

Preface xiii
Acknowledgments xix
About the Companion website xxii
Abbreviations and Acronyms xxiii

1 Getting Started with Simulink 1

1.1 Introduction, 1
1.2 Starting a Matlab Session, 2
1.3 Simulink Block Libraries, 3
1.4 Building a New Simulink Model, 6
 1.4.1 Inserting Signal Source and Scope, 6
 1.4.2 Setting the Source Block Parameters, 8
 1.4.3 Setting Scope Parameters, 9
1.5 Executing the Simulink Model, 11
1.6 Reconfiguring the Signal Block, 14
1.7 Sample-Based Signals, 16
1.8 Sending Data to Workspace, 18
1.9 Using Model Explorer, 19
1.10 Adding Labels to Figures, 21
1.11 Selecting Model Configuration Parameters, 22
1.12 Summary Discussion, 24
 Problems, 25
2 Sinusoidal Simulink Model

2.1 A First Simulink Model, 27
2.2 Simulink Model of Sine Wave, 27
2.3 Spectrum of a Sine Wave, 32
2.4 Summary Discussion, 40
Problems, 41

3 Digital Communications BER Performance in AWGN (BPSK and QPSK)

3.1 BPSK and QPSK Error Rate Performance in AWGN, 43
3.2 Construction of a Simulink Model in Simple Steps, 44
3.3 Comparison of Simulated and Theoretical BER, 56
3.4 Alternate Simulink Model for BPSK, 58
3.5 Frame-Based Simulink Model, 62
3.6 QPSK Symbol Error Rate Performance, 64
3.7 BPSK Fixed Point Performance, 68
3.8 Summary Discussion, 73
Appendix 3.A Theoretical BER Performance of BPSK in AWGN, 73
Problems, 75

4 Digital Communications BER Performance in AWGN (MPSK & QAM)

4.1 MPSK and QAM Error Rate Performance in AWGN, 79
4.2 MPSK Simulink Model, 79
4.3 BER for Other Alphabet Sizes, 83
4.4 Fixed Point BER for MPSK, 83
4.5 QAM Simulink Model, 85
4.6 QAM BER for Other Alphabet Sizes Using Average Power, 90
4.7 QAM BER Using Peak Power, 90
4.8 Power Amplifier Constraint Using Peak Power Selection with QAM, 91
4.9 Summary Discussion, 99
Problems, 100

5 Digital Communications BER Performance in AWGN (FSK and MSK)

5.1 FSK and MSK Error Rate Performance in AWGN, 101
5.2 BFSK Simulink Model, 101
5.3 MFSK Simulink Model, 107
5.4 MSK Simulink Model, 108
5.5 MSK Power Spectrum, 113
5.6 Summary Discussion, 116
Problems, 117

6 Digital Communications BER Performance in AWGN
(BPSK in Fading) 119
6.1 BPSK in Rayleigh and Rician Fading, 119
6.2 BPSK BER Performance in Rayleigh Fading, 119
6.3 BPSK BER Performance in Rician Fading, 124
6.4 BPSK BER Performance in Rician Fading with
Multipath, 127
6.5 Summary Discussion, 137
Appendix 6.A Theoretical BER Performance of BPSK in
Rayleigh Fading, 137
Appendix 6.B Theoretical BER Performance of BPSK in
Rician Fading, 138
Problems, 139

7 Digital Communications BER Performance in AWGN
(FSK in Fading) 141
7.1 FSK in Rayleigh and Rician Fading, 141
7.2 BFSK BER Performance in Rayleigh Fading, 141
7.3 MFSK BER Performance in Rayleigh Fading, 142
7.4 BFSK BER Performance in Rician Fading, 147
7.5 BFSK BER Performance in Rician Fading with Multipath, 148
7.6 Summary Discussion, 150
Appendix 7.A Theoretical BER Performance of FSK in
Rayleigh and Rician Fading, 152
Rayleigh Fading, 152
Rician Fading, 153
Problems, 154

8 Digital Communications BER Performance (STBC) 157
8.1 Digital Modulations in Rayleigh Fading with STBC, 157
8.2 BPSK BER in Rayleigh Fading with STBC, 157
8.3 QAM BER in Rayleigh Fading with STBC, 163
8.4 Summary Discussion, 163
Appendix 8.A Space–Time Block Coding for BPSK, 165
Appendix 8.B Space–Time Block Coding for 16-QAM, 167
Problems, 169

9 Digital Communications BER Performance in AWGN
(Block Coding) 171

9.1 Digital Communications with Block Coding in AWGN, 171
9.2 BER Performance of BPSK in AWGN with a Binary BCH
Block Code, 171
9.3 BER Performance of BPSK in AWGN with a Hamming
Code, 175
9.4 BER Performance of BPSK in AWGN with a Golay(24,12)
Block Code, 179
9.5 BER Performance of FSK in AWGN with Reed-Solomon
Code, 181
9.6 BER Performance of QAM in AWGN with Reed-Solomon
Coding, 186
9.7 Summary Discussion, 190
Problems, 192

10 Digital Communications BER Performance in AWGN
(Block Coding and Fading) 193

10.1 Digital Communications with Block Coding in Fading, 193
10.2 BER Performance of BPSK in Rayleigh Fading with
Interleaving and a BCH Block Code, 194
10.3 BER Performance of BFSK in Rayleigh Fading with
Interleaving and a Golay(24,12) Block Code, 195
10.4 BER Performance of 32-FSK in Rayleigh Fading with
Interleaving and a Reed-Solomon(31,15) Block Code, 201
10.5 BER Performance of 16-QAM in Rayleigh Fading with
Interleaving and a Reed-Solomon(15,7) Block Code, 204
10.6 BER Performance of 16-QAM in Rayleigh and Rician Fading
with Interleaving and a Reed-Solomon(15,7) Block Code, 208
10.7 BER Performance of BPSK in Rayleigh Fading with
Interleaving and a BCH Block Code and Alamouti STBC, 210
10.8 BER Performance of BFSK in Rayleigh Fading with
Interleaving and a Golay(24,12) Block Code and Alamouti
STBC, 215
10.9 BER Performance of 32-FSK in Rayleigh Fading with
Interleaving and a Reed-Solomon(31,15) Block Code and
Alamouti STBC, 218
10.10 BER Performance of 16-QAM in Rayleigh Fading with Interleaving and a Reed-Solomon (15,7) Block Code and Alamouti STBC, 219
10.11 Summary Discussion, 223
Problems, 224

11 Digital Communications BER Performance in AWGN and Fading (Convolutional Coding) 225

11.1 Digital Communications with Convolutional Coding in AWGN and Fading, 225
11.2 BER Performance of Convolutional Coding and BPSK in AWGN, 226
 11.2.1 Hard-Decision Decoding, 226
 11.2.2 Soft-Decision Decoding, 229
11.3 BER Performance of Convolutional Coding and BPSK in AWGN and Rayleigh Fading with Interleaving (Soft- and Hard-Decision Decoding), 233
11.4 BER Performance of Convolutional Coding and BPSK and Alamouti STBC in Rayleigh Fading with Interleaving, 239
11.5 Summary Discussion, 243
Problems, 244

12 Adaptive Equalization in Digital Communications 247

12.1 Adaptive Equalization, 247
12.2 BER Performance of BPSK in Dispersive Multipath Channel Using an LMS Linear Equalizer, 248
12.3 BER Performance of BPSK in Dispersive Multipath Channel Using an LMS Linear Equalizer From the Simulink Library, 257
12.4 BER Performance of QPSK in a channel with ISI Using an LMS Linear Equalizer, 258
12.5 BER Performance of BPSK in Dispersive Multipath Channel Using a Decision Feedback Equalizer, 268
12.6 BER Performance of BPSK in Rayleigh Fading Multipath Channel Using an RLS Equalizer, 273
 12.6.1 RLS Equalizer Description, 273
 12.6.2 RLS Equalization in Rayleigh Fading with No Multipath, 275
 12.6.3 RLS Equalization in Rayleigh Fading with Multipath, 279
CONTENTS

12.7 Summary Discussion, 280
Problems, 283

13 Simulink Examples

13.1 Linear Predictive Coding (LPC) for Speech Compression, 286
13.1.1 Speech Vocal Tract Model, 289
13.1.2 Prediction Coefficients Computation, 289
13.1.3 Speech Analysis and Synthesis, 289

13.2 RLS Interference Cancellation, 291
13.2.1 Sinusoidal Interference, 291
13.2.2 Low Pass Filtered Gaussian Noise, 296

13.3 Spread Spectrum, 298
13.3.1 Spread Spectrum Simulink Model without In-Band Interference, 298
13.3.2 Spread Spectrum Simulink Model with In-Band Interference, 303
13.3.3 Spread Spectrum Simulink Model with In-Band Interference and Excision, 309

13.4 Antenna Nulling, 313

13.5 Kalman Filtering, 320
13.5.1 Scalar Kalman Filter, 322
13.5.2 Kalman Equalizer, 328
13.5.3 Radar Tracking Using Extended Kalman Filter (EKF), 339

13.6 Orthogonal Frequency Division Multiplexing, 343

13.7 Turbo Coding with BPSK, 355

Appendix A Principal Simulink Blocks Used In Chapters 1–13 363
Appendix B Further Reading 369
Index 371