Index

Accelerometers, 13–17
 application, 4, 6–8, 17, 38, 147
 applied to engines, 57–60, 217–22
 DC, 9
Acoustic emission (AE), 4
Adaptive noise cancellation, 125
Akaike information criterion (AIC), 125
Aliasing, 85–6
Amplitude demodulation, 10, 47, 97, 102, 108, 201
Analytic signal, 68, 96, 98, 100, 129, 130, 198, 202
Annulus gear, 179, 180, 200
Anti-aliasing filter, 86
Artificial neural network (ANN), 132, 235, 245
Autocorrelation function, 29, 75, 84, 103, 106, 108, 123, 127, 135–7, 170, 205
Autoregressive (AR) model, 122, 125, 199
Autospectrum, 84, 103, 127–8
Backward whirl, 32
Ball/roller spin frequency (BSF), 48, 208
Ballpass frequency, inner race (BPFI), 48, 206, 211, 213
Ballpass frequency, outer race (BPFO), 48, 108, 206, 213
Base strain, 16
Bent shaft, 35
Bladed machines, 52
Blind source separation (BSS), 22, 172
Breathing crack, 35, 37
Brinelling, 51
Bucket wheel excavators, 199
Cardan joint. See Hooke’s joint
Causal function, 95
Cavitation, 25, 37, 92
Cepstrum
 applied to bearings, 51, 233
 applied to engines, 217
 applied to prognostics, 234, 242
differential, 106, 107, 220
 practical considerations, 110–14
 spectrum comparison, 149–54
 analysis, 103–14, 187–96
Charge amplifier, 14–16
Cohen’s class, 130
Complex wavelet, 131, 134
Constant percentage bandwidth (CPB), 94, 114–15, 131, 148, 178, 229
 spectrum comparison, 149–54
Contact ratio (CR), 43
Convolution, 20, 74–83, 92, 96, 104, 116
Convolution theorem, 69, 77–81, 84, 86, 95
Couple unbalance, 34
Crest factor, 235–6
Crowning, 197–8
Cumulant, 66, 217, 235
Cumulative damage model, 248
Cyclostationary analysis, 134–9
Index

Cyclostationary signals, 22, 25, 27, 30, 117, 199
 bearings, 49, 52, 204–7
Cylinder pressure
 reconstruction, 214, 217–25

Data logger, 7
Data windows, 89–92
Data-driven model, 229, 243, 245–7, 248
Delta function, 74
 convolution with, 77
 in a spectrum, 78
Delta function train
 Fourier transform, 83
Demodulation, 96–103, 185
Deterministic signals, 26, 28–9, 117
Diesel engines, 56, 60, 130, 156, 158, 215,
 217, 245, 247
Digital filter
 FIR, 116
 IIR, 116
Digital filtering, 114–17, 120
Discrete Fourier transform (DFT), 43, 71–2
Discrete/Random separation (DRS), 128–9, 203
Dry friction whip, 39–40
Dry friction whirl, 39–40
Dual vibration probes, 17
Duhamel integral, 74
Dynamic range, 58, 86, 112, 148, 161
 accelerometers, 16–17
 transducers, 9, 10, 13, 17
Dynamic stress, 230

Echo delay time, 103, 187, 194, 197–8
Echoes, 77
 use of the cepstrum, 103–5, 108, 194–6
Electrical machines, 52–6
Electrical runout, 10
Energy spectral density (ESD), 94
Envelope analysis, 49, 51, 97, 105, 108, 169,
 174, 200, 203, 205, 207–8, 213, 234
Environmental stressors, 248
Epicyclic gearbox. See Planetary gearbox
Ergodic, 26, 30
Extended spalls, 204–5

Fast Fourier transform (FFT), 72–3
Fault detection, 3, 143, 229
Fault diagnosis, 3, 108, 234
Fault prognosis, 3, 235
Ferrography, 5
Figures of merit, 179, 235
Flattop window, 89
Flexible couplings, 19, 33
Fluid film bearing, 4, 8, 10, 31, 35, 38, 148
Forcing function, 1, 20, 39, 74, 104, 123,
 165, 187, 193–4, 217
Fourier integral transform, 69, 86
Fourier series, 66–9, 71, 82–3, 93
Four-stroke engine, 56
Frequency demodulation, 19, 160, 224
Frequency range, 113, 143, 148, 188, 230
 accelerometers, 16–17
 bearings, 50–1
 transducers, 4, 9, 11, 12, 224
Frequency response function (FRF), 20–2,
 69, 80–1, 106, 108, 128, 218
Fundamental train frequency (FTF), 48
Gas turbines, 4–5, 15, 50, 171, 207, 211, 236
Gaussian random signal, 64, 235
Gear couplings, 33
Gears
 diagnostics, 178–200, 235
 vibrations, 18, 22, 25, 40–6, 51, 105, 168
General machinery criterion chart, 144–5
General path model, 248
Ghost components, 45–6
Gyroscopic effects, 32

Hanning weighting/window, 21, 57, 93, 112,
 180
Harmonic cursor, 22, 167–9
Harmonic wavelets, 131–2
Helicopter gearbox, 119, 129, 179, 207, 209,
 235
Hertzian deformation, 41, 236
Hilbert transform, 68, 95–6, 100, 108, 163,
 180, 201
Hooke’s joint, 33
Hot box detectors, 5
Hunting tooth, 168
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid models</td>
<td>247–9</td>
</tr>
<tr>
<td>Hydrodynamic bearings. See Fluid film</td>
<td></td>
</tr>
<tr>
<td>bearings</td>
<td></td>
</tr>
<tr>
<td>Hysteresis whirl</td>
<td>38–9</td>
</tr>
<tr>
<td>IC engines</td>
<td>5</td>
</tr>
<tr>
<td>diagnostics</td>
<td>214–25</td>
</tr>
<tr>
<td>vibrations</td>
<td>3, 25–6, 56</td>
</tr>
<tr>
<td>Impulse response functions</td>
<td>20, 69, 74, 95, 104, 107, 169</td>
</tr>
<tr>
<td>Impulse wavelets</td>
<td>134</td>
</tr>
<tr>
<td>Impulsiveness</td>
<td>51, 172, 174, 211</td>
</tr>
<tr>
<td>trending of</td>
<td>234–8</td>
</tr>
<tr>
<td>Induction motor</td>
<td>53, 151</td>
</tr>
<tr>
<td>vibrations</td>
<td>54–6</td>
</tr>
<tr>
<td>Inertial torque</td>
<td>222</td>
</tr>
<tr>
<td>Intermittent monitoring</td>
<td>6–8, 18</td>
</tr>
<tr>
<td>Inverse filter</td>
<td>169, 217, 219–20, 222</td>
</tr>
<tr>
<td>Inverted echo pairs</td>
<td>187, 194, 196</td>
</tr>
<tr>
<td>ISO 10816 criteria</td>
<td>144–7, 229</td>
</tr>
<tr>
<td>ISO 2372 criteria</td>
<td>13, 144, 229</td>
</tr>
<tr>
<td>Jeffcott rotor</td>
<td>31</td>
</tr>
<tr>
<td>Journal bearing. See Fluid film bearing,</td>
<td></td>
</tr>
<tr>
<td>Kaiser-Bessel window</td>
<td>89</td>
</tr>
<tr>
<td>Kurtogram</td>
<td>174–8</td>
</tr>
<tr>
<td>fast, 176–8, 200, 208</td>
<td></td>
</tr>
<tr>
<td>Kurtosis</td>
<td>66, 169, 172, 179, 200, 213, 235, 237</td>
</tr>
<tr>
<td>Laplace transform</td>
<td>69, 116</td>
</tr>
<tr>
<td>Laser vibrometers</td>
<td>18</td>
</tr>
<tr>
<td>scanning, 18</td>
<td></td>
</tr>
<tr>
<td>torsional, 19–20, 60, 224</td>
<td></td>
</tr>
<tr>
<td>Laval rotor. See Jeffcott rotor</td>
<td></td>
</tr>
<tr>
<td>Leakage</td>
<td>86, 93–4</td>
</tr>
<tr>
<td>Levinson-Durban recursion (LDR) algorithm</td>
<td>123</td>
</tr>
<tr>
<td>Lifter, 105, 194</td>
<td></td>
</tr>
<tr>
<td>Linear prediction</td>
<td>115, 122–5, 170, 179, 209</td>
</tr>
<tr>
<td>looseness</td>
<td>39</td>
</tr>
<tr>
<td>Lubricant analysis</td>
<td>1, 3–5</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>condition-based, 1–3, 229</td>
<td></td>
</tr>
<tr>
<td>Predictive</td>
<td>2</td>
</tr>
<tr>
<td>Preventive</td>
<td>2</td>
</tr>
<tr>
<td>run-to-break</td>
<td>2</td>
</tr>
<tr>
<td>Mask spectrum</td>
<td>148–50</td>
</tr>
<tr>
<td>Maximum entropy method (MEM)</td>
<td>123</td>
</tr>
<tr>
<td>Mean differential cepstrum</td>
<td>107</td>
</tr>
<tr>
<td>Mechanical filter</td>
<td>15</td>
</tr>
<tr>
<td>Mechanical runout</td>
<td>10</td>
</tr>
<tr>
<td>Mechanical signature analysis</td>
<td>3</td>
</tr>
<tr>
<td>Mesh transfer function</td>
<td>43</td>
</tr>
<tr>
<td>MIMO system</td>
<td>20, 21, 104</td>
</tr>
<tr>
<td>Misalignment</td>
<td>19, 32–5, 37, 46, 53, 151, 230</td>
</tr>
<tr>
<td>Misfire, 60, 155, 157, 163–5</td>
<td></td>
</tr>
<tr>
<td>Mobility</td>
<td>20</td>
</tr>
<tr>
<td>Modulation sidebands</td>
<td>43, 98–101, 113, 125, 191, 230</td>
</tr>
<tr>
<td>Morlet wavelets</td>
<td>132–4, 178</td>
</tr>
<tr>
<td>Moving cepstrum integral (MCI)</td>
<td>196</td>
</tr>
<tr>
<td>Noise bandwidth</td>
<td>75, 89, 94, 121, 128</td>
</tr>
<tr>
<td>Non-stationary signals</td>
<td>25, 27, 30, 93</td>
</tr>
<tr>
<td>Normal distribution</td>
<td>64</td>
</tr>
<tr>
<td>Nyquist frequency</td>
<td>72, 84, 86, 202</td>
</tr>
<tr>
<td>Nyquist plot</td>
<td>81</td>
</tr>
<tr>
<td>Oil analysis</td>
<td>4–5</td>
</tr>
<tr>
<td>Oil wear debris</td>
<td>235</td>
</tr>
<tr>
<td>Oil whip</td>
<td>38</td>
</tr>
<tr>
<td>Oil whirl</td>
<td>38, 148</td>
</tr>
<tr>
<td>One-sided spectrum</td>
<td>68, 96, 133</td>
</tr>
<tr>
<td>Operational modal analysis</td>
<td>23, 107, 119</td>
</tr>
<tr>
<td>Order tracking</td>
<td>117–20, 128, 168, 178, 182, 199, 207, 224</td>
</tr>
<tr>
<td>Parallel roller bearings</td>
<td>50</td>
</tr>
<tr>
<td>Parseval’s theorem</td>
<td>93</td>
</tr>
<tr>
<td>Partial misfire</td>
<td>163, 224</td>
</tr>
<tr>
<td>Performance analysis</td>
<td>5</td>
</tr>
<tr>
<td>Permanent monitoring</td>
<td>6–8, 148</td>
</tr>
<tr>
<td>Phase demodulation</td>
<td>19, 102–3, 119, 161, 182, 207</td>
</tr>
<tr>
<td>Phase unwrapping</td>
<td>98, 103</td>
</tr>
<tr>
<td>Phase-locked loop</td>
<td>117</td>
</tr>
</tbody>
</table>
Index

Physics-based model, 229, 243–4, 247–8
Picket fence effect, 86, 89
Picket fence error, 89, 93
Piezoelectric transducers, 4, 15–16
Pitchline pitting, 44
Pitfalls of the FFT process, 86–9
Planet carrier, 180, 199–200
Planet gear, 122, 179, 208
Planetary gearbox, 114, 122, 180, 199–200
Power cepstrum, 103, 106
Power spectral density (PSD), 93–4
Pressure torque, 214, 222–3, 225
Prewhitening, 123, 171, 173, 241
Probability distribution/density, 63–6
Profile errors, 44
Prognostics, advanced, 243–9
Proximity probes, 6, 8, 9–12, 17, 38
Pseudo-cyclostationary, 137, 204, 206
Pseudo-random signals, 29, 42
Pulse timing, 184, 224
Quefrency, 105, 108
Rahmonic, 105, 110, 188, 234
Rail vehicle bearings, 236
Random signals, 29–30, 63, 94, 117
stationary, 29–30, 71, 84, 93–4, 134
Rathbone criterion chart, 143–4
Reciprocating compressors, 5, 56, 60, 215
Reciprocating machines
 diagnostics, 214–25
 vibrations, 56–7, 156
Rectangular window, 57, 86, 89, 91, 93–4,
 112, 128, 180
Relative vibration, 4, 8–9
Remaining useful life (RUL), 3, 229, 235,
 248
Residual signal, 179, 209
Reynolds’ equation, 37
Rolling element bearings, 2, 6, 137, 148,
 230
 diagnostics, 173, 200–14
 vibrations, 25, 47–52, 97, 117, 172
Rotor dynamics, 9, 32, 37, 56
Rubbing, 32, 35, 39
Runout, 10, 45
Runout subtraction, 10
Sampled time signals, 69–71
SDOF system, 39, 80–1
 response, 107, 139, 173
Seismic probe, 17
Self adaptive noise cancellation (SANC),
 125–8
Separation of spalls and cracks, 196–9
Shaft bow, 10
Shaft encoder, 19, 60, 117, 119, 160, 181,
 182, 224
 error, 184
Shock model, 248
Short time Fourier transform (STFT), 57,
 130, 172
Sideband cursor, 22, 167, 190
Sign function, 95
SIMO system, 104
Simulation models, 36–7, 245, 247
Skewness, 65
Slip frequency, 53–5, 168
Smoothed pseudo Wigner-Ville distribution,
 130
Spalls, 45, 51, 169, 204, 209, 236, 244
 determination of size, 238–43
Spark ignition engines, 56, 60
Spectral correlation, 135–8, 205–7
Spectral kurtosis (SK), 172–8, 200, 203,
 230, 232, 235, 244
Spectrum averaging, 92–3
Spectrum comparison, 149, 156, 229
Spectrum scaling, 93–5
Spherical roller bearings, 49
Stationary signals
deterministic, 28–9
Subharmonic whirl, 38
Subharmonics, 31, 39
Subsurface cracking, 237
Sun gear, 179
Synchronous whirl, 32, 36
Taper roller bearings, 49
Thermal bow, 35
Thermography, 5
Index

Time synchronous averaging (TSA), 120–2, 178
Time/frequency analysis, 27, 129–34, 199
Time-frequency diagrams, 57–60
Tip relief, 41
Tooth root crack, 22, 45, 132, 182, 194, 198
Toothmesh (TM), 22, 46, 179, 187
frequency, 22, 42–3, 150, 167–8
harmonics, 19, 43–4
signal, 205
Torsional laser vibrometer. See Laser
vibrometer: torsional
Torsional vibration, 4, 18–20, 33, 60–1, 97,
156, 160–5, 181–2, 184, 222–4
Torsional vibration transducers, 18–20
Transducers
permanently mounted, 5–7
velocity, 12–13
Transmission error (TE), 18–19, 40–1,
181–7, 197
Transverse crack, 35
Trend analysis, 229–38
Triboelectric noise, 15
Turbulence, 25, 52, 92
Two-stroke engines, 56

Unbalance, 6, 22, 31–2, 34–6, 55, 245
Unit impulse, 74, 77
Variance, 65, 125, 135–6
VDI 2056 criteria, 13, 144, 229
Velocity pickup, 12–13, 16
Vibration criteria
reciprocating machines, 155–6
rotating machines, 143–7, 230
Vibration transducers, 8–18
Wavelet analysis, 131–4, 178
Wavelet denoising, 132
Wavelet kurtogram, 178, 209, 211, 213
Weibull analysis, 247
Wigner-Ville distribution (WVD), 130–1,
136
Wigner-Ville spectrum (WVS), 139
Window effects, 86
Yates criterion chart, 143–4
Yule-Walker equations, 123
Zero padding, 102, 118, 202
Zoom processor, 86, 102, 182