Index

2D channel morphology, 115–117
recent applications, 116
2D mapping of flood inundation, 120–121
2D mapping of floodplain morphology, 119–120
2D mapping of overbank sedimentation, deposition and scour, 121–122
3D channel morphology, 117–119
3D mapping of floodplain morphology, 119–120
3D mapping of overbank sedimentation, deposition and scour, 121–122

A
apriori hypothesis, 6
accelerometer mass spectrometry (AMS), 19–20
acoustic Doppler current profilers (ADCPs) for sediment transport, 329
accuracy, 274
accuracy of data sources
cartographic record, 61
assessing accuracy, 66–68
positional accuracy, 61–62
temporal accuracy, 66
documentary record, 61–63
modern historical record, 71
acoustic back-scattering (ABS) sensors, 329–330
acoustic Doppler current profilers (ADCPs) for discharge measurement, 266–267
flow velocity measurement, 264–265
sediment transport, 329
acoustic Doppler velocimeters (ADVs) for flow velocity measurement, 263–4, 458
acoustic sensors, 329
active transformation, 43
advection–diffusion equation, 421
adventitious sprouts, 217–218
aerial photography analysis, 103, 122
advantages and disadvantages, 110, 123, 125, 126, 127
floodplain geomorphology and fluvial processes
2D and 3D mapping of floodplain morphology, 119–120
2D and 3D mapping of overbank sedimentation, deposition and scour, 121–122
2D mapping of flood inundation, 120–121
physical basis
considerations, 110
electromagnetic radiation (EMR), 108–109
geometric accuracy, 112
overview, 115
photogrammetry, 103–108
scale and spatial accuracy issues, 110–112
sensor resolution, 111–112
sensors and platforms, 109–110
size of rivers, 110
spectral properties, 113–115
river geomorphology and in-channel processes
2D channel morphology and channel change, 115–117
2D mapping of turbidity, suspended solids and bed materials, 119
3D and quasi-3D channel morphology and channel change, 117–119
aggradation–degradation episode (ADE), 44
Ain River, 90, 220, 225, 484, 485, 490
Aire River, 520
air jet sieving, 333
Allier River, 91
all stratigraphic units, 17, 23
alluvial stratigraphy, 19–20
alluvium geochronology, 19–20
hybrid-correlative methods, 20, 21
numerical dating methods, 19–20
pedology, 21–23
relative methods, 19, 20
alluvium, definition, 15
Amazon River, 80, 120, 368, 372
Ambleve River, 49
anabranching river classification, 149
analysis of variance (ANOVA), 481
anastomosing channel modelling, 449–450
Ancholme River, 58
angle of photography, 103–108
anhysteretic remanent magnetization (ARM), 186
Ankholme River, 58–59
Araguia River, 70
archaeology, 20, 40, 51–52
artefacts and fluvial processes, 43
case studies, 45
floodplain deposition and erosion in Belgium, 49–50
metal mining and fluvial response, 50–51
slags, bedload and hydraulic sorting in Belgium, 48–49
Trent River, 46–48
general considerations in geomorphology, 40–41
legacy sediment, 44
environmental disturbance and fluvial adjustments, 44–45
pristine New World myth, 45
mining sediment as tracers, 43–44
paleohydrological data, 43
tools, 41
banks, 42
boulders, 42
buildings, 42
coins, 42
earthworks, 42
hearth, 41, 42
land divisions, 42
legacy sediments, 42
lithics, 41
middens, 42
pottery, 41, 42
quays, wharves and jetties, 42
small artefacts, 41
stonework, 42
structures, 41–43
walls, 42
wells, cisterns and drains, 42
wooden objects, 42
wooden structures, 42
armour layers, 283
Arno River, 85, 241
artificial magnetic tracer method, 309
advantages and disadvantages, 307
recovery rate, 308–309
artificial neural networks (ANN) approach, 331
Ashley River, 291
atomic absorption spectrometry (AAS), 187
attribute accuracy, 65–66
autocorrelation analysis, 492
average boundary shear stress, 253
B
back-scattering sensors, 329
Bage River, 93
bank advance, 253
bank erosion, 251–252
bank erosion modelling, 253–254
bank erosion process, 253
bank evolution models, 432
bank failure, 253–254
bank stability analyses, 388–389
bankfull discharge, 247–248
bankfull Shields stress, 446
banks, 42
Bank-Stability and Toe-Erosion Model (BSTEM), 254
bank-to-bank transects sampling method, 295
case evolution
three-dimensional models, 429
two-dimensional models, 426
barrel samplers, 289
bathymetric maps, 118
Bavarian Water Law, 134
Bayesian analysis, 490
Bayesian approaches, 195
Be, 184
Bear River, 50
bed and bank analysis, 246
characterization, 246
measurement, 246–247
index

bed elevation, 238–239
categorization, 239
bed material, 239–241
bed materials, 119
bed sediment measurement, 278
applications to aquatic habitats
fine sediment accumulation measurement, 295–296
saltation and coarsening gravel quality, 296
sediment infiltration into coarsening gravels, 296–297
appropriate sampling method selection, 299–302
advantages and disadvantages of sampling methods, 301
attributes and sediment size distributions, 278–279
case study at Bear Creek, 299, 300, 301
case study at French Creek, 298–299, 300
bulk sampling, 298
methods and results, 297–298
site description, 297
visual estimates of pebble counts, 298
visual estimates of surficial fine sediment, 298
comparability of pebble counts and bulk samples, 299
critique of some popular sampling methods, 294–295
particle shape and roundness, 282–283
particle size distribution curves, 279
sample size requirements
adequate samples for bulk gravel samples, 290–292
reproducibility of pebble counts, 292–293
sampling sand and fine sediments, 283–284
sampling strategy, 293–294
sampling surface gravel, 284
lacies mapping, 284
pebble count, 284–287
photographic grid methods, 287–289
visual estimates, 287
statistical descriptors, 279–282
subsurface sampling methods
bulk core sampling, 289
comparing bulk core with freeze-core sampling, 290
freeze-core sampling, 289–290
surface versus subsurface layers, 283
bedform models, 432–435
bedload, 48–49
bedload budgets, 68
volume estimation equation, 68
bedload magnetic detector (BMD) system, 316
bedload sampling, 335
bedload equations, 338–341
review summary, 341
bedload rating curves, 341–342
bedload tracers, 337
bedload traps, 337
hydraulic efficiency, 336
morphological methods, 337–338
sample types, 335–336
strategy and practice, 336–337
biological, 337
bio-fouling of optical sensors, 329
biological methods, 7
bivariate statistics, 478
describing and testing differences, 481–482
multiple regression analysis, 480–481
regression analysis, 478–479
critical appraisal, 480
subsurface, 479–480
residuals, 479
testing link between variables, 479
bones, 42
braided channel modelling, 449
braiding index, 243
Brenta River, 68
buildings, 42
core sampling, 289
comparability with pebble counts, 293
compared with freeze-core sampling, 290
Buonamico River, 315
burrowing, 361
C
14C, 183
cable-suspended samplers, 326
CAESAR, 167, 168, 172, 173, 174
canonical correspondence analysis, 484–485
Carmel River, 293, 312
catchment baseline surveys, 513–516
catchment process modelling, 159
approaches, 160
characteristics of catchment process models, 174
conceptual models, 160–161
data-driven empirical models, 163–164
numerical models, 164
effect-of-process-based reductionist models, 167–168
process-based reductionist models, 165–167
problem-centred interpretative models, 161–164
prospect, 173
representation and accuracy considerations, 168
accuracy and uncertainty, 171–172
best-practice attributes, 169
channel networks and morphology, 171
fundamental components, 170
input data, 168–171
land cover and use, 170–171
model performance, 171
surface topography, 169
validation, 172
Cecina River, 218
channel adjustment indicators, 147
channel change
2D channel morphology, 115–117
recent applications, 116
3D and quasi-3D channel morphology and channel change, 117–119
cartographic record, 63–64
topographic record, 67–68
channel classification, nature of, 152–153
channel erosion, 361
channel form and adjustment, 237, 254
bed and bank analysis, 246
characterization, 246
measurement, 246–247
characterization and measurement, 237–238
cross-section analysis, 241
characterization, 241–242
measurement, 242
discharge analysis, 247–248
bankfull discharge, 248
interpretation and analysis, 249–250
channel width and bank erosion modelling, 253–254
channel width changes and bank erosion, 251–252
deterministic methods, 252–254
empirical methods, 250–252
longitudinal profile and bed elevation changes, 250–251
stable channel dimensions, 250
stable channel–dimension modelling, 253
longitudinal profile and bed elevation, 238–241
platform analysis, 242–243
characterization, 243
measurement, 243–244
three-dimensional analysis, 244
characterization, 245
measurement, 245–246
channel patterns, 139–140
channel platform modelling, 447
anatomosing channels, 449–450
braided channels, 449
meandering channels, 447–449
charge–coupled devices (CCDs), 111
Cheat River, 19
chemical methods, 7
Chey's closure, 419
cisterns, 42
Clairwater River, 374
Clum River, 482
Clutha River, 345–347
corrosion particle tracing, 306, 319
general overview of techniques, 306–310
advantages and disadvantages, 307
detection, 311
experimental design flow chart, 309
hydraulic data, 311–312
injection, 310–311
interpretations, 311
population size, 310
recovery rate, 310
recovery rates of tracing projects, 308–309
tracing methods
exotic particles, 312
ferruginous tracers, 313–314
fluorescent paint, 312–313
magnets, 314–316
painted particles, 312
passive integrated transponder (PIT) tags tracer method, 316–317
radioactive tracers, 313
radiofrequency identification, 318–319
cohesive materials, average boundary shear stress, 253
cor-inertia analysis, 483–484, 485–486
collapsing, 42
colluvial transport processes, 362–364
Colorado River, 138, 430, 431
Colorado River, 29, 31, 496
combined sewer overflows (CSOs), 143
communities as an indicator of disturbance regime, 223–225
comparative method, 5
comparative space–time framework, 86
connectivity analysis, 86, 91–92
similarity analysis, 86–91
composite constant rate of supply (C–CRS) model, 187
computational fluid dynamics (CFD), 389, 391–392
applications, 396
meander bend flow, 400
Congaree River, 70
connectivity analysis, 86, 91–92, 93–94
Drôme, Roubion and Eygues Rivers, 98
conservation of mass and momentum, 413–414
constant flux – constant sedimentation (CFCS) model, 187
constant initial concentration (CIC) model, 187
constant initial concentration and constant sedimentation rate (CICCRS) model, 188
constant rate of supply (CRS) model, 187
construction, 362
contraction method for discharge estimation, 271
Corey shape factor, 282
corrasions scars, 217
correspondence analysis (CA), 483
cosmogenic isotope dating, 20, 21
coupled model concept, 413
C–Q relation, 330–331
critical flumes, 268
cross-section analysis of channels, 241
correlation of point measurements with discharge, 270
dilution and tracer gauging, 269–270
electromagnetic method, 270
flumes, 268
integration of point measurement, 266
moving boat method, 270
other techniques, 270
rating curves, 267–268
ultrasonic methods, 269
uncertainties, 274
weirs, 268–269
discharge-weighted mean concentration, 326
dissolution, 361
distributions, statistical, 487
Bayesian analysis, 490
dominant discharge, 247
drains, 42
Drôme River, 96–98, 99, 150
Durance River, 137
Dynamics, 471
earthworks, 42
echo-hydrology and river morphology, 471
effect of sedimentation, 376
effectiveness of bedload, 376
effective particle size distribution, 334
electromagnetic current meters for flow velocity measurement, 262–263
electromagnetic method for discharge measurement, 270
electromagnetic radiation (EMR), 108–109
eoclen microprobe, 187
empirical relationships, 5
environmental change, 21–22
environmental magnetism, 185–186
magnetic properties, 186
magnetic remanence, 186–187
sediment geochemistry, 187
equifinality, 172
ergodic method, 86
erosion equation, 421
erosion, rate of, 253
escalante River, 18
Exner equation, 443
exotic tracer method, 309, 312
advantages and disadvantages, 307
recovery rate, 308
experimental method, 5
experimental studies in fluvial geomorphology, 456–457, 472
additional experimentation areas
biota in stream management, 470–471
echo-hydrology and river morphology, 471
hydropheric flow, 471
microbial processes, 471–472
scale independence and scaling, 471
applications, 470
basic equipment, 457
flow field, 458
geophysical flow, 471
weirs, 268–269
flow records analysis, 271
extreme value plots, 272–273
flow duration curves, 272
flow hydrographs, 271–272
flow measurement and characterization, 260, 275
discharge measurement, 265–266
acoustic Doppler current profilers (ADCPs), 266–267
correlation of point measurements with discharge, 270
dilution and tracer gauging, 269–270
electromagnetic method, 270
flumes, 268
integration of point measurement, 266
moving boat method, 270
other techniques, 270
rating curves, 267–268
ultrasonic methods, 269
uncertainties, 274
weirs, 268–269
flow records analysis, 271
extreme value plots, 272–273
flow duration curves, 272
flow hydrographs, 271–272
indirect methods of discharge estimation, 270
contraction method, 271
slope–area method, 270–271
step-backwater method, 271
method selection, 273
channel attributes, 274–275
cost, 275
equipment, 275
hydrological attributes, 274–275
precision and accuracy, 274
pre-existing data, 273–274
purpose of measurements, 273
other biotic interactions with rivers, 469
vegetation, fine sediment and laboratory-scale
meandering, 466–468
wood in rivers, 463–465
facilities, 458
list of international facilities, 459–460
microscale experiments at IPDG, 462–463
other facilities, 463
St Anthony Falls Laboratory (SAFL) and Outdoor StreamLab (OSL), 458–462
extremal hypothesis models, 387–388
extreme value plots, 272–273
lygues River, 84, 96–98
elements for similarity – connectivity analysis, 100
facies, 16
facies mapping, 284
facies sampling, 286–287
fall speed size analysis, 333
FastMECH, 425, 427, 430, 433
Federal Interagency Sedimentation Project (FISP), 328
Fagerström’s bias-correction factor, 330–331
field methods, 5
finite Fourier transforms, 493
floats for flow velocity measurement, 260–261
flood inundation 2D mapping, 120–121
floodplain, definition, 16
floodplain deposition and erosion, 49–50
floodplain deposits, definition, 15–16
floodplain geomorphology 2D and 3D mapping, 119–120
floodplain sedimentation and erosion, 450–451
event-scale process modelling, 451
future directions, 451
genera, 451
globally morphic geomorph, 451
governing flow criteria, 17–19
flow discharge, 266
flow duration curves, 272
flow hydrographs, 271–272
flow measurement and characterization, 260, 275
discharge measurement, 265–266
acoustic Doppler current profilers (ADCPs), 266–267
correlation of point measurements with discharge, 270
dilution and tracer gauging, 269–270
electromagnetic method, 270
flumes, 268
integration of point measurement, 266
moving boat method, 270
other techniques, 270
rating curves, 267–268
ultrasonic methods, 269
weirs, 268–269
flow records analysis, 271
extreme value plots, 272–273
flow duration curves, 272
flow hydrographs, 271–272
indirect methods of discharge estimation, 270
contraction method, 271
slope–area method, 270–271
step-backwater method, 271
method selection, 273
channel attributes, 274–275
cost, 275
equipment, 275
hydrological attributes, 274–275
precision and accuracy, 274
pre-existing data, 273–274
purpose of measurements, 273
other biotic interactions with rivers, 469
vegetation, fine sediment and laboratory-scale
meandering, 466–468
wood in rivers, 463–465
facilities, 458
list of international facilities, 459–460
microscale experiments at IPDG, 462–463
other facilities, 463
St Anthony Falls Laboratory (SAFL) and Outdoor StreamLab (OSL), 458–462
scaling issues, 469–470
extremal hypothesis models, 387–388
extreme value plots, 272–273
lygues River, 84, 96–98
elements for similarity – connectivity analysis, 100
facies, 16
facies mapping, 284
facies sampling, 286–287
fall speed size analysis, 333
FastMECH, 425, 427, 430, 433
Federal Interagency Sedimentation Project (FISP), 328
Fagerström’s bias-correction factor, 330–331
field methods, 5
finite Fourier transforms, 493
floats for flow velocity measurement, 260–261
flood inundation 2D mapping, 120–121
floodplain, definition, 16
floodplain deposition and erosion, 49–50
floodplain deposits, definition, 15–16
floodplain geomorphology 2D and 3D mapping, 119–120
floodplain sedimentation and erosion, 450–451
event-scale process modelling, 451
future directions, 451
globally morphic geomorph, 451
governing flow criteria, 17–19
flow discharge, 266
flow duration curves, 272
flow hydrographs, 271–272
flow measurement and characterization, 260, 275
discharge measurement, 265–266
acoustic Doppler current profilers (ADCPs), 266–267
correlation of point measurements with discharge, 270
dilution and tracer gauging, 269–270
electromagnetic method, 270
flumes, 268
integration of point measurement, 266
moving boat method, 270
other techniques, 270
rating curves, 267–268
ultrasonic methods, 269
weirs, 268–269
flow records analysis, 271
extreme value plots, 272–273
flow duration curves, 272
flow hydrographs, 271–272
indirect methods of discharge estimation, 270
contraction method, 271
slope–area method, 270–271
step-backwater method, 271
method selection, 273
channel attributes, 274–275
cost, 275
equipment, 275
hydrological attributes, 274–275
precision and accuracy, 274
pre-existing data, 273–274
purpose of measurements, 273
flow measurement and characterization (continued)

velocity measurement, 260
acoustic Doppler current profilers (ADCPs), 264–265
acoustic Doppler velocimeters (ADVs), 263–4
electromagnetic current meters, 262–263
floats, 260–261
laser Doppler velocimetry (LDV), 265
mechanical current meters, 261
other methods, 265
flow modelling, 412–413
coupled model concept, 413
flow conservation laws
bed stress closure, 419
bedload transport, 420
conservation of mass and momentum, 413–414
coordinate systems, 416–418
dispersion coefficients, 419
hydrostatic assumption, 416
Reynolds stresses and turbulence closure, 414–416
spatial averaging, 418
future directions, 439
flow extreme value plots, 272–273
flow duration curves, 272
flow hydrographs, 271–272
flow measurement and characterization
fluvial geomorphology, 3
fluvial anthroposystem, 81–82
fluorescent tracer method, 310, 312–313
flow records analysis, 271
flow modelling, 412–413
flow duration curves, 272–273
flow hydrographs, 271–272
flumes, 268
fluorescent tracer method, 310, 312–313
advantages and disadvantages, 307
fluvarial anthroposystem, 81–82
fluval deposits, definition, 15
fluval geomorphology, 3
general framework, 8
terminology, 8
tool overview and trends, 9
tool, definition of
from conceptual to working tools, 5–7
roots and tools, 4–5
tools and questions, 7–8
fluval landscape description through vegetation
fluval landforms and floods, 221–222
reading landscapes, 222–223
fluval morphodynamics modelling, 442, 451–452
channel platforms, 447
anastomosing channels, 449–450
braided channels, 449
meandering channels, 447–449
fluval plain sedimentation and erosion, 450–451
event-scale process modelling, 451
future directions, 451
geomorphic models, 451
hydraulic geometry of rivers, 445–447
limitations of models, 452
longitudinal profile modelling, 443
alluvial rivers, 443–444
bedrock rivers, 444–445
modelling process, 442–443
science versus art, 443
site-specific problem-solving models, 452
two categories of models, 443
fluval system, 79–80
advantages and disadvantages, 100
as a conceptual tool
comparative space–time framework, 85–92
from fluvial system to riverscape, 94–95
partial versus total system approach, 84
quantitative versus qualitative analysis, 92–94
structuring hypothesis, 84
components
non-linear temporal trajectory, 83, 84
scales of analysis, 83
forms analysis, 7
fractal analysis, 493
Fraser River, 338, 444
freeze-core sampling, 289–290
compared with bulk core sampling, 290
frequency-dependent susceptibility, 186
Froude number, 493
future framework, 7
fuzzy logic (FL) approach, 331
G
gamma distribution, 281
gamma-emitting radionuclides, 182–185
gammadistribution, 281
general framework, 8
historical framework, 7
highly sensitive radionuclides, 182–185
future framework, 7
geomorphology
archaeological evidence, 40–41
geomorphological channeldesign, 518–519
geomorphic transfer functions, 167, 168
geomorphic post-project appraisal, 109
geomorphological channel design, 518–519
geomorphology, archaeological evidence, 40–41
global positioning systems (GPSs), 109
granite, 282
grain size, 282
grain-size mapping, 288
gravel bed rivers, 283
gravel, surface, 284
facies mapping, 284
pebble count, 284
facades sampling, 286–287
photographic grid methods, 287–289
ruler versus template, 284–285
size intervals, 285–286
visual estimates, 287
Green River, 118, 426, 427, 435
grid sampling, 284
facades sampling, 286–287
photographic grid methods, 287–289
ruler versus template, 284–285
size intervals, 285–286
visual estimates, 287
ground control points (GCPs), 112
ground resolution element (GRE), 112
gullying, 362
H
Harris Island, 30
hearths, 41, 42
Henley-Smith sampler, 327
Hidden Markov Model test, 150
hillslope processes and sediment delivery to streams, 360–364
examples of analysis methods for erosion and sediment transport, 361–362
examples of analysis methods for sediment transport and channel storage, 363
historical data, use of, 56–57, 71
cartographic record, 63
accuracy, 64–66
data reliability and accuracy, 61–63
early documentary record in Britain, 58–59
other documentary sources, 59–61
modern historical record, 69–71
accuracy and uncertainty, 71
topographic record, 66–67
cartographic record, 63
accuracy, 64–66
data reliability and accuracy, 61–63
early documentary record in Britain, 58–59
other documentary sources, 59–61
modern historical record, 69–71
accuracy and uncertainty, 71
levelling networks in France, 69
historical framework, 7
holistic approaches, 6
homoclastic data scatter, 130
horizontal-axis meters, 261
hot–film anemometer, 265
hot–wire anemometer, 265
Hubert segmentation, 496, 497
Hubert test, 150
human artefacts, 40, 51–52
archaeological tools, 41
banks, 42
bones, 42
buildings, 42
coins, 42
earthworks, 42
hearths, 41, 42
land divisions, 42
legacy sediments, 42
lithics, 41
middens, 42
pottery, 41, 42
quays, wharves and jetties, 42
small artefacts, 41
stonework, 42
structures, 41–43
walls, 42
wells, cisterns and drains, 42
wooden objects, 42
wooden structures, 42
case studies, 45
floodplain deposition and erosion in Belgium, 49–50
metal mining and fluvial response, 50–51
slags, bedload and hydraulic sorting in Belgium, 48–49
Trent River, 46–48
fluvial processes, 43
general considerations in geomorphology, 40–41
legacy sediment, 44
environmental disturbance and fluvial adjustments, 44–45
pristine New World myth, 45
mining sediment as tracers, 43–44
paleohydrological data, 43
Hunter River, 95
hybrid-correlative methods, 20, 21
hydraulic efficiency, 336
hydraulic geometry of rivers modelling, 445–447
hydraulic sorting, 48–49
hydraulic equivalency, 44
hydraulic geometry of rivers modelling, 445–447
hydraulicefficiency, 336
hybrid-correlativemethods, 20, 21

I
identification, 133
ill River, 149
in-channel processes
2D channel morphology and channel change, 115–117
2D channel morphology and channel change
recent applications, 116
2D mapping of turbidity, suspended solids and bed materials, 119
3D and quasi-3D channel morphology and channel change, 117–119
inductive method, 5
inductively coupled plasma atomic absorption spectrometry (ICP-AAS), 187
inserted magnet tracer method
advantages and disadvantages, 307
recovery rate, 308
instantaneous working area (IWA), 112
instream structures, 465–466
integration of geomorphological tools, 509, 527–529
case study in the Rhine, 520
bottom-up strategy, 521–522
top-down strategy, 521
case study in the Wylye assessment methods, 525
objectives, 524–525
results, 525–527
current practices, 512–513
framework for incorporating geomorphological tools, 517
general framework of geomorphic studies, 516
geosynclinal growth, 513–518
general concepts, 513–518
general questions, 514–515
models in geomorphic practices, 519–520
generic framework of geomorphological training and application, 519–520
motivations for applying fluvial geomorphology, 509–510
role of geomorphology in planning and management
how fluvial geomorphology can inform management, 512
interactions between human and fluvial systems, 511–512
integration of point measurement, 266

interactions between human and fluvial systems, 511–512
interferometric synthetic aperture radar (IFSAR), 169
interconnected spatial units, 140
interpretative models, 161
inverse distance weighting (IDW), 169
iron core tracer method
advantages and disadvantages, 307
recovery rate, 301
iron oxide coating tracer method, 313–314
advantages and disadvantages, 307
recovery rate, 308
isothermal remanent magnetization (IRM), 186

J
Jamuna River, 70
jetties, 42

K
Karasu River, 28
Knik River, 431, 433
Kolmogorov–Smirnov (KS) test, 482
Kootenai River, 426, 428, 431
Kruksal–Wallis unparametric test, 481–482

L
laboratory experiments, 6
laboratory methods, 5
land divisions, 42
Landsat imagery, 115, 117
landscape evolution models (LEMs), 167
landslides, 361
large woody debris (LWD), 215
large-scale particle image velocimetry (LSPIV), 265
laser diffraction spectroscopy, 333
laser Doppler velocimetry (LDV) for flow velocity measurement, 265
lateral meander migration, 399
lead-210 dating, 20
legacy sediments, 42, 44
environmental disturbance and fluvial adjustments, 44–45
pristine New World myth, 45
Leibild, 145
LEMA, 171
light detection and ranging (LiDAR), 70
2D and 3D mapping of floodplain morphology, 120
3D and quasi-3D channel morphology and channel change, 118–119
models in fluvial geomorphology, 393
limit equilibrium method (LEM), 254
LISS instrument, 334
lithics, 41
Locally Weighted Scatterplot Smoothing (LOWESS), 330–331
location for condition evaluation (LCE), 86–87, 89–91
Drôme, Roubion and Eygues Rivers, 98
Baga River, 95–96
logistic models, 487–490
log–log plots, 330
Loire River, 140
long profiles, definition, 67, 68
longitudinal profile modelling, 443
alluvial rivers, 443–444
bedrock rivers, 444–445
longitudinal profile of channels, 238–239
characterization, 239
measurement, 239–241
Lowland Catchment Research Programme (LOCAR), 200–201
Luanga River, 117

M
magnetic enhancement tracer method, 314, 315
advantages and disadvantages, 307
recovery rate, 309
magnetic remanence, 186–187
magnetic susceptibility, 186
Manning equation, 271
Manning’s closure, 419
Markov chain, 490, 494–495
McNeel sampler, 289
meander dynamics, 399–402
meander translation and compression, 243–244
meandering channel modelling, 447–449
mechanical current meters for flow velocity measurement, 261
median destructive field (MDF), 186–187
Melton ruggedness index, 134
metal mining, 50–51
metal strips/pulps tracer method
advantages and disadvantages, 307
recovery rate, 308
Meuse River, 49–50
microbial processes, 471–472
middens, 42
mid-infrared reflectance (MIR), 202
mining sediment as tracers, 43–44
Mississippi River, 64, 90, 115
Missouri River, 85, 493
modelling catchment processes, 159
approaches, 160
characteristics of catchment process models, 174
conceptual models, 160–161
data-driven empirical models, 163–164
numerical models, 164
effect-of-process-based reductionist models, 167–168
process-based reductionist models, 165–167
problem-centred interpretative models, 161–163
prospect, 173
representation and accuracy considerations, 168
accuracy and uncertainty, 171–172
best-practice attributes, 169
channel networks and morphology, 171
fundamental components, 170
input data, 168–171
land cover and use, 170–171
model performance, 171
surface topography, 168–170
validation, 172
models in fluvial geomorphology, 383–385, 402–403
advantages and limitations of modelling strategies, 384
analytical models, 387
applications, 395–397
bank stability analyses, 388–389
case study, 399–402
conceptual models, 385
extremal hypothesis approaches, 387–388
generic framework for model applications, 397–398
generic indicators of model quality, 396
model richness, 397
inherent limitations, 395
numerical models, 389–390
concepts, 396–391
overview of modelling process, 394–395
physical models, 394
reductionist models, 391–392
benefits and disadvantages, 393
optically stimulated luminescence (OSL), 21
positioanl accuracy, 61–62
post-field methods, 5
pottery, 41, 42
precision, 274
quantifying, 498–499
pre-field methods, 5
pressure-difference samplers, 335–336
principal component analysis (PCA), 483
dataset description, 483
probabilities, 487
logistic and multinomial models, 487–490
process analysis, 7
process-based reductionist models, 165–167
profile evolution equation, 444
provenance, 16–17
Provo River, 372
Q
qualitative analysis, 92–94
quantitative analysis, 92–94
quasi-3D channel morphology, 117–119
quays, 42
R
radio transmitter tracer method, 318–319
advantages and disadvantages, 307
recovery rate, 309
radioactive tracer method, 310, 313
advantages and disadvantages, 307
recovery rate, 308
radiocarbon dating, 20
radiofrequency identification (RFID) tags, 316
radiometric resolution, 171
rapid sediment analyser (RSA), 333
raster-based models, 392
rate of erosion, 253
crossing, 25–27
recurrence interval discharge, 248
reduced complexity models (RCMs), 164–165, 392–393
reductionist approaches, 6
regime theory, 253
regime-based methods, 17, 18
regolith production rate, 360
regression analysis, 478–479
critical appraisal, 480
grouping, 479–480
multiple regression analysis, 480–481
residuals, 479
testing link between variables, 479
regression, 480
relative methods, 19, 20
remote-sensing, 69–71, 103, 122
advantages and disadvantages, 110, 123–128
considerations, 110
electromagnetic radiation (EMR), 108–109
models in fluvial geomorphology, 393–394
orbiting platforms, 104–107
scale and spatial accuracy issues, 110–112
geometric accuracy, 112
image format, 111
censor resolution, 111–112
size of rivers, 110
sensors and platforms, 109–110
spectral properties, 113–115
2D and 3D mapping of floodplain morphology, 119–120
2D and 3D mapping of overbank sedimentation, 121–122
2D channel morphology and channel change, 115–117
models in fluvial geomorphology (continued)
reduced complexity models (RCMs), 392–393
remote-sensing and GIS use, 393–394
statistical models, 385–376
modern historical record, 69–71
compilation steps, 71
Monte Carlo techniques, 195
Morais J statistic, 492
Morpho2D, 425
morphodynamics modelling, 412–413
bank evolution models, 432
deadform models, 432–435
coupled model concept, 413
future directions, 439
numerical methods, 421–422
one-dimensional models, 422–423
one-dimensional processes, 423
practical considerations
model selection, 435–436
modelling process, 436–438
public domain flow and morphodynamics models, 425
two-dimensional models, 426–429
application examples, 429–432
bar evolution, 429
deriment-transport models, 429
two-dimensional processes, 427–428
two-dimensional models, 423–425
application examples, 426
bar evolution, 426
two-dimensional processes, 424
morphological criteria, 20
morphological methods for bedload discharge, 337–338
Morphological Quality Index (MRI), 147
morphostratigraphy, 23–24
moving boat method for discharge measurement, 270
multidisciplinary approaches, 5, 6
multimodal models, 487–490
multiple correspondence analysis (MCA), 483
multiple regression analysis, 480–481
multi-temporal longitudinal profiles, 240
multivariate statistics
co-structure of two datasets, 483–485
dataset description, 482–483
explaining and predicting relationships, 487
identifying groups within a dataset, 485–487
N
Nakagawa River, 28–29
native particle size distribution, 334
natural classification, 133
natural magnetic tracer method, 314–315
advantages and disadvantages, 307
recovery rate, 309
Naviar – Stokes equations, 391
Nays2D, 425
Nays2DFlood, 425
NaysCube, 425
NaysEddy, 436
near-infrared reflectance (NIR), 202
nephelometric sensors, 329
nephelometric turbidity units (NTU), 329
non-cohesive materials, average boundary shear stress, 253
non-linear differential equations, 391
numerical dating methods, 19–20
numerical grids, 390
O
Obion River, 252
ocular assessment, 287
2D mapping of flood inundation, 120–121
2D mapping of turbidity, suspended solids and bed materials, 119
3D and quasi-3D channel morphology and channel change, 117–119
response variable, 480
retrospective analysis, 86
Reynolds equations, 414
Reynold’s stresses, 414–416
Rhône River, 90, 493, 494
Ribble River, 114, 120
rilling, 362
ring anomalies, 218
river geomorphology
2D channel morphology and channel change, 115–117
2D channel morphology and channel change recent applications, 116
2D mapping of turbidity, suspended solids and bed materials, 119
3D and quasi-3D channel morphology and channel change, 117–119
River Habitat Survey (RHS), 145–146
river hydraulic geometry modelling, 445–447
River2D, 425
riverine ecosystem synthesis (RES), 94
rivers, geomorphic classification, 133
classification and river environment quality, 144–147
applying geomorphic classification schemes to fluvial systems, 148
channel adjustment indicators, 147
data collection, 148
emergence of data mining, 149–150
limitations and misuse of classifications, 150–152
nature of channel classification, 152–153
principle component analysis, 146
tools use to classify spatial units from data, 148–149
classification defined, 133–134
classification objectives, 135
classifications for fluvial understanding, 138
early classifications, 138–139
hierarchical classifications, 140–141
integrating temporal trajectories in classification schemes, 141–142
process domains, 142
process-based classification of channel patterns, 139–140
stream power-based river classifications, 141
hierarchy in classification, 136
idealized river system, 138
interactions between geomorphic classification and ecology, 143–144
purposes of classification, 134–136
underlying philosophies, 136–138
riverscapes, 94–95
212Rn, 184
222Rn, 184
road-related production of sand and silt, 375
root – mean – square error (RMSE), 63, 66
Rosin distribution, 281
Roubion River, 96–98
elements for similarity – connectivity analysis, 100
roughness coefficients, 476
Rouse number, 424
Rulles River, 48–49
Sacramento River, 64, 335
Sainte Marguerite River, 288, 289
salmonid spawning gravel quality assessment, 296
evaluation steps, 297
sediment infiltration into spawning gravels, 296–297
Santa Clara River, 62, 248
satellite data, 70, 104–107
advantages and disadvantages, 124, 126, 128
saturated isothermal remanent magnetization (SIRM), 186–187
scale of photographs, 103–108
Scott River, 298
scour, 121–122
SediGraph instrument, 333
sediment accumulation rates, yields sources and deposits, 197–199
sediment budget models, 163–164, 357, 375
applications, 358–360
examples, 359
components, 360
catchment, 365–366
channel and floodplain sediment storage, 364–365
hillside processes and sediment delivery, 360–364
sediment transport in channels, 364
definition, 557–558
sediment transport and monitoring, 326–330
event suspended sediment yields, 332
suspected sediment gauging, 326–328
suspected sediment particle size, 332–334
suspended sediment measurements, 330–332
synoptic sampling, 334–335
total load, 342
sediment yield, 365
sedimentary structures, 16
sedimentology, 16
facies, 16
hydrological interpretations, 18–19
paleohydraulic interpretations, 17–18
particle size, 16
provenance, 16–17
sedimentary structures, 16
selection-at-list-time (SALT) sampling method, 331–332
Semois River, 48, 49
sensor resolution, 111–112
Severn River, 192, 482
shallow water habitat restoration conceptual model, 85
SHALSTAB model, 162, 173
shear strength, 246
shear stress, 253
sheetwash, 362
SHEISED, 165
SHETRAN, 164–166, 171, 173, 174
Shields criterion, 253
Shields critical shear stress, 420
Shotover River, 326, 330
SIBERIA, 167, 172
sieving, 333
similarity analysis, 86–91, 93–94
Drôme, Roubion and Eygues Rivers, 96–98
Drôme, Roubion and Eygues Rivers, 100
similarity – connectivity analysis, 100
Drème, Roubion and Eygues Rivers, 100
single stage samplers, 334
sinuosity, 243
size intervals, 285–286
skewness, 281
slack-water deposits, 18, 19
slags, 48–49
slope – area method for discharge estimation, 270–271
small artefacts, 41
soil, definition, 16
soil creep, 361
soil production rate, 360
sonic sieving, 333
sorting, 281
space for time substitution, 86
space–time framework, comparative, 86
connectivity analysis, 86, 91–92
similarity analysis, 86–91
spatial autocorrelation functions, 492–493
spatial framework, 7
spatial resolution, 170
special classification, 133
spectral resolution, 171
Stour River, 482
SToRM, 425
step-backwater method for discharge estimation, 271
STATSGO, 171
St Anthony Falls Laboratory (SAFL), 457, 458–462
SSURGO, 171
spectral resolution, 171
statistical descriptors of particle size distribution, 279–282
statistics and fluvial geomorphology, 502–503
bivariate statistics, 478
describing and testing differences, 481–482
multiple regression analysis, 480–481
regression analysis, 478–480
multivariate statistics
co-structure of two datasets, 483–485
dataset description, 482–483
explaining and predicting relationships, 487
identifying groups within a dataset, 485–487
predicting variables in space and time, 491
autocorrelated patterns and signal periodicity, 492–494
describing and testing breaks in series, 495–496
evolution of variables in space and time, 494–495
standard methods, 491–492
probabilities and distributions, 487
Bayesian analysis, 490
logistic and multinomial models, 487–490
quantifying precision and uncertainty, 498–499
improving confidence interval in sampling, 499
predictive performance of statistical models, 502
validation of explanatory models, 499–501
validation of underlying hypotheses, 501–502
relevance and limitations of statistical tools, 496–498
statistical tools, 476–477
statistical tools for fluvial geomorphologists, 477–478
STATSGO, 171
step-backwater method for discharge estimation, 271
workshop, 42
SToRM, 425
Stour River, 482
stratigraphy, 23
allostratigraphic units, 23
morphostratigraphy, 23–24
stream gauges, 267–268
stream power proportionality, 249–250
stream power-based river classifications, 141
streambank erosion, 361
streams, geomorphic classification, 133
applying geomorphic classification schemes to fluvial systems, 148
data collection, 148
emergence of data mining, 149–150
limitations and misuse of classifications, 150–152
nature of channel classification, 152–153
tools use to classify spatial units from data, 148–149
classification and river environment quality, 144–147
channel adjustment indicators, 147
principle component analysis, 146
classification defined, 133–134
classifications for fluvial understanding, 138
early classifications, 138–139
hierarchical classifications, 140–141
integrating temporal trajectories in classification schemes, 141–142
process domains, 142
process-based classification of channel patterns, 139–140
hierarchy in classification, 136
interactions between geomorphic classification and ecology, 143–144
purposes of classification, 134–136
underlying philosophies, 136–138
structure-from-motion (SfM) photogrammetry, 71
structures, human, 41–43
subcritical throughs, 268
subsurface sediment sampling methods
bulk core sampling, 289
comparing bulk core with freeze-core sampling, 290
freeze-core sampling, 289–290
supercritical throughs, 268
surface process models (SPMs), 167
surficial geological tools, 15, 33–34
subcritical flumes, 268
supercritical flumes, 268
Tarklo River, 252
Tamaku River, 312
target classification, 133
spectral resolution, 171
SToRM, 425
Trent River, 40, 46–48, 59
documentary sources, 61
Triangulations intersects networks (TINs), 169
Trinity River, 297–298
t-test, 481
Tunnel River, 114
tunnel erosion, 361
Tresa River, 43
Ultrasound (US), 15
ultrasound vibration, 15
ultrasound gauging, 269–270
total maximum daily load, 360
t Leaky, 218
tree-throw, 361
Trinity River, 297–298
Trent River, 40, 46–48, 59
documentary sources, 61
triangular irregular networks (TINs), 169
ultrasound discharge measurement, 269
ultrasound vibration, 334
uncertainties in measurements, 274
quantifying, 498–499
v
valley-bottom alluvium, definition, 16
Vedder River, 338
vegetation and geomorphic process interpretation, 210, 225–226
examples, 84
tephrochronology, 20
terrace, definition, 16
terrace deposits, definition, 16
terrace levels, 17
terrestrial laser scanning (TLS), 70
Thematic Mapper (TM), 335
total consonance toning (TCT), 247
thermoluminescence (TL), 21
thought methods, 6–7
comparative method, 5
experimental method, 5
inductive method, 5
systematic method, 5
Tolkt River, 318
tool definition, 4
definition in fluvial geomorphology
from conceptual to working tools, 5–7
from general framework, 8
roots and tools, 4–5
tools and questions, 7–8
overview and trends, 9
TOPMODEL, 162, 173
total maximum daily load, 360
tracer gauging, 269–270
tree age, 218
tree-throw, 361
Tresa River, 43
Trent River, 40, 46–48, 59
documentary sources, 61
triangular irregular networks (TINs), 169
Trinity River, 297–298
t-test, 481
Tunnel River, 114
tunnel erosion, 361
Tyna River, 60, 315
U
Ubay River, 81, 82, 90
ultimate particle size distribution, 334
ultrasound discharge measurement, 269
ultrasound vibration, 334
Uncertainies in measurement, 274
quantifying, 498–499
v
valley-bottom alluvium, definition, 16
Vedder River, 338
vegetation and geomorphic process interpretation, 210, 225–226
communities as an indicator of disturbance regime, 223–225
dendrogeomorphology in fluvial systems, 216–217
floods and inundation, 217–218
sediment deposition and erosion, 218–220
temporal trends, 220
fluvial landscape description, 220–221
fluvial landslides and floods, 221–222
reading landscapes, 222–223
plant ecological–fluvial geomorphic relations, 210–211
vegetation as a tool, 211–216
example applications, 212–214
velocity of flow measurement
 acoustic Doppler current profilers (ADCPs), 264–265
 acoustic Doppler velocimeters (ADVs), 263–4
 electromagnetic current meters, 262–263
 laser Doppler velocimetry (LDV), 265
 other methods, 265
 uncertainties, 274
velocity of measurement, 260
 floats, 260–261
 mechanical current meters, 261
vertical aerial photographs, 108
vertical-axis meters, 261
visual accumulation (VA) tube method, 333
visual estimates, 287
von Karman's constant, 415
W
 Wadell roundness index, 282
 Waimakariri River, 318, 338
Waipaoa River, 329
 walls, 42
Water Erosion Prediction Project (WEPP), 165–167
 application example, 166
water habitat restoration conceptual model, 85
watershed analysis models, 161–163
weathering characteristics, 20
weathering profiles, 17
Weibull distribution, 281
weirs, 268–269
wells, 42
Wentworth's rule, 292
WEPP, 164, 174
wharves, 42
Willamette River, 496
 wood in rivers, 463–465
 wooden objects, 42
 wooden structures, 42
working methods, 7–8
 field methods, 5
 laboratory methods, 5
 post-field methods, 5
 pre-field methods, 5
Wylye River, 524–527, 528
X
 X-ray diffraction, 187
Y
 Yamuna River, 117
 Yellow River, 70, 119
 Yellowstone National Park, 60
 Yuba River, 293, 294
 Yzeron River, 143
Z
 zig-zag sampling method, 295