Index

aggregation of point defects, 309, 311
alkali halides, point defects, 309–10, 315, 320–1
alkali metals, crystal structure, 92, 369
allotropy (elements), 86, 110
alloys, metallic
 amorphous (noncrystalline), 124
 phase transformations, 363–4, 374–83
 quasicrystalline phases (i-phases), 136–7
strained layer epitaxy, 425
topological close-packing (TCP), 135
twinning frequency, 342–3, 353–4, 354
aluminium
 dislocation strain energies, 271–2
 elastic isotropy, 256
 vacancy generation, with heating, 318, 319
amorphous materials, 123–6
anelastic strain, 326–7, 329
anisotropy
 Hooke’s law application, dislocation strains, 256–8
 of mesogenic molecules (liquid crystals), 126–7
 and polycrystalline textures, 229
annealing, 322–4, 323, 325
twins, 336
antimony, crystal structure, 97–8, 98
antiphase domain boundaries, 112, 113
antisymmetric tensors, 148–9
arsenic, crystal structure, 97–8, 98
atactic polymers, 115
atomic radii, 110
austenite, 363, 379–82
axes of rotational symmetry, 15–16, 43, 44
 permissible combinations, 21–6, 25
 pure (proper rotation), 44, 44–5
axial angles, 6, 6, 8, 67
axial glide planes, 72
axial (c/a) ratios, 52
 hexagonal close-packed metals, 90–1, 91
 and slip planes, 205, 208, 291
 and martensitic transformation, 374
wurtzite structure compounds, 101, 101
Bain correspondence, 379, 379–81, 383
barium titanate (BaTiO$_3$)
crystal structure, 105
 phase transitions and ferroelectric properties, 384
binding energy, divacancies, 310–11
bismuth, crystal structure, 97–8, 98
body-centred cubic (b.c.c.) structure
 dislocation geometry, 295–7, 296
glide systems, 205, 219–20, 221
lattice symmetry and unit cells, 36–7, 37, 92–3, 93
point defects
 interstitials, 314, 314–15
 vacancies, 313, 316, 316
transformation to h.c.p. structure, 369
 369–70, 374, 375, 385–6
twinning (metals), 342–4, 343
Boltzmann’s constant, 253, 305
born–Mayer potential, 312
boron nitride, hexagonal form, 97, 97
brass, texture, 234, 234
Bravais (space) lattices, 26–37, 28, 71–2
brittleness, 199, 396
bulk metallic glasses (BMGs), 124
Burgers circuit, 245, 246, 246, 247
Burgers vector
general description methods, 245–7, 246
related to strain energy, 269–71, 272–3
as slip plane displacement, 241–5
stability of dislocations, 273, 274

c/a ratios see axial ratios
caesium chloride
crystal structure, 99, 100, 496
unit cell, 7, 7
calcite
crystal structure, 109, 109–10
deformation twinning, 345, 345, 354
calcium fluoride (fluorite), crystal structure, 102–3, 103
carbon
iron impurity atomic arrangement, 326, 327, 329
in steel, and martensitic transformation, 363, 380, 380–1
see also diamond; graphite
cassiterite structure see rutile crystal structure
cellular solid materials, 137, 138–9
centre of symmetry, 16, 45, 153–4, 177–8
centred rectangular cells, 19, 21
charged dislocations, 289–90, 290
chemical force, on dislocations, 252–3
cholesteric phases (liquid crystals), 127, 128, 129
chrysoberyl crystal structure, 107
cleavage planes, 295, 296, 396–7, 397
climb (dislocation motion), 244, 248, 251, 252–3
close packing (of spheres), 86–8, 87, 88
Bernal’s RCPS model, 124, 125
interstices, 89, 90, 104
plane stacking, 88, 89, 91
stacking faults, 278–9, 279, 281
Frank notation, 280–1
topological (TCP) structures, icosahedral packing, 135, 136
closed forms, 49–50
cobalt
martensitic transformation, 366–9, 368, 420
stacking fault energy, 291–2
coherency strain, 421, 427
coincidence site lattices (CSL), 405–6, 406, 407
compliances (elastic constants), 182–4, 188, 190
composition plane, K₁ (twinning), 335, 337, 339, 350–3, 354
compound (degenerate) twins, 340
compounds, simple inorganic (MX and MX₂), 98–104, 494–8
compression, and crystal lattice deformation, 226–8, 227
conductivity (electrical)
direction, referred to tensor principal axes, 149–52, 151
measurement, and point defect mobility, 318–21, 320, 321
tensor components, 141–2, 144–5
constancy of angle, law of, 8, 8
converse effect (piezoelectricity), 181
coordination number, 3–4, 86, 110

copper
alloys, martensitic transformation, 382–3
point defects, mobility, 308–9
rolled, texture, 229, 232, 232
correspondence matrix, 370, 379
covalent bonding
dislocation geometry, 297–300, 301
dislocation width (Peierls model), 260
in polymers, 115
critical resolved shear stress, law of, 219
cross-slip (dislocations), 261–2, 262
crowdions (Paneth), 314, 314–15, 316–17

Index
crystal structure
 descriptive methods, 85–6, 116–17, 119
growth, 417–18
crystal systems, 26, 26
 elastic constants, 184–93, 188, 190
 enantiomorphous, 68–9
 Internet information sources, 499–500
 of named elements, 491–4
 noncentrosymmetric, piezoelectric moduli, 179–81
 second-rank tensor limitations, 155, 156, 158–9
 special forms, 67, 68
crystallographic glide strain
 definition, 202–3, 203
 in displacement analysis, 210
 and lattice orientation, in tension/compression, 222, 223–4, 226
cubic close-packed (c.c.p.) structure, 86–9, 87, 88, 89, 90
crystallographic glide strain
 coincidence lattices, 405, 406
dislocation geometry, 278–88, 279, 288
double slip, 225, 225–6
 and icosahedral packing, 134, 135
 point defects
 interstitials, 314, 314
 vacancies, 312–13, 313, 316, 317, 317–18
 slip system stereograms, 219, 220, 222
 transformation to h.c.p. structure, 366–9, 368, 385
twinning (metals), 335–7, 336, 337, 342
twinning (metals), 335–7, 336, 337, 342
 see also face-centred cubic (f.c.c.) structure
cubic crystal system
 elastic constants, 186–7, 187, 189
glide systems, pure strain and rotation, 212–15, 213, 214
 lattice symmetry and unit cells, 35, 35–7, 36, 37
 planar spacing and interplanar angles, 471–2
 point group symmetry elements, 53, 53–5
 property representation quadric, 158
shear stress and piezoelectricity, 180, 180–1
 stereogram, 453–5, 454
 stereograms, 55, 55
tetragonal defect orientation, 329, 329
damping, 327
defect structures, 99
deforption twinning, 337–42, 339, 354–8
dendrites, 417, 418
density
 dislocation, 245, 261
 of solid solutions, 111
deviatoric stress, 176
diad (two-fold) axis of symmetry, 18, 19–20, 30
diagonal glide planes, 72
diamond
 crystal structure, 95, 95, 96
dislocations, 297–8, 298
 diamond glide planes, 72
 Diehl’s rule, 221, 483–4, 485–6
diffraction patterns
 in crystal structure determination, 85, 464
 Laue method, 69, 69
diffusion-based phase transformations, 364
dihedral angles, 420, 421
dilatation, 169–70, 170, 260
dipoles
 dislocation, 263, 284
electric, single crystal (piezoelectricity), 177, 180
directions
 closest-packed (lattice), 87–8, 88, 91
glide (slip), 201, 201–2, 204, 225, 273
 indices, transformation for unit cell
 changes, 473–4
 physical properties, tensor
 representation, 150–2, 151, 155–60
 relative displacement, in dislocations, 247, 247
 shear, in twinning (η), 338–9, 339, 350–1
 specification of, 9, 9
dislocation glide motion, 248, 248–9
dislocations
 Burgers vector, general description, 245–7, 246
core, atomic positions, 258–61
crystal distortion, 253–8
forces and crystal stress, 249–53, 398–9
geometry, for specific crystal structures, 301
 body-centred cubic (b.c.c.) crystals, 295–7, 296
 covalent solids, 297–301
 cubic close-packed (c.c.p.) metals, 280–8, 288
 hexagonal metals, 290–5, 291
 rock salt, 288–90, 289
 glide mechanisms, 205, 241–5
 interactions and multiplication, 261–5, 262, 272
 loop motion, 247–9, 248
 partial, and stacking faults, 277–9, 279
 pile-up, in deformation twinning, 355–6, 356
 strain energy and stability, 269–77, 274
 displacive phase transitions, 384
domains, in ordered crystals, 112, 113
double hexagonal close-packed structure, 92
double (duplex) slip, 72, 225, 228
ductility, 199, 229
dummy suffix notation (tensor components), 145–6
dyadic operators see second-rank tensors
edge dislocations
 atomic positions, 243–5, 244
 bonding and Peierls force, 261
 and Burgers vector, 246, 246
 description, for cubic lattice, 242–3, 243
distortion stresses and strains, 255–6
 strain energy calculation, 270–1
 electric charge (NaCl), 289–90, 290
 parallel, 262–3, 263
 stair rods, 286, 286–7, 299
 stress and force components, 251–3, 252
 Einstein summation convention, 145–6, 438
elastic twinning, 356
elasticity
 crystal deformation, compared with plastic glide, 200
dislocation elastic energy, 273, 277
elastic constants, in crystal classes, 184–9, 188, 190
 in isotropic materials, 189, 192–3, 256
strain and stress relationships, 181–4
electric fields see space charge regions
electrical conductivity see conductivity
electron irradiation, 324–5, 325
ellipsoids
 as effect of homogeneous strain on spheres, 371, 371, 488
 physical property representation, 157–60, 158, 159
emissary dislocations, 356, 356
enantiomorphs
 crystal classes, 68–9
 related to symmetry, 43–4
engineering shear strain, 165–6, 166, 170
 entropy, related to point defects, 305–6, 310
epitaxial growth, 423–4, 424, 424
equilibrium point defect concentration, 305, 307, 318, 319
Euler angles, 234, 234–5
 Euler’s theorem, related to regular polyhedra, 131, 133
extension, 165, 166, 488
extrinsic (double) stacking faults, 279, 280–1, 284
extrusion (of dislocations), 275–7, 276, 277
F-centres (anion vacancies), 310
face-centred cubic (f.c.c.) structure
 Bravais lattice, 36, 36, 86
 transformation to face-centred tetragonal (f.c.t.), 374–6
ferroelectric materials, 335, 384
ferrous oxide, point defects, 310
field composite materials, 139
field tensors, 142
fluorite crystal structure, 102–3, 103, 498
foams, 137–9, 138
forces, on dislocations
 climb and glide components, 251–3, 252, 263
 Peierls model, 259–61
 work and energy relationships, 249–51, 396–7
Frank partials, 281–3, 286–7, 287
Frank–Read mechanism, dislocation source, 261–2, 276
Frank’s rule, 272, 272–3, 287
Frenkel defects, 306–7, 325
FS/RH convention (Burgers vector), 245–6, 246, 247, 284
garnets, crystal structure, 107–9, 108
glasses, 123, 124, 189
glide (slip)
 conditions and process, 199–200, 200
 displacement tensor components
 analysis as pure strain and rotation, 211–12, 212
 for different slip systems, 212–14, 213
 in three dimensions, 210, 210–11
 in two dimensions, 208–10, 209
 fine structure, 200–1, 202, 202
 independent slip systems, 215–17, 216, 481–3
large strains in single crystals
 glide system choice, 218–22
 lattice orientation changes, 222–8
 measurement of glide strain, 202–3, 203
plane symmetry elements, in space groups, 70–1, 72, 78
polycrystalline grain deformation, 217–18
system elements, 203–5, 204
 for named crystal types, 205, 206–7
see also dislocations
glide cylinder (dislocation motion), 248, 248
grain boundaries
 energy related to tilt angle, 398–400, 399
 good fit and coincidence lattices, 405, 405–7, 407
interface junctions, 409–14
source lattice (dislocation array), 408, 408–9
see also phase boundaries; tilt boundaries
graphite
 basal plane dislocations, 299–300, 300, 301, 350
 crystal structures, 95–7, 97
 twinning, 346, 349–50, 350, 351
 vacancies, 317
grossular (natural garnet), 108
 group theory, 79
H-centres (anion interstitial defects), 315, 315
 habit plane, 364–5, 371–4, 373
 in steels, 381–2, 382
halite see sodium chloride
Heidenreich–Shockley partials see
 Shockley partials
Hermann–Mauguin notation, 78–9, 80
Herring’s construction, crystal shape, 415–16, 416
hexad (six-fold) axis of symmetry, 18, 20–1
hexagonal close-packed (h.c.p.) structure, 87, 89, 90–1, 91, 92
 second-order pyramidal glide, 292–3, 293
 at twin boundary, 336
hexagonal crystal system, 33, 34, 35, 35
 dislocation geometry, 290–5, 291
 elastic constants, 189, 191
orthohexagonal cell indices, 476–7, 477
 planar spacing and interplanar angles, 471, 472
point group symmetry elements, 56, 56–9
 twinning (metals), 346, 349
Hirth lock configuration, 287, 287–8
 holosymmetric class (of crystal systems), 50
homogeneous strain, 166, 200, 208–9, 328, 445
mathematical properties, 487–8
see also extension; shear
Hooke’s law, 181–2, 445–6
anisotropic media, calculations, 256–8
dislocation stresses and strains, 254–5
for isotropic solids, 192–3
hydrostatic pressure, 175–6, 199

i-phases, 136–7
icosahedral packing, 134–5, 135, 136
ilmenite (FeTiO₃), crystal structure, 106
improper rotations, 44
impurities, and point defects, 305, 310, 322, 326
incommensurate structures, 137
indium
 crystal structure, 93–4
 thallium (In–Tl) alloys, martensitic transformation, 374–49, 376
inert gases
 crystal structure, 86
 secondary bonding, 115
infinitesimal strain, 166
 in three dimensions, 168–70, 170
 in two dimensions, 166–8, 167, 168, 169
interatomic distances (in crystals), 110, 491–4
interface junctions, 409–14, 411, 412
internal friction, 327
International Tables for Crystallography
 arithmetic crystal classes and space groups, 71, 73, 74–6, 77
 entry example, 3-D space group, 79–82, 80–1
 conventional symbols, 48
interstices
 in amorphous solids, 124
 body-centred cubic crystals, 92–3, 93
 cubic close-packed crystals, 89, 90
 filled, in compounds, 98, 100, 101, 104
 hexagonal close-packed crystals, 91, 92, 92
interstitial defects, 305, 309
 configurations, 313–15, 314, 315
mobility, 316
interstitial solid solutions, 110–11, 111
intrinsic (single) stacking faults, 280–1, 280–4
invariant planes, 365–6, 371–3
inverse matrices, 445–7
inverse spinel structure, 107
ionic radii, 110, 491–4
isomorphic groups, 79
isotactic polymers, 115
isotropic crystals, 158
 elastic properties, 189, 192–3, 256
jogs, 264–5, 265, 289
Kevlar (PPTA), 126, 127
kinks, 264, 297, 297
Kronecker delta, 177, 186, 193, 440
Lamé constants, 192–3, 256
lamellae, twinned crystals, 337–8, 354–5, 355, 356, 357–8
twin boundary surface grooving, 413, 413
lattice parameters, 6, 8–9
derivation of interatomic distances, 110
ratio (axial ratios), 52
of steel (austenite/martensite) phases, 380, 380
lattice points, 5–6, 10
lattices
 Bravais (space), 26–37, 28, 71–2
cellular material structures, 138–9
definition, formal, 6
plane spacing and direction, 7–11, 9, 10, 442–3, 469–72
vectors and lattice planes, 11–14, 12, 440–2, 441, 475
see also symmetry elements
Laue groups, 69, 158, 185
line tension, dislocation loops, 274–7, 275
liquid crystals, 126–9, 128, 130
lithium niobate (LiNbO₃), crystal structure, 106
Lomer–Cottrell lock configuration, 286, 286, 299
long-range order (solid solutions), 113, 387
magnesioferrite (MgFe₂O₄), 420
martensite (quenched steel), 363, 379–82, 382
martensitic transformation
in alloys, 374–83
crystallographic features, 364–6, 365, 367
in metal crystals, 366–74
in nonmetals, 384–5
nucleation and growth of plates, 385–7
massive transformation, 363–4
matrices
applications
for martensitic lattice transformations, 370
notation for piezoelectric moduli, 178–80
for stiffness and compliance, 184, 188
for twinning index transformations, 341–2
mathematical operations, 443–7
rotation, 21–2, 142, 448
matter tensors, 142, 142
mercury, crystal structure, 94, 94
meshes see nets, two-dimensional; porous solid materials
mesogenic units, in polymers, 127
mesophase materials (liquid crystals), 126–9, 128, 130
metallic crystal structures, 86–95
reorientation, in metal working, 228–9, 230–1
Miller index notation, 10, 11, 52, 440, 471–2
Miller–Bravais indices, 56–7, 57, 61
three- to four-index transformation, 57–8, 58
 twinning shear transformation, 341
mirror plane, 16, 16, 19, 19, 43–4
related to space groups, 78
related to twinning, 335–6
misfits (interface strain), 421–3, 422, 427–8, 428
mixed dislocations
description, for cubic lattice, 243, 243
distortion stresses and strains, 256
strain energy calculation, 271
mobility, point defects, 308, 308–9, 315–17, 318–21
molecular beam epitaxy (MBE), 423, 424–5
moniclinic crystal system
elastic constants, 185
lattice symmetry and unit cells, 27, 29, 29–30, 30
piezoelectric moduli, 179
planar spacing, 470
point group symmetry elements, 63, 63–5
property representation quadric, 159
twin boundary, 406, 407
Morse function, 312
multiplicity, 49–50
nematic phases (liquid crystals), 127–9, 128, 130
nets, two-dimensional
consistent with crystal symmetry, 17, 18–19, 19–21
lattice point arrays, 5, 7–8
rectangular, 18–19, 21
stacking, 27, 27, 29, 29–30, 30
Neumann bands, 354
Neumann’s principle, 153–4, 177
nickel
arsenide (niccolite), crystal structure, 101–2, 102, 497
titanium (Ni–Ti) alloys, martensitic transformation, 383
noble metals, crystal structure, 86
node, dislocation lines, 247, 285, 285
noncrystallographic symmetry, 136–7
nonprimitive unit cell, 21
nucleation, martensite, 385, 385–7
octahedral interstices, 89, 90, 91, 93
OILS rule (Hutchings), 221–2, 484–6
open forms, 49–50
ordering, in solid solutions, 111–13, 112, 114
orientation distribution function (ODF), 234, 234–5
orthorhombic crystal system
elastic constants, 185–6
example of space group description, 79–82, 80–1
lattice symmetry and unit cells, 30–3, 31, 32
piezoelectric moduli, 179
planar spacing and interplanar angles, 470, 472
point group symmetry elements, 49, 49–52, 51
property representation quadric, 158–9

PAA (para-azoxyanisole), 126, 126, 127
packing fraction, 86–7, 124, 126
partial dislocations, 277–9, 279, 343–4
Pearson symbol (crystal structure), 116–17, 119
Peierls dislocation model, 259–61
pencil glide, 205, 208, 215
perovskite crystal structure, 104–5, 105, 133–4, 135
phase boundaries, 420–4, 421, 421
phase transformations, 363–4, 384
see also martensitic transformation
piezoelectricity, 177–81, 425
converse effect, 181
plagioclase feldspars, twin structures, 351
plane groups (2-D space groups), 73, 74–6, 77, 77–8
plastic deformation see glide
Platonic solids, 131–4, 132
point defects
aggregation, 310–11
configurations, 312–17
definition and types, 305
energy characteristics, 305–9
experimental production and studies, 317–21
in ionic crystals (alkali halides), 309–10
produced by radiation, 324–6
in quenched metals, 321–4
symmetry and anelasticity, 326–9
point groups, 43
general and special forms, 49–50
related to space groups, 71–2
symmetry elements, 44–8, 46–7
terminology for cubic systems, 53–4
Poisson’s ratio (ν), 189, 192, 256
polarization, electrical, 177, 180
pole figures, 229, 232, 232
poles
location on stereographic projections, 50–2, 51, 65, 451–5, 452
construction geometry, 458, 458–9, 459, 460
using Wulff net, 460–1, 462, 463
orientation and rolling texture, 232–3, 233
twin growth dislocation, 357, 357
polycrystalline materials, 137, 189, 397
glide deformation, 217–18
grain boundary tensions, 418, 418
texture development, during working, 228–35, 230–1
polyethylene, structure, 115, 116, 117
polymerization, 263
polyhedra, geometry of, 129, 131–4, 132
Voronoi construction, 124–6, 125
polymers, crystal structures, 113, 115, 118, 498
imperfections and amorphous regions, 115, 119
lyotropic and thermotropic liquid crystals, 126, 127
martensitic transformation, 384–5
unit cell, 115, 117
polymorphism (compounds), 86
porous solid materials, 137–8
primary glide plane, 220, 222
primitive unit cell, 6, 21, 440
principal axes and components, symmetric tensors, 149, 169, 170
prismatic dislocation loops, 248–9, 249, 253, 292
projections, geometry of, 451–5, 452, 453
pseudo-twins, in Fe–Be alloys, 353–4, 354
pseudomorphic strained layers, 425–8
pure shear
related to simple shear, 489, 489
stresses, 174, 176
pure strain tensors, 168–9, 169
and independent slip systems, 215–17, 216, 481–3
pyramidal glide, 292–3, 293, 294, 295
quasicrystals, 135–7
quaternion algebra, 22–3, 448–9
quenched metals, 321–4, 363–4
radiation damage, 308, 310, 324–6
radius–normal property, representation ellipsoid, 159, 159–60
random close-packed sphere model (RCPS), 124, 125
rare earth metals
 crystal structure, 90, 92
 ion substitution, in garnets, 108–9
 rational indices, law of, 10
 rational line/plane, 10
reciprocal lattice vectors, 12, 440–3, 441, 469
reciprocal twins, 340–1
reconstructive transformation, 384
recrystallization, 229, 336
rectangular nets
 diad axes and mirror planes, 18–19, 21
 stacking, and orthorhombic lattices, 31, 32
reflection symmetry, 16, 16, 18–19, 19
reflection (normal, type I) twins, 339–40, 340
relative displacement (strain) tensors, 167, 168–9, 210–11
relaxation time (elastic compliance), 3 27, 328
repeat units (distance), polymers, 115, 116
replacement collisions (point defects), 324
representation quadric, tensors and property measurement
 radius–normal property, 159, 159–60
 representation surfaces, equations, 155–9, 158
representative volume elements, 139
resistivity, quenched metals, 322, 323
resolved shear stress
 evaluation, 218, 218–19
 largest, associated glide systems, 219–22, 483–5
rhombus nets and unit cells, 31–3, 32
rigidity (shear) modulus, 192, 253, 254
rock salt see sodium chloride
rolled metals, crystal orientation (texture), 229, 232, 232–5, 233, 234
rotation (parallel, type II) twins, 340, 340
rotational symmetry, 15–16, 444, 448
 combinations, possible, 21–6, 25, 71
 and crystallographic point groups, 44–8, 46–7
 occurrence in crystal nets, 16–21, 17, 18
 in quasicrystals, 135–6
rotoinversion axes, 44, 45, 48
rutile crystal structure, 103–4, 104, 133, 498
sapphire (corundum, α-Al_2O_3)
 conditions for glide, 199
 crystal structure, 105–6, 106
scalar product
 mathematical operation, 436–8
 scalar triple product, 438–9
 and Weiss zone law, 13
Schläfli symbols, 131, 132
Schlegel diagrams, 131–3, 132
Schmid factor, 219, 221–2, 483–4, 485–6
Schoenflies notation, 78–9
Schottky defect, 309–10, 319–21
screw axes (symmetry elements), in space groups, 70, 70–2, 72
screw dislocations
 atomic positions, 243–4, 244, 245, 258–9
 dislocation width, 259, 259, 260
 description, for cubic lattice, 241–3, 242
 distortion stresses and strains, 253–5, 254, 255
 strain energy calculation, 269–70
 orthogonal, 264, 264
 parallel, 262, 264
second-rank (dyadic) tensors
 definition and symmetry, 148–9
 limitations imposed by crystal
 symmetry, 153–5, 156
 representation surfaces, 155–9, 158
 physical properties represented, 141–2, 142
 referred to principal axes, 149–52, 150, 169, 173–4
 vector components, transformation of,
 144–5, 146–8
secondary bonding, in polymers, 115
self-accommodation, martensite variants,
374, 378, 378, 383
self-diffusion, 308–9, 322, 323, 324
semiconductors
 crystal growth and structure, 424–8
 lattice parameters and stiffness
 constants, 427
shape-memory materials, 363, 383, 386
shear
 engineering shear strain (γ), 165–6, 166, 170
 forces, plastic yield (glide) responses,
 199–203
 modulus (rigidity), 192, 253, 254
 pure strain tensor components, 168, 169, 169
 resolved shear stress calculation, 218, 218–19
 simple and pure, compared, 488–9, 489
 stress components (σ), 170, 172–3, 175, 176
 and twinning mechanism, 336–9, 337, 338
 shear magnitude, s, 338–9, 352–3
sheet textures, 232–5, 233, 234
Shockley partials
 compared with Frank partials, 281–3
 separation and stacking fault energy,
 278–9, 279, 280, 281
short-range order (solid solutions), 113
shuffle (atomic displacement), 346, 353
silicon
 stacking faults and dislocations, 297, 299, 299
states and properties, 124, 138
silver, rolled (crystal orientation), 234, 234
slip see glide
slip lines (bands), observation of, 200–1, 202, 202, 262
smectic phases (liquid crystals), 127, 128, 129
soaps, 127
sodium chloride (rock salt, halite)
 crystal structure, 98–9, 99, 495–6
 and discovery of glide, 200
 dislocation geometry, 288–90, 289
 glide planes and directions, 204–5
 Schottky defects, 309–10, 319–21
 vacancies, ionic displacement, 313, 313
solid solutions, 110–13, 111, 112, 114
 see also alloys, metallic
space charge regions, rock salt, 289–90, 290, 309
space groups, 69–78
 three-dimensional, example, 79–82, 80–1
 two-dimensional (plane) groups, 73, 74–6, 77, 77–8
space lattices see Bravais lattices
spalerite (zinc blende, α-ZnS)
 crystal structure, 100, 100–1, 497
 dislocations, 297–8, 298, 299
piezoelectricity, 180
 plane stacking sequence, 95, 96
 twin structures, 344, 344–5
spheres see close packing
spinel crystal structure, 106–7, 107
stacking faults, 278–9, 279, 336
 see also dislocations
stair rod dislocations, 286, 286–7, 299
steel, martensitic transformation, 363, 379–82, 380, 382
nucleation and growth of plates, 386–7
stereograms
 construction
 general diagrams and triclinic
 application, 65–7, 66
 hexagonal system, 58–9, 59
 monoclinic system, axis setting
 conventions, 63, 63–4, 64
orthorhombic system example, 50–2, 51
pole opposites and angles, 458–60
small circle, 455–8, 456, 457
Wulff net graphical aid, 460–3
conventional symbols, 44–5, 45, 48
of crystallographic point groups, 46–7, 48
glide system depiction, 219–22, 220, 221
projection geometry, 451–5, 453
properties, proof of, 465–7, 466, 467
stiffness constants, 182–4, 188, 190
strain
anelastic, 326–7, 329
definitions, 165–6, 166
elastic, produced by applied stress, 181, 182, 183
energy, stored in dislocation, 269–72, 270
homogeneous, 166, 200, 208–9, 328
infinitesimal, 166–70
in martensite plates and lattices, 365–6
combined with rotation, 372–4, 373, 375
pure and observed lattice strains, 370–2, 371, 372
in multiple twinning, 357
strained layer epitaxy, 424–8, 425
stress
calculation, 172, 172–3
chemical (in dislocation), 252–3
components, definition and notation, 170–2, 171, 174, 175, 176
contracted notation, 178, 182–3
hydrostatic and deviatoric, 176
fields, on intersecting dislocations, 264, 278
homogeneous, 174
pure shear, 174–5, 175
related to strain (Hooke’s law), 181–2, 254–5
Strukturbericht designation (crystal structure), 116–17, 119
subgroups, 79
substitution
of cations, in garnet structures, 108–9
of metals, in solid solutions, 110–11, 111
superconducting materials, crystal structures, 105
superelasticity, 378, 383
supergroups, 79
superlattices, 112–13, 114, 114
surface free energy, 394, 396
at interface junctions, 409–11, 410
measurement, 394–7, 395
related to equilibrium crystal shape (Wulff theorem), 414–16, 415
and twin boundaries, 413–14, 414
surfaces
atomic bonding and energy plots, 392–4, 393, 394
interfacial simulation, 406–8
definition and alternative structures, 391–2, 392
growth rates, 417–18
outer, reconstruction, 391
see also grain boundaries
symmetric tensors, 148–9, 154–5
symmetry elements
crystals, macroscopic level, 3, 43–8
of defects, 328–9
groups, subgroups and supergroups, 79
limitations on crystal physical properties, 153–5, 156
notation and nomenclature, 78–9
operation types, 14–16, 43–4
restrictions, in crystals, 16–21, 17
slip system families, 203–5
space group descriptions, 69–78
syndiotactic polymers, 115
tactic polymers, 115
tensile strains, 169, 192, 326
tension
dislocation line, 274–7, 275
and glide, in metal crystals, 222–6, 223, 225
tensors
principal axes and components, 149
transformation operations, 142–5, 144–5
types and ranks, 141–2, 161, 167, 177
see also second-rank tensors
tetrad (four-fold) axis of symmetry, 18, 20
tetragonal crystal system, 28, 30
 elastic constants, 189
 planar spacing, 471
 point group symmetry elements, 52–3
 texture, 228–9, 230–1, 232–5
thermal faceting, 416–17, 417
thermoelastic martensite, 386
Thompson’s tetrahedron, 282, 282–4, 288
tilt boundaries
 asymmetrical, 401–3, 402
 rotated (twist), 403, 403–5
 symmetrical, 397–401, 398, 401
tin (α- and β-Sn), crystal structures, 94–5
 use of rhombohedral/hexagonal axes, 60–2, 71, 477–9, 478
tungsten, elastic isotropy, 256
twinned crystals
 crystal morphology, 354–8
 geometric elements, 339, 339–42, 347–8, 350–4
 martensitic lamellae, 376–8, 377
 occurrence and causes, 335, 336–7
 structure, examples of, 342–6, 349–50
twist boundaries, 403, 403–5
two-surface analysis, 201, 464–5, 465
unit cells, 3–7
 of cellular solid materials, 139
 conventional, in crystal systems, 26, 26
 electron density, 85
 of ordered solid solutions, 112, 112
 rhombohedral and hexagonal, in trigonal crystals, 60, 60–2, 61, 71, 477–9
 of tactic polymers, 115, 117
 transformation of indices (directions and planes), 473–5
unit parallelogram, 5
unit quaternions, 22–3, 449
uranium, twinning, 340–1
vacancies, 305
 binding energy, 310–11
 configuration models, 312–13, 313
 and dislocation forces, 252–3
 dislocation loops, in hexagonal metals, 292, 292
 formation energy calculation, 307
 positions and generation, 306–7, 307
 related to electrical charge, 289–90, 290
 vapour deposition, 229, 336, 423
vectors
 definition and components, 435–6, 436
 director, in liquid crystal alignment, 127, 129
 lattice translation, 15
 related to crystal lattice planes, 11–14, 440–3, 441
 scalar product, 436–8
transformation of components, 142–4, 143, 146

dummy suffix notation, 145–6

vector product operations, 438–40, 439

triple product formula, 226, 439

von Mises condition, 217

Voronoi polyhedra, 124–6, 125

wavy glide, 205, 208, 215

Weaire–Phelan structure, 418, 419

Weiss zone law, 11–14, 62

white tin (β-Sn), crystal structure, 94–5

Wulff net, 460–1, 461, 462, 463

Wulff plot, crystal/grain shape, 414–17, 415

wurtzite (β-ZnS)

crystal structure, 100, 101, 497

surfaces, 392, 392

stacking faults and dislocations, 299

Young’s modulus (E), 189, 192, 427

zeolites, 137, 138

zinc, twinning, 346, 349

zinc-blende see sphalerite

zirconium

martensitic transformations, 369–74, 375

oxide (zirconia), transformation toughening, 384

twining, 346, 349

zone addition rule, 14, 51–2

zones, of crystal lattice planes, 12–14