CONTENTS

Preface xvii
Contributors xix

1 Integrated Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers 1
Shang-Tian Yang and Mingrui Yu

1.1 Introduction, 1
1.2 Biorefineries Using Corn, Soybeans, and Sugarcane, 2
 1.2.1 Corn Refinery, 2
 1.2.2 Soybean Biorefinery, 4
 1.2.3 Sugarcane Biorefinery, 7
1.3 Lignocellulosic Biorefinery, 7
 1.3.1 Pretreatment, 8
 1.3.2 Cellulose Hydrolysis and Saccharification, 10
 1.3.3 Fermentation, 10
 1.3.4 Plant Genetic Engineering to Improve Biomass Feedstock, 11
 1.3.5 Thermochemical Platform for Lignocellulosic Biorefinery, 12
1.4 Aquacultures and Algae Biorefinery, 12
1.5 Chemical and Biological Conversions for Fuel and Chemical Production, 13
 1.5.1 Biofuels, 13
 1.5.2 Bio-Based Chemicals, 14
 1.5.3 Hybrid Chemical and Biological Conversion Processes, 17
 1.5.4 Biorefinery Feedstock Economics, 17
1.6 Conclusions and Future Prospects, 18
References, 18

2 The Outlook of Sugar and Starch Crops in Biorefinery 27
Klanarong Siroth and Kuakoon Piyachomkwan

2.1 Introduction, 27
2.2 Sugar Crops, 27
 2.2.1 Sugarcane, 28
 2.2.2 Sugar Beet, 31
 2.2.3 Sweet Sorghum, 31
2.3 Starch Crops, 32
 2.3.1 Corn, 33
 2.3.2 Potato, 34
 2.3.3 Wheat, 34
 2.3.4 Cassava, 35
 2.3.5 Rice, 36
2.4 Uses of Sugar and Starch Crops in Biorefinery, 37
 2.4.1 Use of Sugar Crops in Biorefinery, 40
 2.4.2 Use of Starch Crops in Biorefinery, 41
2.5 Conclusion, 43
References, 43

3 Novel and Traditional Oil Crops and Their Biorefinery Potential
Johann Vollmann and Margit Laimer

3.1 Introduction, 47
3.2 Oil Crop Breeding and Its Bioprocessing Potential, 49
3.3 Novel Oil Crops, 50
 3.3.1 Jatropha, 50
 3.3.2 Pongamia, 51
 3.3.3 Lesquerella and Cuphea, 52
 3.3.4 Camelina and Crambe, 52
 3.3.5 Other New Oil Crops, 53
3.4 Traditional Oil Crops, 53
 3.4.1 Soybean, 53
 3.4.2 Oilseed Rape, 54
 3.4.3 Sunflower, 55
 3.4.4 Linseed (Flax), 55
 3.4.5 Cottonseed, 55
 3.4.6 Castor Bean, 55
 3.4.7 Oil Palm, 56
3.5 Perspectives for Nonfood Oil Crop Production, 56
References, 56

4 Energy Crops
Walter Zegada-Lizarazu and Andrea Monti

4.1 What Are Dedicated Energy Crops?, 61
 4.1.1 Toward Second-Generation Biofuels, 63
4.2 Annual Crops, 63
 4.2.1 Maize (Zea mays), 63
 4.2.2 Sorghum (Sorghum bicolor), 66
 4.2.3 Sugar Beet (Beta vulgaris), 67
 4.2.4 Hemp (Cannabis sativa), 68
4.3 Perennial Herbaceous Crops, 68
 4.3.1 Sugarcane (Saccharum spp.), 68
 4.3.2 Switchgrass (Panicum virgatum), 69
 4.3.3 Miscanthus (Miscanthus spp.), 70
4.4 Short Rotation Woody Crops, 71
 4.4.1 Poplar (Populus spp.) and Willow (Salix spp.), 71
4.5 Why Grow Energy Crops?, 72
4.6 Barriers to Energy Crops, 72
4.7 Conclusions, 73
References, 74
5 Microalgae as Feedstock for Biofuels and Biochemicals 79

Dong Wei

5.1 Introduction, 79
5.2 The Importance of Microalgae as Feedstock for Biofuels and Biochemicals, 79
 5.2.1 Biochemical Components and Nutrients in Microalgae, 79
 5.2.2 Advantages of Microalgae for Industrial Purpose, 80
5.3 New Techniques for Screening and Selecting Microalgae, 81
 5.3.1 High-Throughput Screening (HTS) by Fluorescent Techniques, 81
 5.3.2 High-Throughput Sorting (HTS) by Flow Cytometry, 81
 5.3.3 Rapid Evaluation Techniques for Lipid, 82
5.4 Production of Microalgal Biomass in Industry, 82
 5.4.1 Mass Cultivation Outdoors and the Challenge, 82
 5.4.2 Heterotrophic and Mixotrophic Cultures, 84
5.5 Bioprocessing of Microalgae as Feedstock for Biofuel Production, 85
 5.5.1 Biodiesel Production by Immobilized Lipase, 85
 5.5.2 Bioethanol Production by Anaerobic Fermentation, 85
 5.5.3 Biomethane and Biohydrogen Production by Anaerobic Fermentation, 86
5.6 Conclusion and Future Prospects, 87

References, 87

6 Pretreatment of Lignocellulosic Biomass 91

Tae Hyun Kim

6.1 Introduction, 91
6.2 Structure and Composition of Lignocellulosic Biomass, 92
 6.2.1 Cellulose, 92
 6.2.2 Hemicellulose, 93
 6.2.3 Lignin, 94
 6.2.4 Extractives, 95
6.3 Challenges in Bioconversion of Lignocellulosic Biomass, 96
 6.3.1 Chemical Barriers, 96
 6.3.2 Physical Barriers, 97
6.4 Pretreatment Technologies, 98
 6.4.1 Alkali (Sodium Hydroxide, Ammonia, and Lime), 99
 6.4.2 Autohydrolysis (Hot-Water and Steam Explosion), 101
 6.4.3 Acid, 102
 6.4.4 Other Pretreatments, 102
 6.4.5 Severity Factor, 103
6.5 Pretreatment Strategies in Bioconversion of Lignocellulosic Biomass into Fuels and Chemicals, 103
6.6 Pretreatment or Fractionation: A Role of Pretreatment in the Biorefinery Concept, 104
6.7 Integration of Pretreatment into the Biomass Conversion Process, 104

Acknowledgments, 105

References, 105

7 Amylases: Characteristics, Sources, Production, and Applications 111

Hesham A. El-Enshasy, Yasser R. Abdel Fattah, and Nor Zalina Othman

7.1 Introduction, 111
7.2 Starch (The Amylases Substrate), 112
CONTENTS

7.3 Amylases in Nature, 113
7.4 Types of Amylases, 113
7.4.1 \(\alpha \)-Amylase (EC 3.2.1.1; CAS# 9000-90-2), 113
7.4.2 \(\beta \)-Amylase (EC 3.2.1.2; CAS# 9000-91-3), 114
7.4.3 Glucoamylase or \(\gamma \)-Amylase (EC 3.2.1.3; CAS# 9032-08-0), 114
7.4.4 Pullulanase (EC 3.2.1.41; CAS# 9075-68-7), 114
7.5 Amylase Mode of Action, 114
7.6 Amylase Family Classification, 115
7.7 Amylase Structure, 117
7.7.1 Starch-Binding Domains (SBDs), 117
7.8 Industrial Production, 118
7.8.1 \(\alpha \)-Amylase, 120
7.8.2 \(\beta \)-Amylase, 121
7.8.3 Glucoamylase, 121
7.8.4 Amylases Production from Starchy and Nonstarch Feedstocks, 121
7.9 Amylase Stability, 122
7.9.1 Production by Extremophilic Microorganisms, 122
7.9.2 Production by Recombinant Microorganisms, 122
7.9.3 Protein Engineering and Amino Acids Mutagenesis, 123
7.9.4 Chemical Stabilization Method, 123
7.9.5 Metal Ions Stabilization Method, 123
7.9.6 Immobilization Method, 124
7.10 Industrial Applications, 124
7.11 Future Trends, 125
References, 125

8 Cellulases: Characteristics, Sources, Production, and Applications 131

Xiao-Zhou Zhang and Yi-Heng Percival Zhang

8.1 Introduction, 131
8.2 Cellulases and Their Roles in Cellulose Hydrolysis, 132
8.2.1 Cellulase Enzyme Systems for Cellulose Hydrolysis, 132
8.2.2 Sequence Families of Cellulases and Their Three-Dimensional Structures, 133
8.2.3 Catalytic Mechanisms of Cellulases, 133
8.2.4 Endoglucanase, 133
8.2.5 Exoglucanase, 133
8.2.6 \(\beta \)-Glucosidase, 134
8.2.7 Substrate, Synergy, and Model, 134
8.2.8 Cellulase Activity Assays, 135
8.3 Cellulase Improvement Efforts, 136
8.3.1 Directed Evolution, 136
8.3.2 Rational Design, 139
8.3.3 Designer Cellulosome, 139
8.4 The Applications and Productions of Cellulase, 140
8.4.1 Industrial Applications of Cellulases, 140
8.4.2 Cellulase Production, 140
8.5 Consolidated Bioprocessing, 140
8.6 Perspectives, 142
References, 142
9 Xylanases: Characteristics, Sources, Production, and Applications 147
 Evangelos Topakas, Gianni Panagiotou, and Paul Christakopoulos

9.1 Introduction, 147
9.2 Biochemical Characteristics of Xylanases, 147
 9.2.1 Chemical Structure of Xylan, 147
 9.2.2 Source of Xylanolytic Enzymes, 148
 9.2.3 Catalytic Mechanisms, 149
 9.2.4 Crystal Structure of Xylanases, 149
 9.2.5 Catalytic Properties, 150
 9.2.6 Xylanase Inhibitors, 150
9.3 Xylanase Production, 152
 9.3.1 Selection of a Native Hyperproducer and Conventional Medium Optimization, 152
 9.3.2 Mode of Fermentation, 153
 9.3.3 Induction by the Carbon Source, 153
 9.3.4 Application of Statistical Methods, 154
 9.3.5 Cloning Using Suitable Hosts, 155
9.4 Application of Xylanases, 156
 9.4.1 Bioethanol Production, 156
 9.4.2 Cereal-Based Applications, 158
 9.4.3 Production of Xylo-Oligosaccharides, 158
 9.4.4 Xylanases in Pulp and Paper Biotechnology, 159
 9.4.5 Textiles, 159
 9.4.6 Retting of Flax, 159

References, 160

10 Lignin-Degrading Enzymes: An Overview 167
 Rajni Hatti-Kaul and Victor Ibrahim

10.1 Introduction: Lignin as Renewable Resource, 167
10.2 The Lignin Degraders, 167
10.3 Ligninolytic Peroxidases, 168
 10.3.1 Peroxidase Catalytic Cycles and Substrates, 168
 10.3.2 Diversity of Ligninolytic Peroxidases, 172
 10.3.3 Gene Regulation, 172
 10.3.4 Structural Features, 172
 10.3.5 Oxidation Site for Aromatic Substrates, 174
 10.3.6 Manganese Oxidation Site, 174
 10.3.7 Multiple Oxidation Sites in Versatile Peroxidase, 174
10.4 Laccase: The Blue Enzyme, 175
 10.4.1 Catalytic Cycle and Substrates, 175
 10.4.2 Source, 175
 10.4.3 Biochemical and Structural Features, 176
 10.4.4 Redox Mediators, 177
10.5 Lignin-Degrading Auxiliary Enzymes, 177
 10.5.1 Glyoxal Oxidase, 177
 10.5.2 Aryl Alcohol Oxidase, 178
 10.5.3 Pyranose 2-Oxidase, 179
 10.5.4 Cellobiose Dehydrogenase, 179
10.6 Production of Lignin-Modifying Enzymes, 179
 10.6.1 Different Fermentation Modes, 180
 10.6.2 Production by Immobilized Fungi, 180
 10.6.3 Solid-State Fermentation, 180
 10.6.4 Production in Recombinant Systems, 180
10.7 Applications of Lignin-Modifying Enzymes, 181
10.7.1 Potential and Limitations, 181
10.7.2 Environmental Remediation, 181
10.7.3 Textile Industry, 182
10.7.4 Biopulping and Lignin Modification, 182
10.7.5 Food Industry, 182
10.7.6 Biosensors, 183
10.7.7 Synthetic Chemistry, 183
10.7.8 Cosmetics, 183
10.8 Ligninolytic Enzymes: Implications for Lignin Degradation and Future
Lignocellulose Biorefineries, 183
Acknowledgments, 184
References, 184

11 Advances in Lignocellulosic Bioethanol 193
Reeta Rani Singhania, Parameswaran Binod, and Ashok Pandey
11.1 Introduction, 193
11.2 Bioethanol versus Environment: Controversies, 194
11.3 Lignocellulosic Biomass: The Ubiquitous Raw Material, 194
11.4 Pretreatment: Preparation of Biomass for Enzymatic
Hydrolysis, 195
11.5 Enzymatic Hydrolysis, 195
11.6 Biotechnological Approaches in Lignocellulosic
Bioconversion, 196
11.6.1 The SSF Concept, 198
11.6.2 Simultaneous Saccharification and Cofermentation, 200
11.6.3 Consolidated Bioprocessing (CBP), 201
11.7 Conclusion, 202
Acknowledgments, 202
References, 202

12 Biodiesel Properties and Alternative Feedstocks 205
Bryan R. Moser
12.1 Introduction, 205
12.2 Biodiesel Standards, 206
12.3 Catalysts, 208
12.4 Preparation of Fatty Acid Methyl Esters, 209
12.5 Preparation of Fatty Acid Ethyl Esters, 210
12.6 Influence of Free Fatty Acids on Biodiesel Production, 211
12.7 Alternative Production Methods, 211
12.8 Advantages and Disadvantages of Biodiesel, 212
12.9 Typical Fatty Acids Found in Most Vegetable Oil Feedstocks, 213
12.10 Influence of Biodiesel Composition on Fuel Properties, 214
12.10.1 Low Temperature Properties, 214
12.10.2 Oxidative Stability, 216
12.10.3 Kinematic Viscosity, 216
12.10.4 Exhaust Emissions, 217
12.10.5 Cetane Number, 217
12.10.6 Heat of Combustion, 218
12.10.7 Lubricity, 218
12.10.8 Contaminants, 219
12.10.9 Minor Components, 220
12.11 Why Alternative Feedstocks for Biodiesel Production?, 220
12.12 Alternative Oilseed Feedstocks, 221
12.13 Animal Fats, 221
12.14 Other Waste Oils, 223
12.14.1 Integrated Biorefinery Production of Biodiesel, 225
12.15 Microalgae, 225
12.16 Future Outlook for Biodiesel, 226
References, 227

13 Biological Production of Butanol and Higher Alcohols 235
Jingbo Zhao, Congcong Lu, Chih-Chin Chen, and Shang-Tian Yang
13.1 Introduction, 235
13.2 Industrial Acetone-Butanol-Ethanol (ABE) Fermentation for n-Butanol Production, 236
13.3 n-Butanol Production by Solventogenic Clostridium, 238
13.3.1 Solventogenic Clostridium, 238
13.3.2 ABE Biosynthesis Pathway and Fermentation Kinetics, 238
13.3.3 Strain Development for Improved ABE Fermentation, 240
13.3.4 Metabolic Engineering of Solventogenic Clostridium, 241
13.3.5 Alternative Feedstock for ABE Fermentation, 243
13.3.6 ABE Fermentation Process Development, 246
13.3.7 Butanol Separation and Integrated Fermentation with In Situ Product Recovery, 246
13.4 Engineering Microorganisms for Biosynthesis of Higher Alcohols, 249
13.4.1 Engineering the Clostridial n-Butanol Fermentative Pathway, 249
13.4.2 Biosynthesis of n-Butanol Using Reversed β-Oxidation Cycle, 250
13.4.3 Engineering the Keto Acid Pathway for Butanol Biosynthesis, 250
13.4.4 Biosynthesis of Isopropanol and n-Propanol, 252
13.4.5 Biosynthesis of 2-Butanol, 252
13.4.6 Biosynthesis of Pentanol and Higher Alcohols, 253
13.5 Production of Higher Alcohols by Hybrid Biochemical Process, 253
13.6 Conclusions and Future Perspectives, 253
References, 254

14 Advancement of Biohydrogen Production and Its Integration with Fuel Cell Technology 263
Jong-Hwan Shin and Tai Hyun Park
14.1 Introduction, 263
14.2 Biophotolysis, 263
14.3 Photodecomposition, 265
14.4 Dark Fermentation, 266
14.4.1 Dark Fermentation by Strict Anaerobes, 267
14.4.2 Dark Fermentation by Facultative Anaerobes, 268
14.4.3 Dark Fermentation by Thermophilic Microorganism, 268
14.5 Factors Influencing Hydrogen Production in Dark Fermentation, 268
14.6 Genetic Modification of Fermentative Bacteria, 269
14.7 Other Efforts for the Production of Biohydrogen, 271
14.8 Integration of Biohydrogen Production System with Fuel Cell, 272
References, 274
14.9 Conclusion, 273
Acknowledgments, 273
References, 273

15 Biogas Technology 279

Günter Busch

15.1 Introduction, 279
15.2 Fundamentals of the Biogas Process, 280
 15.2.1 Characterization of Substrates, 280
 15.2.2 The Basic Processes, Process Conditions, 281
 15.2.3 Process Disturbances, 282
15.3 Process Layout and Fermenter Design, 283
 15.3.1 Single-, Double- and Multistage Reactors, 283
 15.3.2 Agitation, 284
 15.3.3 Dry and Wet Fermentations, 285
 15.3.4 Heating of the System, 286
 15.3.5 Methanation Reactor with Concentration of Active Biomass, 287
 15.3.6 Fermentor Design, 287
 15.3.7 Pretreatment of Substrates, 288
 15.3.8 After-Treatment of Process Residues, 288
 15.3.9 Biogas Purification (H₂S Removal), 288
15.4 Biogas from Biowaste and Municipal Solid Waste, 289
References, 290

16 Production of Lactic Acid and Polylactic Acid for Industrial Applications 293

Nuttha Thongchul

16.1 History of Lactic Acid, 293
16.2 Properties of Lactic Acid, 293
16.3 Applications and Market of Lactic Acid and Its Derivative, Polylactic Acid, 294
16.4 Lactic Acid Fermentation, 295
 16.4.1 Bacterial Fermentation, 295
 16.4.2 Fungal Fermentation, 298
16.5 Lactic Acid Recovery from Fermentation Broth, 305
 16.5.1 Reactive Extraction, 305
 16.5.2 Adsorption, 307
 16.5.3 Electrodialysis, 307
 16.5.4 Esterification and Reactive Distillation, 308
 16.5.5 Viable Downstream Process for Lactic Acid Production, 309
16.6 Overview of Polylactic Syntheses, 309
 16.6.1 ROP, 309
 16.6.2 Azeotropic Dehydrative Condensation (Direct Polycondensation), 311
16.7 Concluding Remarks, 312
References, 312

17 Production of Succinic Acid from Renewable Resources 317

Jongho Yi, Sol Choi, Min-Sun Han, Jeong Wook Lee, and Sang Yup Lee

17.1 Overview, 317
17.2 Development of Succinic Acid Producers, 318
17.2.1 A. succiniciproducens, 318
17.2.2 A. succinogenes, 319
17.2.3 M. succiniciproducens, 319
17.2.4 C. glutamicum, 321
17.2.5 E. coli, 321

17.3 Carbon Sources, 322
17.4 Fermentation Process Optimization, 323
17.5 Succinic Acid Recovery and Purification, 324
 17.5.1 Centrifugation and Filtration, 324
 17.5.2 Precipitation, 325
 17.5.3 Reactive Extraction, 325
 17.5.4 Electrodialysis, 326
 17.5.5 Ion Exchange and Crystallization, 326
17.6 Future Perspectives on the Bio-Based Succinic Acid Production, 327
Acknowledgments, 327
References, 327

18 Propionic Acid Fermentation
Zhongqiang Wang, Jianxin Sun, An Zhang, and Shang-Tian Yang

18.1 Introduction, 331
18.2 Propionic Acid Bacteria, 331
 18.2.1 Propionibacteria, 332
 18.2.2 Dairy Propionibacteria, 333
 18.2.3 Dicarboxylic Acid Pathway, 333
 18.2.4 Acrylic Acid Pathway, 334
18.3 Metabolic Engineering of Propionibacteria, 334
 18.3.1 Genetics and Cloning Vectors, 334
 18.3.2 Transformation, 336
 18.3.3 Genetic and Metabolic Engineering, 336
18.4 Fermentation Processes, 336
 18.4.1 Propionic Acid Production from Renewable Feedstocks, 337
 18.4.2 Free-Cell Fermentation Processes, 338
 18.4.3 Immobilized-Cell Fermentation, 341
 18.4.4 Fibrous-Bed Bioreactor, 342
18.5 Fermentation with In Situ Product Recovery, 343
18.6 Conclusions and Future Perspectives, 345
References, 345

19 Anaerobic Fermentations for the Production of Acetic and Butyric Acids
Shang-Tian Yang, Mingrui Yu, Wei-Lun Chang, and I-Ching Tang

19.1 Introduction, 351
19.2 Microbial Production of Acetic Acid, 352
 19.2.1 Anaerobic Homoacetogens, 352
 19.2.2 Metabolic Pathways of Homoacetogen, 352
 19.2.3 Homoacetogenic Fermentation, 354
19.3 Microbial Production of Butyric Acid, 355
 19.3.1 Butyric Acid Bacteria, 355
 19.3.2 Metabolic Pathway of Butyrate Production, 355
 19.3.3 Factors Affecting Butyric Acid Fermentation, 357
 19.3.4 Butyric Acid Fermentation, 358
19.4 Metabolic Engineering of Acidogenic Clostridia, 358

19.4.1 Genomic Sequences, 360
19.4.2 Clostridia Cloning Vectors, 360
19.4.3 Gene Knockout and Overexpression, 360

19.5 Fermentation Processes for Carboxylic Acids Production, 361

19.5.1 Operating Mode, 361
19.5.2 Immobilized-Cell Bioreactor, 361
19.5.3 Extractive Fermentation, 362

19.6 Separation Methods for Carboxylic Acid Recovery from Fermentation Broth, 363

19.6.1 Precipitation, 365
19.6.2 Extraction, 365
19.6.3 Adsorption, 366
19.6.4 Electrodialysis, 366

19.7 Conclusions, 367

References, 367

20 Production of Citric, Itaconic, Fumaric, and Malic Acids in Filamentous Fungal Fermentations 375

Kun Zhang, Baohua Zhang, and Shang-Tian Yang

20.1 Introduction, 375

20.2 History and Current Production Methods, 376

20.3 Microorganisms, 378

20.4 Metabolic Pathways for Carboxylic Acid Biosynthesis in Filamentous Fungi, 379

20.4.1 Glycolysis, 380
20.4.2 TCA Cycle, 381
20.4.3 Transportation, 381
20.4.4 Cytoplasmic Pathways, 382

20.5 Metabolic Engineering and Systems Biology for Strain Improvement, 384

20.6 Filamentous Fungal Fermentation Process, 385

20.6.1 Bioreactor and Morphology Control, 385
20.6.2 Fermentation Media, 387
20.6.3 pH and Neutralizing Agent, 389
20.6.4 Dissolved Oxygen, 390
20.6.5 Temperature, 390

20.7 Product Separation and Purification, 390

20.8 Conclusions and Future Prospects, 392

Acknowledgments, 393

References, 393

21 Biotechnological Development for the Production of 1,3-Propanediol and 2,3-Butanediol 399

Youngsoon Um and Kyung-Duk Kim

21.1 Introduction, 399

21.2 Microbial Production of 1,3-Propanediol, 399

21.2.1 1,3-Propanediol, 399
21.2.2 Production of 1,3-Propanediol by the Klebsiella Species, 401
21.2.3 Production of 1,3-Propanediol by the Clostridium butyricum Strains, 404
21.2.4 Expression of Heterologous Genes for 1,3-Propanediol Production, 405

21.3 Microbial Production of 2,3-Butanediol, 406
- **21.3.1 2,3-Butanediol, 406**
- **21.3.2 Microorganisms and Pathways, 407**
- **21.3.3 Use of Sugars as Substrates for 2,3-Butanediol Production, 407**
- **21.3.4 Use of Lignocellulosic Materials for 2,3-Butanediol Production, 408**
- **21.3.5 Glycerol as a Substrate for 2,3-Butanediol Production, 408**
- **21.3.6 Effect of Organic Acid Addition on 2,3-Butanediol Production, 409**
- **21.3.7 Genetic Modification for 2,3-Butanediol Production, 409**

21.4 Conclusion, 409

References, 409

22 Production of Polyhydroxyalkanoates in Biomass Refining

Jian Yu

- **22.1 Introduction, 415**
 - **22.1.1 Polyhydroxyalkanoates and Biomass Refining, 415**
 - **22.1.2 Biomass Derivates and Microbial Toxicity, 416**
 - **22.1.3 PHA Bioprocess, 417**

- **22.2 Microbial Synthesis of Polyhydroxyalkanoates, 417**
 - **22.2.1 Metabolic Pathways of PHA Formation, 417**
 - **22.2.2 PHA Fermentation on Glucose or Xylose, 418**
 - **22.2.3 PHA Fermentation on Levulinic Acid, 418**
 - **22.2.4 PHA Fermentation in Hydrolysates Solution, 420**

- **22.3 Recovery and Purification of PHA Biopolymesters, 420**
 - **22.3.1 Technologies and Challenges, 420**
 - **22.3.2 Dissolution of non-PHA Cell Mass, 421**
 - **22.3.3 Partial Crystallization and Recovery of P3HB Granules, 421**

- **22.4 Conclusion, 423**

References, 424

23 Microbial Production of Poly-γ-Glutamic Acid

Zhinan Xu, Huili Zhang, Hao Chen, Feng Shi, Jin Huang, Shufang Wang, and Cunjiang Song

- **23.1 Introduction, 427**
- **23.2 γ-PGA-Producing Microorganisms and Related Biosynthesis Pathways, 427**
 - **23.2.1 γ-PGA-Producing Microorganisms, 427**
 - **23.2.2 γ-PGA Biosynthesis Pathways, 428**

- **23.3 Bioprocess Development for γ-PGA Production, 429**
 - **23.3.1 Nutrients Requirements and Culture Condition Optimization, 429**
 - **23.3.2 Bioprocess Development, 430**

- **23.4 Direct Utilization of Glucose for γ-PGA Biosynthesis, 432**
 - **23.4.1 Screening of High-Yield γ-PGA Producers for Direct Utilization of Glucose, 432**
 - **23.4.2 Cocultivation of Corynebacterium glutamicum and B. subtilis, 432**
 - **23.4.3 Genetic Engineering of Host Strains, 433**
23.5 Separation and Characterization of γ-PGA from Fermentation Broth, 433
 23.5.1 Separation and Purification of γ-PGA, 433
 23.5.2 Characterization of γ-PGA, 433
23.6 Modifications and Applications of γ-PGA, 434
 23.6.1 Food and Skin Care Products, 434
 23.6.2 Agricultural Products, 434
 23.6.3 Biopolymer Flocculant, 434
 23.6.4 Applications in Medicine, 435
Acknowledgments, 436
References, 436

24 Refining Food Processing By-Products for Value-Added Functional Ingredients
 Kequan Zhou, Yuting Zhou, and Y. Martin Lo
24.1 Introduction, 441
24.2 Dietary Fiber, 442
 24.2.1 Introduction, 442
 24.2.2 Source of Dietary Fiber, 442
 24.2.3 Isolation and Production of Dietary Fiber from Food Processing By-Products, 442
24.3 Antioxidants, 443
 24.3.1 Introduction, 443
 24.3.2 Sources of Dietary Antioxidants, 443
 24.3.3 Isolation and Production of Antioxidants from Food Processing By-Products, 444
24.4 Food Colorants, 445
 24.4.1 Introduction, 445
 24.4.2 Isolation and Production of Anthocyanin Pigments from Food By-Products, 445
 24.4.3 Isolation and Production of Carotenoid Pigments from Food By-Products, 446
24.5 Concluding Remarks, 446
References, 446

About the Editors, 449
Index, 451