INDEX

Page numbers in *italics* represent figures; those in **boldface**, tables.

ABE process. *See* Acetone-butanol-ethanol fermentation process
Acetate, homoacetogenic conversion of glucose to, 354
Acetic acid
 global demand for, 351
 properties of, 351
 structure and process for, **15**
 thermophysical properties of, 364
Acetic acid production, 351–352
 as attractive alternative, 351
 microbial, 352
 anaerobic homoacetogens, 352
 homoacetogenic fermentation, 354
 metabolic pathways of homoacetogen, 352–354, 353
Acetobacterium, in acetic acid production, 352
Acetone, structure and process for, **15**
Acetone-butanol-ethanol (ABE) fermentation process, 246
 "acid crash," 243
 alternative feedstock for, 243–246, 244, 245
 for *n*-butanol production, 236–238, 237
 effects on Clostridia of, 241–243, 242
 shortcomings of, 238
 strain development for improved, 240
Acetyl group, in bioconversion of lignocellulosic biomass, 97
Acid pretreatment, **9**, 102, 102
Acrylic acid, structure and process for, **15**
Acrylic acid pathway, in propionic acid production, **333**, 334
Adipic acid, **16**
Adsorption
 for carboxylic acid production, 391
 in *n*-butanol production, **248**, 248–249

Agonoscelis pubescens, as alternative feedstock, 223
Agricultural processing industry, biorefinery concept in, 2.
 See also Biorefineries
Agro-industrial residues, in lignocellulosic biomass, 195. *See also* Lignocellulosic biomass
Air-lift bioreactors (ALBs), 304
Alcohol oxidase 1 (AOXI) promoter, 155
Alcohols. *see* Higher alcohols
Algae, biophotolysis by, 263–264. *See also* Microalgae
Algae biorefineries, 12–13, **13**
Algal oil production, biorefinery for, 13, **13**
Alkali catalysts
 biodiesel contaminated by, 219
 in biodiesel production, 212
Alkali pretreatment, **9**, 99–101, **100**, 101
Alkanes, 13
Alkenes, 13
Ammonia fiber expansion (AFEX), **9**, 99, 100, 101, **101**
Ammonia recycled percolation (ARP) process, **99**, 100
Ammonia steeping, **99**, 100, **100**
α-amylase gene, heterologous expression of, 125
Amylases, 111–112
 α-amylases, 116
 industrial production of, 120–121
 properties of, 113–114
 β-amylases
 industrial production of, 121
 properties of, 114
 classification of, 115–117, **116**
 industrial applications, 53, 124, **124**
Amylases (cont’d)
industrial production of, 118–120
α-amylase, 120–121
β-amylase, 121
glucoamylase, 121
from starchy and nonstarch feedstocks, 121–122
mode of action of, 114–115,
in nature, 113
in plant molecular farming, 125
stability of, 122
with amino acids, 123
chemical stabilization method for, 123–124
with extremophilic microorganisms, 122
immobilization method for, 124
metal ions stabilization method for, 123–124
with protein engineering, 123
with recombinant microorganisms, 122–123
starch-binding domains of, 117–118,
for starch enzyme hydrolysis, 111
in starch enzyme hydrolysis, 113
structure of, 117
types of, 113–114
Amylopectin, chemical structure of, 112
Amylose, chemical structure of, 112
Anaerobic digestion, design parameters for, 287,
287–288
Anaerobic digestors, agitation designs for mixing in, 284,
285
Animal fats, as alternative feedstock, 221–223,
222
Animal feed, xylanases in, 158
Anionic ring opening polymerization (AROP), 311
Anthocyanins, 445
Antioxidant extracts, 441
Antioxidants, dietary, 443
isolation and production of, 444–445
pretreatments for, 444
sources of, 443–444
Aquaculture biorefineries, 12–13, 13
Aquacultures, xvii
Archer Daniels Midland Co., 220
Aryl alcohol oxidase (AAO), 178–179
Aspergillus spp., cell morphology of, 385, 386
Aspongubus viduatus, as alternative feedstock, 223
ATPs, in butyrate production, 357
Australia, microalgae production in, 83
Autohydrolysis pretreatment, 101–102
Aviation industry, biofuels in, 208
Bacteria. See also Microorganisms
butyric acid, 355, 356
fermentative, 266 (see also Fermentation)
lactic acid, 295–299, 296, 299
methanogenic, 282
propionic acid-producing, 331–332
acrylic acid pathway of, 31, 333
dairy propionibacteria, 333
dicarboxylic acid pathway of, 332, 333–334
general characteristics of, 332
propionibacteria, 332–333
succinic acid-producing, 320–321
Basidiomycetous fungi, lignins degraded by, 167–168
Beef tallow, FA composition of, 221
Beta glucosidases (BGs), 134
in enzymatic hydrolysis, 196
improvement, 137, 137–138
Betalains, 445
Bio-based fuels, 392
Bio-based products, commercial production of, 1, 18
Biobleaching, with xylanases, 159
Biocenosis, formation of, 282, 282
Bio-deinking, xylanases in, 159
Biodiesel, 13
advantages and disadvantages of, 212–213
composition of, 214
cetane number, 217–218
contaminants, 219–220
exhaust emissions, 217
and heat of combustion, 218
kinematic viscosity, 216–217
lubricity, 218–219
minor components, 220
and oxidative stability, 216
countries producing, 205–206
defined, 205, 207
FAAE in, 215
and low temperature, 214–216, 215
oxidative stability of, 227
primary market for, 227
properties of, 205
Biodiesel production, 4–5
alternative feedstocks for, 220–221
alternative methods, 211–212
alternative to, 14
capacity for, 205–206
catalysts for, 208, 208–209
crops for, 62
from edible oils, 50
enzymes in, 209
glycerol generated in, 5–6
by immobilized lipase, 85
influence of free fatty acids on, 211
integrated biorefinery for, 225
integrated soybean biorefinery for, 5, 5
microalgal feedstocks for, 225
reaction conditions for, 209–210
soybean oil for, 227
technical hurdles for, 226
technologies for, 5
transmethylation of triacylglycerols in, 205, 206
use of additives in, 227
Biodiesel standards, 206–208
ASTM D6751, 206, 206–207
ASTM D7467, 207, 208
B6-B20, 207, 208
EN 14214, 206, 207, 207
Bioenergy, targeted supply of, 73. See also Energy crops
Bioethanol, 111, 194. See also Ethanol
Bioethanol production, 14
by anaerobic fermentation, 85–86
costs of, 43, 43
Biofuels, xvii, 111
 first-generation, 7
 second-generation, 12, 63
 sources of, 221
terpene-based, 14

Biofuels production
 impact of enhanced, 56
 lignocellulosic biomass for, 193
 oilseed crops for, 221

Biogas, from biowaste, 289, 289–290
Biogas plants, classification of, 283, 284
Biogas process, 280
 after-treatment of process residues in, 288
 agitation in, 284–285, 285
 anaerobic digestion for, 281, 281
 conditions for, 281, 281–282, 282
 disturbances in, 282–283
 dry and wet fermentations in, 285–286, 286
 fermenter design in, 287, 287–288
 double- and multistage reactors, 283–284, 284
 single stage fermenters, 283, 283
 heating in, 286–287
 methanation reactor in, 287
 percolation reactor in, 285–286, 286
 pretreatment of substrates in, 288
 purification, 289
 substrates in, 280, 280–281, 283

Biohydrogen production. See also Hydrogen production by anaerobic fermentation, 86–87
 commercialization of, 273
 fuel cell integration of, 272–273
 technologies for, 272

Biotechnology, industrial, 327

Biowaste. See also Wastes
 biogas from, 289, 289–290
dry solid fermentation of, 290, 290
 incineration of, 280

Bipolar membrane electrodialysis (BMED), 366, 366–367

Blue enzyme. See Laccases

Bread, xylanases in, 158

BRENDA database, 116

Brown greases, as alternative feedstock, 222, 224
1,4-butanediol, structure and process for, 15
2,3-butanediol
 applications for, 399
glycerol metabolic pathway for, 401
 importance of, 409
 properties of, 406
 stereoisomers of, 406
 structure and process for, 15

2,3-butanediol production, 406
 effect of organic acid addition on, 409
gene expression for, 409
 lignocellulosic materials for, 408
 microorganisms and pathways, 407
 use of sugars as substrates for, 407–408
Butanol
bioconversion of, 235
compared with ethanol, 14
market for, 253–254
properties of, 235, 236
n-Butanol
biological production of, 235
cytoxicity of, 238
structure and process for, 15
n-Butanol biosynthesis
ABE pathway, 238, 240
cytoxicity of, 238
structure and process for, 15
keto acid pathway, 250–252, 251
reversed β-oxidation cycle in, 250
2-Butanol biosynthesis, 252–253
Butanol production, 253
metabolic engineering of solventogenic Clostridia in,
241–243, 242
methods of, 236
routes for, 235, 237
n-Butanol production, 253, 254
ABE fermentation in, 236–238, 237, 246
and alternative feedstock, 243–246, 244, 245
fermentation kinetics in, 238–240, 240
metabolic engineering for, 250, 250–253, 251
separation methods in, 246–249, 248
via solventogenic Clostridium, 238, 239
strain development for improved ABE fermentation, 240
Butanol to acetone ratio, 242–243
Butyrate, Clostridium species producing, 356
Butyric acid
fermentation, 362, 367
from petroleum feedstock, 367
properties of, 351
structure and process for, 15
thermophysical properties of, 364
Butyric acid production, 351–352
from different substrates, 358
fermentation in, 358, 358
microbial
butyric acid bacteria, 355, 356
factors affecting fermentation in, 357–358
metabolic pathway, 355, 357, 357
Cadaverine, 16
Camelina (Camelina sativa (L.) Crantz) oil, 51, 52, 53
Cane bagasse
PHA fermentation on hydrolysates of, 420, 420
as potential feedstock, 415
Canola, 53, 54–55
Carbohydrate-Active Enzymes database, 133
Carbohydrates
in corn grains, 3
effects on fermentation performance of, 322
from microalgae, 79
from soybean, 5, 6
Carbon dioxide (CO₂), in succinic acid production process, 324
Carboxylic acid biosynthesis
cytoplasmic pathways in, 382–384
filamentous fungi in, 379, 379–380
glycolysis in, 380–381
metabolic engineering in, 384
TCA cycle in, 381
transportation in, 381–382
Carboxylic acids, 375, 376. See also specific acids
fermentatively produced, 364–365
microbial production of, 375
Carboxylic acids production, 388, 392
fermentation processes for, 361, 362
extractive fermentation, 362–363, 364
immobilized-cell bioreactor, 361–362
operating mode, 361
precipitation in, 391
separation methods in, 363–365, 364
adsorption, 366
electrodialysis, 366, 366–367
extraction, 365–366
precipitation, 365
Carboxymethylcellulose (CMC), 135
β-carotene production, from algae, 82–83
Carotenoids, 445, 446
Cassava
characteristics and properties of, 33, 33
chemical composition of, 32, 32
as feedstock, 41, 42
in starch manufacturing process, 36
Cassava crops, 35
agricultural practices with, 38, 39
agronomic traits, 38, 39
food application of, 35–36
world distribution of, 28, 28
world production of, 28, 29
Castor (Ricinus communis L.) crops, 55
Castor (Ricinus communis L.) oil, 55–56, 56
Cationic ring opening polymerization (CROP), 311
CBP. see Consolidated bioprocessing
Cellobiohydrolases (CBHs), 131, 133–134, 196
Cellobiose dehydrogenase, 179
Cellodextrins, 134
Cellulase engineering, 136, 136, 142
designer cellulosome, 139–140
directed evolution, 136–139
rational design, 139
Cellulase producer, in CBP, 201
Cellulases, 195–196, 202
in cellulose hydrolysis
beta-glucosidase, 134
catalytic mechanisms, 133
cellulase activity assays, 135–136
endoglucanase, 133
enzyme systems for, 132, 132, 132
exoglucanase, 133–134
sequence families, 133
substrate, synergy, and model, 134–135, 135, 136
components of, 131
consolidated bioprocessing of, 140–142, 141, 142
heterologous production of, 11
high costs of, 131
industrial applications of, 140
modular architectures of, 132
production of, 140
recombinant, 141
Cellulose
hydrogen bonds in, 93
in lignocellulose biomass, 195
in lignocellulosic biomass, 92–93, 93
microfibrils of, 93
molecular structure of, 93
Cellulose hydrolysis, 132
functionally based model for enzymatic, 134, 136
in lignocellulosic refining, 10
role of cellulases in, 132, 132, 135, 136
Cellulosic biomass, compared to starchy grains, 415. See also Lignocellulosic biomass
Cellulosomes, designer, 139–140
Central composite rotary design, 154
Cetane index, 218
Cetane number (CN), for biodiesel, 217–218
Cheese manufacturing, by-products from, 337
Chemicals, bio-based, 14–16
Chemistry, role of laccase in synthetic, 183
Chemotherapy, PGA as drug carrier in, 436
Chicken fat, as alternative feedstock, 222, 222–223
Chlamydomonas reinhardtii, for indirect biophotolysis, 265
Chlorella protothecoides, 226
Chorella, large-scale cultivation of, 84
Chromatography, simulated moving bed, 307
Citric acid, 375, 392. See also Carboxylic acids
applications for, 376
commercial production of, 376, 377
medium for fermentation of, 377, 387–388
microorganisms producing, 377
overproduction of, 388–389
production of, 379, 379–380, 389
properties of, 376
transport mechanism of, 382
Claus’ process, 289
Clostridia, 238
Clostridia, acidogenic
metabolic engineering of, 358, 359, 360
Clostridia cloning vectors, 360
gene knockout and overexpression, 359, 360–361
genomic sequences, 359, 360
studies, 359
Clostridia, solventogenic, 359
ABE production by
from lignocellulosic biomass, 245
from sugar and starch-based substrates, 244
metabolic engineering of, 241–243, 242
n-butanol production by, 238–249, 239, 240, 241, 242, 244, 245, 247, 248
properties of, 238, 239
Clostridium formicoacetica, in acetic acid production, 354
Clostridium spp.
in acetic acid production, 352
producing butyrate, 356
Clostridium thermoacetica, in acetic acid production, 354
Clostridium thermolacticum, in hydrogen production, 267–268
Clostridium tyrobutyricum
in butyric acid production, 355–358, 356
genome size and characteristics, 359
metabolic engineering of, 359
for n-butanol production, 250
Consolidated bioprocessing (CBP), 131, 142, 196, 201–202, 202
biologically mediated transformations in, 201
in biorefining, 8
of cellulases, 140
in lignocellulosic refining, 10, 10
potential microorganisms for, 202
process, 201
Cooking oil waste, as alternative feedstock, 222, 223–224
Corn
cobs, 4
flour, 33–34
grains
components in, 3, 3
conversion process of, 33
Corn biorefineries, 2–4, 3
Corn ethanol industry, 91–92
Corn fiber, in propionic acid production, 337
Corn gluten meal, 3–4
Corn kernels, utilization of, 33, 33
Corn/maize crops, 33–34
agricultural practices, 38, 39
agronomic traits, 38, 39
characteristics and properties of, 33, 33
chemical composition of, 32, 32
world production of, 28, 29
Corn refineries, by-products produced by, 2–3, 3
Corn steep liquor (CSL), 3
components of, 4
in propionic acid production, 337
Corn stover, 4, 65, 415
Corynebacterium glutamicum, keto acid pathway in, 251
Cosmetics, laccases in, 183
Cotton, xylanases in cleaning of, 159
Cottonseed (Gossypium hirsutum L.) crops, 55
Crambe (Crambe abyssinica) oil, 51, 52–53, 53
Crop rotations, hemp in, 68
Crystallinity, in bioconversion of lignocellulosic biomass, 97–98
Crystallinity index (CrI), 97
Crystallization, of succinic acid, 327
Cuphea (Cuphea lanceolata) seed oil, 51, 52
Cyanobacteria, 81
in biophotolysis, 264–265
heterocystous, 264
Dairy industry, by-products from, 337
Degree of polymerization (DP), in bioconversion of lignocellulosic biomass, 98
Dehydration, for dietary fiber, 443
Dicarboxylic acid fermentation of, 377
Dicarboxylic acid pathway, in propionic acid-producing bacteria, 333–334
Diesel oxidation catalysts (DOCs), in biodiesel production, 213
Dietary fiber, 442
isolation and production of, 442–443
sources of, 442
Dilute acid, in lignocellulosic pretreatment, 9
Directed-evolution experiments, 136
β-glucosidase improvement, 137, 137–138
endoglucanase improvement, 138, 138–139
selection and screening, 137
Dried distiller’s grains with soluble (DDGS), as alternative feedstock, 88
Drug delivery systems, γ-PGA in, 435–436
“Dry matter” (DM), 280
Dry mechanical segregation, in biogas technology, 289–290, 290
Dry-milling processes, 41, 42
Economics, of biorefining feedstock, 17
Electrodeionization (EDI), 366, 366–367
Electrodialysis
bipolar membrane, 366, 366–367
in succinic acid production, 326
Electrodialysis fermentation (EDF)
for carboxylic acid production, 391–392
in lactic acid recovery, 307–308
Embden-Meyerhof-Parner (EMP) pathway, in propionic-acid producing bacteria, 333
Endoglucanase improvement, 138, 138–139
Endoglucanases (EGs), 133
catalytic modules, 132, 133
crystal structures of, 132
in enzymatic hydrolysis, 196
synergy among, 134
Energy
bioenergy, 73
green, 279
Energy crops, 2
agronomic characteristics of, 64–65
agronomic management of, 61
annual
hemp, 64, 68
maize, 63–66, 64
sorghum, 64, 66, 66–67
sugar beet, 64, 67–68
barriers to, 72–73
characteristics of, 62, 73
competition with feed crops of, 73
dedicated, 61, 62
management practices for, 74
and overall energy demands, 74
perennial herbaceous
miscanthus, 64, 70–71, 71
sugarcane, 68–69
switchgrass, 64, 69, 69–70, 70, 71
reasons for growing, 72
research and development for, 73
second-generation, 63, 73–74
short rotation woody crops
poplar, 64, 65, 71–72
willow, 64, 65, 71–72
Energy Policy Act (2005), 220
Energy sources, demand for cleaner, 111
Enterobacter sp., hydrogen production using, 268
Environment
and bioethanol, 194
and energy crops, 72
and global warming, 399
Enzyme hydrolysis, 195–196
pretreatment for, 195
surface area in, 98
Enzyme market, cellulases in industrial, 131
Enzymes. See also Amylases; Cellulases; Xylanases; specific enzymes
in biodiesel production, 209
cellulolytic, 196
hydrogen producing, 269
hydrolytic, xvi
starch degrading, 115, 115
Escherichia coli
in hydrogen production, 269, 270
in xylanase production, 155–156
Esterification, in lactic acid recovery, 308
Ethanol, 13
from CSL, 4
from lignocellulosic biomass, 193, 195
starch for, 111
structures and process for, 15
Ethanol industry, corn, 91–92
Ethanologen, in CBP, 201
Ethanol production
CBP in, 8
from cereal grains, 41, 42
corn fiber in, 3
from corn/maize, 2, 65–66
cost analysis for, 91
methods of, 236
from sugarcane, 7, 68–69
Ethanolysis, in FAEE preparation, 210
Ethyl tertiary butyl ether (ETBE) production, 111
Exhaust emissions, for biodiesel, 217
Exhaust gas recirculation (EGR), in biodiesel production, 213
Exoglucanases, 133
crystal structures of, 132
synergy among, 134
Expanded bed adsorption (EBA), in ISPR process, 345
Extracellular polymeric substances (EPS), 282
Extractive fermentation, in carboxylic acid production, 392
Extractives, in lignocellulosic biomass, 96
Factorial design (FD), 271–272
Fatty acid alkyl esters (FAAEs)
 in biodiesel, 215
 structural features of, 215, 216
 transesterification of triacylglycerols in, 205, 206
Fatty acid ethyl esters (FAEEs), 13, 14, 210–211
Fatty acid methyl esters (FAMEs), 209–210, 212
Fatty acids, in vegetable oil feedstocks, 213, 213–214
Feedstocks, xvi
 cassava, 41, 42
 economics of biorefinery, 17, 17–18
 industrial demand for, 39
 lignocellulosic biomass, 388
 plant-derived, 27
 potential for multi-feedstock process, 38
 price, 38
 quantity and quality, 38
 renewable, 399
 storage, handling, and transportation of, 39
 vegetable oil, 213, 213–214
Feedstocks, alternative
 for ABE fermentation, 243–246, 244, 245
 animal fats, 221–223, 222
 for biodiesel production, 220–221
 fatty acid profile from, 222
 oilseed, 221
 waste oils, 222, 223–224
Fermentable:nonfermentable (F:N) ratio, 40–41
Fermentation
 butyrate, 357–358
 butyric acid, 355
 extractive, 392
 filamentous fungal, 378, 392
 bioreactor and morphology control, 386, 386, 387
 dissolved oxygen, 390
 media for, 387, 387–389
 pH and neutralizing agent in, 389–390
 product separation and purification, 390–392, 391, 392
 temperature, 390
 lactic acid, 295–305, 296, 299, 300, 303, 304
 in lignocellulosic refineries, 10–11
 of molasses, 40, 40
 in propionic acid production, 331, 338–341, 339, 340
 in succinic acid production, 323–324
Fermentation, dark
 in biological hydrogen production, 273
 in hydrogen production, 266–268, 267
Fermentation processes
 industrial, 269
 very high-gravity (VHG), 41
Fermentative bacteria, genetic modification of, 269–271, 270, 271
Fermentors, in biogas process, 287, 287–288
FHL system, in E. coli, 269–270, 271
Fiber. See Dietary fiber
Fibrous-bed bioreactor (FBB)
 in carboxylic acids production, 361–362, 363
 for immobilized-cell fermentation, 342, 342–343, 344
 laboratory-scale, 363
 multipoint, 343
 pertractive fermentation process with, 364
 in propionic acid production, 340
Fischer-Tropsch diesel, 207
Flax, false, 52–53
Flexifuel vehicles, 111
Flow cytometry, for sorting microalgae, 81–82
Fluorescent techniques, for screening microalgae, 81
F:N ratio, for sugars, 40–41
Food, consumer acceptance of, 445
Food crops, as dedicated energy crops, 61
Food industry, laccases used in, 182–183
Food manufacturing industry, 441
Food processing by-products, 441–442
 antioxidants, 443
 dietary fiber, 442, 442–443
 food colorants, 445–446
Food processing products, value-added components in, 441
 “Food versus fuel” controversy, 1
Fossil fuels
 dependence on, 392
 and environmental pollution, 263
Fractionation, of lignocellulosic biomass, 104
Free fatty acids (FFAs)
 formation of soap from, 208, 208
 influence on biodiesel production, 211
Fruit processing, by-products of, 441
Fuel cells, 272–273
Fumarase, in carboxylic acid biosynthesis, 383
Fumaric acid, 16, 375, 379, 380, 389, 392. See also Carboxylic acids
 applications for, 376
 metabolic pathways for, 379
 properties of, 376
 transport mechanism of, 382
Fumaric acid production, 376, 377, 378
 fermentation in, 389
 medium for fermentation of, 387, 387–388
 microorganisms in, 377, 378
 rTCA cycle in, 380
 TCA cycle in, 381
Fungal Oxidative Lignin enzymes (FOLy), 168
Gas stripping, in n-butanol production, 247, 248
Genetically modified species, social consensus on, 73
Genetic engineering
 in lignocellulosic refining, 11–12
 of oilseed products, 49
Genetic modification, of fermentative bacteria, 269–271, 270, 271
Genome shuffling, to generate C. acetobutylicum mutant, 241
Genomics, 254, 393
Global warming, concern for, 399
Glucoamylase (GA)
 industrial production of, 121
 properties of, 114
Gluconic acid, 16, 375
Glucaric acid, 16, 375
Glucose
- as carbon source for microbial 1,3-propanediol production, 405–406
- effect of succinic acid-producing bacteria on, 320–321
- in hydrogen production, 269, 270
- in lactic acid fermentation, 302, 304
- PHA fermentation on, 418, 418
- PHA formed on, 419
- 1,3-propanediol production from, 400
- in propionic acid production, 340

β-glucosidase, in enzymatic hydrolysis, 196
- improvement, 137, 137–138

L-glutamic acid, in γ-PGA production, 429

Glycerol
- in butanol production, 245
- in 2,3-butanediol production, 408
- biodiesel contaminated by, 219–220
- in biodiesel production, 6
- fermentation pathways in, 240
- in 1,3-propanediol production, 400, 401, 405–406
- in propionic acid production, 338

Glycolysis, in carboxylic acid biosynthesis, 380–381

Glycoside hydrolases (GHs), 115–116
- characteristics of, 150, 151
- structures of enzymes from, 149, 149

Glyoxal oxidase (GLX), 177–178

Green biorefining, 2
- “Green energy,” 279
- Greenhouse effect, contribution of methane to, 279
- Greenhouse gas (GHG) emissions, and bioenergy production, 194

Handling and storage techniques, for energy crops, 73
- Hawaii, microalgae production in, 83
- Heavy metals, in acid production, 388

Hemicelluloses
- in bioconversion of lignocellulosic biomass, 97
- in lignocellulosic biomass, 93–94, 94
- structure of, 94

Hemp (Cannabis sativa), as energy crop, 64, 68
- Heterotrophic culture, of microalgae, 84–85
- Hexadecane (cetane), 218
- Hexokinase (HK), in carboxylic acid biosynthesis, 380
- Hexose monophosphate (HMP) pathway, in propionic-acid producing bacteria, 333

Higher alcohols, 13. See also Butanol
- biological production of, 254
- in genetically engineered E. coli, 251

Higher alcohols biosynthesis
- 2-butanol, 252–253
- engineering microorganisms for, 249
 - Clostridial n-butanol fermentative pathway, 249–250, 250
 - keto acid pathway, 250–252, 251
 - reversed β-oxidation cycle in, 250
 - isopropanol and n-propanol, 252
 - pentanol in, 253
- Higher alcohols production, by hybrid biochemical process, 253

Homoacetogens
- in acetic acid production, 352–354, 353, 353, 354
- fermentation via, 354
- metabolic pathways of, 352–354, 353
- optimal growth conditions for, 353

Hydraulic mixing, in biogas process, 285

Hydrogen, as energy source, 263. See also Biohydrogen

Hydrogen production
- biophotolysis for, 263–265, 264
- culture medium for, 269
- via dark fermentation, 266–268, 267, 268–269
 - by facultative anaerobes, 268
 - metabolic pathways, 266–267, 267
 - by strict anaerobes, 267–268
 - by thermophilic microorganisms, 268
- factors affecting, 268–269
- hybrid systems in, 272, 272
- photodecomposition in, 265, 265–266
- problems in, 43
- research on, 263
- Hydrolysates solution, PHA fermentation in, 420, 420
- Hydroxylalkanoic acids (HAs), 415
- Hydroxymethylfurfural (HMF), 16
- 3-hydroxypropionic acid, structure and process for, 15
- Hypochlorite (OHCl−), in PHA recovery, 422

Immobilization techniques, during lactic acid fermentation, 305, 306
- In situ product recovery (ISPR), in propionic acid production, 343–345, 344

Iodine exchange technique, in bioseparation, 307

Ionic liquid pretreatment, 102

Irradiation, in pretreatment technology, 103

Isobutanol, structures and process for, 15

Isoprene, 16

Isoprenoid pathways, 14

Isopropanol
- biosynthesis of, 252
- structure and process for, 15

Israel, microalgae production in, 83

Itaconic acid, 16, 375, 392. See also Carboxylic acids
- applications for, 376
- commercial production of, 376, 377
- medium for fermentation of, 387, 387–388
- microorganisms producing, 377
- properties of, 376
- transport mechanism of, 382

Itaconic acid biosynthesis, 381

Itaconic acid production
- Aspergillus itaconicus in, 378
- strain improvement for, 384

Jatropha
- biology of, 50
- development of, 50–51
- fatty acid composition of, 51
- plant characteristics of, 50
Jerusalem artichoke tubers, as substrate for 2,3-butanediol production, 408

α-ketoglutarate dehydrogenase complex (KGDH), 381

Klebsiella species, 1,3-propanediol produced by, 401–404, 403

effect of aeration and oxidoreduction potential, 401–402

effect of fermentation process on, 402–403

effect of 3-hydroxypropionaldehyde on, 402

with new or engineered *K. pneumoniae* strains, 403–404

raw glycerol as carbon source for microbial 1,3-propanediol, 404

Laccase molecule, copper atoms in, 176–177

Laccases

catalytic cycle and substrates for, 175, 175

crystal structure of, 176

in lignin degradation, 168, 169

mediators for, 177, 178

source of, 175–176

Lactic acid

applications, 294

bioconversion costs of, 312

for bioplastics, 4

from CSL, 4

fermentation of, 295–305, 296, 299, 300, 303, 304

bacterial, 295–299, 296, 299

fungal, 298–305, 300, 303, 304, 306

studies on, 305, 306

in food products, 294

global production of, 295

history of, 293

in pharmaceutical products, 294

properties of, 293–294, 294

structures and process for, 15

Lactic acid production, 295, 298

advanced fungal fermentation systems in, 302–303, 303, 304

cost of, 297

end-product formation in, 298, 299

from fermentation broth, 305

adsorption, 307–308

electrodialysis, 307

esterification, 308–309

reactive extraction, 305–307, 306

immobilization in, 298

nutrient requirements for, 297

physiological environment for, 297

recovery techniques in, 309, 310

submerged fungal fermentation in, 302

viable downstream process for, 309, 310

Lesquerella seed oil, composition of, 51, 52

Levulinic acid, PHA fermentation on, 418–420, 419, 419

Lignin

building blocks, 167, 168

degradation products of, 9

degraders, 167–168, 169

enzymes in degradation of, 168, 169

as renewable resource, 167

structure of, 167

Lignin-carbohydrate complex (LCC), 97

Lignin degradation, 183–184. See also Lignin-modifying enzymes

Lignin-degrading auxiliary (LDA) enzymes, 168, 169, 177

aryl alcohol oxidase, 178–179

cellobiose dehydrogenase, 179

glyoxal oxidase, 177–178

pyranose 2-oxidase, 179

Lignin-modifying enzymes (LMEs), 168

applications

biopulping, 182

biosensors, 183

cosmetics, 183

environmental remediation, 181–182

in food industry, 182

potential and limitations, 181

synthetic chemistry, 183

in textile industry, 182

production of, 179

with different fermentation modes, 180

by immobilized fungi, 180

in recombinant systems, 180–181

solid-state fermentation, 180

Ligninolytic peroxidases (LiPs)
catalytic cycles and substrates, 169, 170, 170–172, 171

constrained with laccases, 181–182

crystal structures of, 173

diversity of, 172

general catalytic cycle of, 170

gene regulation, 172

in lignin degradation, 168, 169

manganese oxidation site, 173, 174

multiple oxidation sites in versatile peroxidase, 174–175

oxidation by, 171

oxidation site for aromatic substrates, 174

structural features of, 172–174, 173

Lignins

in bioconversion of lignocellulosic biomass, 96–97

in lignocellulosic biomass, 94, 94–95, 95

monomers, 94

polymer, 95

Lignocellulose

in ABE fermentation, 244–245, 245

potential inhibitors from, 9, 9

Lignocellulosic bioconversion

biotechnological approaches in, 196, 196–198

consolidated bioprocessing, 196, 196, 201–202

separate hydrolysis and fermentation, 196, 197

simultaneous saccharification and cofermentation, 196, 200–201

simultaneous saccharification and fermentation, 196, 197

Lignocellulosic biomass, xvii, 2, 91

bioconversion of, 91, 92, 96, 202

chemical barriers to, 96–97

physical barriers to, 97–98

pretreatment strategies in, 103
Lignocellulosic biomass (cont’d)
 bioethanol production from, 9, 193
 components of, 7
 enzymatic hydrolysis of, 195–196
 ethanol from, 194
 as feedstock, 388
 fractionation of, 104
 organic components of, 8
 pretreatment for, 9, 193
 raw material of, 194–195
 structure and composition of, 92
 cellulose, 92–93, 93
 extractives, 95–96, 96
 hemicellulose, 93–94, 94
 lignin, 94, 94–95, 95
Lignocellulosic biorefineries, 7–9, 12
 cellulose hydrolysis and saccharification in, 10
 costs of, xvii
 fermentation in, 10–11
 general bioprocess flow sheet in, 10, 10
 plant genetic engineering in, 11–12
 pretreatment in, 8–10, 9
 thermochemical platform for, 12
Lignocellulosic feedstocks, ethanol from, 62
Lignocellulosic wastes, in 2,3-butanediol production, 408
Lime pretreatment, 99, 101
Linseed (Linum usitatissimum L.) crops, 55
Lipids, from microalgae, 80
Liquid-liquid extraction, in n-butanol production, 249
LMAA process, 99, 100
Low-moisture anhydrous ammonia (LMAA) process, 99, 100
Lubricity, determination of, 218–219
Maillard reaction, 40
Maize (Zea mays)
 characteristics of, 33
 as energy crop, 63–66, 64
Maize crops, world distribution of, 28, 28. See also Corn/maize crops
Maize grains, 65
Malate dehydrogenase (MDH)
 in carboxylic acid biosynthesis, 383
 in malic acid production, 382
Malic acid, 16, 375, 392. See also Carboxylic acids
 applications for, 376
 medium for fermentation of, 387, 387–388
 microorganisms producing, 377
 properties of, 376
 TCA cycle in, 381
 transport mechanism of, 382
Malic acid production, 377
 fermentation in, 389
 process, 378
L-malic acid production, microorganisms in, 378–379
Manganese peroxidases (MnPs), 168, 169, 171
 contrasted with laccases, 181–182
 general catalytic cycle of, 170
 in lignin degradation, 168, 169
-mediator-assisted oxidation by, 171
 Mn binding site for, 174
 in peroxidase reaction cycle, 170
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS), 82
Medical adhesives, γ-PGA in, 435
Medium E, 430
Medium invert syrup (MIS), 32
Melanotic engineering, in succinic acid production, 322
Metabolic pathway, in propionic acid production, 339–340
Methanation, in biogas process, 286
Methane formation, anthropogenically induced, 279
Methanol, transesterification with, 210
Methanolysis, in FAEE preparation, 210
Methyl ethyl ketone (MEK), 253
Mevalonate (MVA) pathway, 14
Microalgae
 biochemical components of, 79–80
 for biochemical production, 80, 80
 as biodiesel feedstock, 225–226
 for biofuel production, 12–13, 13, 80, 80, 85–87
 bioprocessing of
 biodiesel production by immobilized lipase, 85
 bioethanol production by anaerobic fermentation, 85–86
 biomethane and biohydrogen production by anaerobic fermentation, 86–87
 characteristics of, 79
 economic analysis for, 83
 green, 81
 growth physiology of, 81
 heterotrophic and mixotrophic cultures, 84–85
 high-throughput screening by fluorescent techniques, 81
 high-throughput sorting by flow cytometry, 81–82
 industrial cultivation of, 225
 for industrial purposes, 80, 80–81
 integrated process for, 87
 nutrients in, 79–80
 photoautotrophically growing, 225
 products of, 79
 rapid evaluation techniques for lipid, 82
 to reduce CO₂ emission, 83
 screening and selecting, 81
 utilization of, 82–83
Microalgae culturing facilities, 87
Microalgal biomass, industrial production of
 heterotrophic and mixotrophic cultures, 84–85
 mass cultivation outdoors, 82–83
Microalgal oil, yield of, 225–226
Microorganisms
 in biological processing, 399
 for biosynthesis of higher alcohols, 249–253, 250, 251
 cellulolytic, 202
 in cellulosic feedstocks, 140, 141
 for industrial biocommodities, 142, 142
 methanogenic, 287
 recombinant cellulolytic, 141
Microorganisms, thermophilic, hydrogen production with, 268
Milling process, for dietary fiber, 443
M. (M. spp.) effects of delayed harvest on, 71
as energy crop, 64, 70–71, 71
Mitochondrial tricarboxylate transporter (MTT), 381–382
Molasses
chemical composition and properties of, 40, 40
composition of, 40, 40
in propionic acid production, 338
Municipal solid waste (MSW). See also Wastes
biogas from, 289, 289–290
in biogas process, 286
dry solid fermentation of, 290, 290
pulper system for, 289, 289
Mutagenesis, strain improvement for ABE fermentation by, 240, 241
NADH/NAD⁺ ratio, 243
Nanoparticles, γ-PGA in, 435–436
National Renewable Energy Laboratory (NREL), 91
Net energy ratio (NER), 213
NiFe-hydrogenase, 271
Nonester renewable diesel (NERD) fuels, 227
Oil crop production
impact of agronomy on, 47, 48
increase in, 47, 48
nonfood applications, 49, 56
and plant breeding, 48
yield from, 47
Oil crops, 2
novel, 50, 53
camelina oil, 52–53
crambe, 52–53
cuphea, 51, 52
jatropha, 50–51, 51
lesquerella, 51, 52
pongamia, 51–52
traditional
castor bean, 55–56
cottonseed, 55
linseed, 55
oil palm, 56
oilseed rape, 53, 54–55
soybean, 53–54
sunflower, 55
Oil palms (E. guineensis Jacq. and E. oleifera), 56
Oilseed rape, 53, 54–55
Oilseeds, oil content of, 48
Oleochemistry, 49
Omics technologies, 254
Open reading frames (ORFs), 335
Organic matter
degradation of, 281, 281
general composition of, 280, 280
Oxidoreduction potential (ORP), in 1,3-propanediol production, 401–402
Packaging foam, from corn fiber, 3
P/A ratio, in propionic acid production, 341
Particulate traps, in biodiesel production, 213
Pellet formation, in filamentous fungal fermentation, 385
PEMFC, 272–273
Pentanol, biosynthesis of, 253
Percolation
in biogas process, 286
hydrolysis by, 290, 290
Percolation reactor, 285, 286
Pervaporation, in n-butanol production, 247–248, 248
Petroleum industry, compared with biorefinery, 18
Pharmaceutical products. lactic acid in, 294
PHB. See poly 3-hydroxybutyric acid
Phosphoenolpyruvate (PEP), in propionic acid-producing bacteria, 333
Phosphoenolpyruvate (PEP) carboxylation pathway, in succinic acid production, 319, 321–322
Phosphofructokinase (PFK), in carboxylic acid biosynthesis, 380
Phosphoric acid swollen cellulose (PASC), 11
Photodecomposition, in hydrogen production, 265, 265–266
Photosynthesis
in biomass production, 279
and dark fermentation, 272, 272
Pichia pastoris, in xylanase production, 155–156
Plant biomass, 7. See also Biomass
Plant breeding
for oil crops, 48
progress in, 47
Plant feedstocks, 111. See also Feedstocks
Plastics, biodegradable, from corn gluten, 4
Polyamides, 427
Polymers. see Biopolymers; Polyhydroxyalkanoates
Poly-γ-glutamic acid (γ-PGA)
applications
agricultural products, 434
biopolymer flocculant, 434–435
food and skin care products, 434
in medicine, 435–436
biosynthesis pathways for, 428, 429
characteristics of, 433–434
microorganisms producing, 427–428
molecular structures of isoforms of, 428
properties of, 427
separation and purification, 433
Poly-γ-glutamic acid (γ-PGA) biosynthesis, 432
cocultivation of Corynebacterium glutamicum and B. subtilis, 432–433
genetic engineering of host strains, 433
screening high-yield γ-PGA producers, 432
Poly-γ-glutamic acid (γ-PGA) production bioprocess development in, 430, 431, 432
cultivation conditions for, 431
culture condition optimization, 429–430
large-scale, 430
nutrients requirements, 429
Polyhydroxyalkanoates (PHAs)
biomass derivates, 416
in biomass refining, 415–416, 416
bioprocess, 417
chemical structures of, 416
fermentation
on glucose or xylose, 418, 418
in hydrolyzates solution, 420, 420
on levulinic acid, 418–420,
419, 419
microbial synthesis of, 417–418
P3HB, 418, 419
schematic biosynthesis of, 417
thermal hydrolysis, 416

Poly(3-hydroxybutyrate) (P3HB)
in acidic solution at different temperatures, 421, 422
amorphous granules of, 421
FTIR spectra of, 419
melting point for, 419–420
molecular weights of, 422
P3HB, 418–419
stoichiometric fermentation, 418, 418

Poly(3-hydroxybutyric acid) (PHB), from sugarcane, 7
Polylactic acid (PLA)
applications, 294
properties of, 294
Poly(lactic acid) (PLA) production, commercialization of, 312
Poly(lactic acid) (PLA) syntheses, 309–310, 311
azeotropic dehydrative condensation in, 311–312
via ROP, 309–311
Polymerization, degree of (DP), in bioconversion of
lignocellulosic biomass, 98
Polytrimethylene terephthalate (PTT), 399
Pongamia
biology of, 51
development of, 52
fatty acid composition of, 51
plant characteristics of, 51–52
utilization of, 51
Poplar (Populus spp.), as energy crop, 64, 71–72
Pork lard, FA distribution of, 222, 222
Potassium phosphate, in acid production, 388
Potato crops, 34
agricultural practices, 38, 39
agronomic traits, 38, 39
characteristics and properties of, 33, 33
chemical composition of, 32, 32
starch manufacturing process, 34
world distribution of, 28, 28
world production of, 28, 29
Pretreatment, 104–105
alkali, 99–101, 100, 101
in biomass conversion, 104–105
for dietary fiber, 442–443
for enzymatic hydrolysis, 195
of starchy material, 111
Pretreatment technologies
acid, 102, 102
autohydrolysis, 101–102
common effects of, 92
development of, 91–92
ionic liquid, 102
irradiation, 103
for lignocellulosic biomass, 8–10, 9, 98
severity factor in, 103
supercritical, 102–103
1,2-propanediol, structure and process of, 15
1,3-propanediol
applications for, 399
glycerol metabolic pathway for, 401
importance of, 409
properties of, 399–401
structure and process for, 15
1,3-propanediol production, 399–401
with Clostridium butyricum strains, 404–405
effects of co-substrate and nutrients on, 404–405
from fermentation types, 403, 403
heterologous genes for, 405–406
by Klebsiella species, 401–404, 403
with mutated Clostridium butyricum strains, 405
with raw glycerol, 405
n-propanol, 15, 252, 253
Propionibacteria, 332–333, 345
dairy, 333
gene sizes and characteristics of, 335
metabolic engineering of, 345
genetic and metabolic engineering, 336
genetics and cloning vectors, 334–336
transformation in, 336
shuttle vectors for, 335, 335
Propionibacterium acidipropionici
gene size and characteristics of, 335
in propionic acid fermentation, 339
Propionic acid
bacteria, 331–334, 332, 332, 333
fermentation of, 331, 345
FBBs in, 342, 342–343, 344
immobilized-cell, 339, 341–342
with online ED, 345
with in situ product recovery, 343–345, 344, 344
fermentation processes, 336
free-cell, 338–341, 339, 340
renewable feedstocks, 337, 337–338
properties of, 331
structures and process for, 15
thermophysical properties of, 364
U.S. market for, 331
Propionic acid production
cell density in, 35
from low-cost renewable feedstocks, 337, 337
Protease, from CSL, 4
Protease-activated antimicrobial peptide (PAMP) gene, 336
Protein
in corn grains, 3
from microalgae, 80
from soybean, 5, 6
whey, 337
Proton exchange membrane fuel cells (PEMFCs), 263
Pullulanase, properties of, 114
Pulper system, in biogas technology, 289, 289
Putrescine, 16
Pyruvate kinase, in carboxylic acid biosynthesis, 380

Ramie, xylanases in cleaning of, 159
Rapeseed/canola, for biodiesel, 205
Rapeseed oil, utilization of, 54
Rapeseed oil germplasm, composition of, 53, 54
Reactors
 continuous stirred-tank, 340
 for hydrogen production, 269 (See also Bioreactors)
 stirred-tank, 385
Recombinant DNA technology, in xylanase production, 155–156
Recombinant enzymes, in CBP, 141
Recycling, in biorefinery industry, 18
Reductive TCA pathway (rTCA), in fumaric acid production, 380
Response surface methodology (RSM), 154, 210
Rhizopus oryzae
 E. coli’s phosphoenolpyruvate carboxylase in, 385
 in fumaric acid production, 378
 metabolic engineering of, 384–385
 morphologies of, 386
Rhizopus spp.
 cell morphology of, 385, 386
 central metabolic pathway of, 299–302, 300
 ethanol production in, 301, 301
 in lactic acid production, 299
 L-lactic acid fermentation by, 302, 303, 304
 pyruvate metabolism in, 300–301, 301
Rhodobacter sphaeroides, in photodecomposition processes, 266
Rice
 characteristics and properties of, 33, 33
 chemical composition of, 32, 32
 rice starch produced from, 36–37
Rice bran, as alternative feedstock, 222, 224
Rice crops
 agricultural practices, 38, 39
 agronomic traits, 38, 39
 categories of, 36
 world distribution of, 28, 28
 world production of, 28, 29
Ring opening polymerization (ROP)
 coordination insertion, 311
 in polylactic synthesis, 309
SAA process, 99, 100, 100
Saccharification
 biomass, 131, 142
 in lignocellulosic refining, 10
 process, 111
Saccharomyces cerevisiae, 11, 40, 155–156
Salmon oil, as alternative feedstock, 222, 223
Schizochytrium limacinum, microalgal oil production from, 226
Screening methods, strain improvement for ABE fermentation by, 240, 241
Secondarily treated sewage (STS), 84
Selective catalytic reduction (SCR), in biodiesel production, 213
Separate hydrolysis and fermentation (SHF), 10, 196, 197
Separation methods, 393
 in filamentous fungal fermentations, 390–391, 391
 in n-butanol production, 246–249, 248
 in propionic acid production, 343
Simultaneous fermentation and separation (SFS), in carboxylic production, 391
Simultaneous saccharification and cofermentation (SSCF), 196, 200–201
Simultaneous saccharification and fermentation (SSF), 7, 196, 198–200, 199
 compared with SHF, 200
 disadvantages of, 200
 enzyme loading in, 199
 fermenting microorganisms in, 198–199, 199
 inhibitors in, 200
 in lignocellulosic refining, 10
 process, 199
 substrate loading in, 199
 temperature, 199–200
 yeast loading in, 199
Soapstock, as alternative feedstock, 222, 224
Solar energy, in direct biophotolysis, 264
Solid-state fermentation, of amylases, 119
Solid waste materials, in biogas process, 286. See also Wastes
Solvent, industrial “green,” 4
Sorghum (Sorghum bicolor), as energy crop, 64, 66, 66–67
Sorghum bug, as alternative feedstock, 223
Sorghum crops, 29, 31–32
 agricultural practices, 38, 38
 agronomic traits of, 38, 38
 as energy crops, 41
 subsistence, 31–32
 world production of, 28, 29
Sorghum juice quality, effects of harvesting time and method on, 66
Soybean crops
 distribution of, 53
 genetic engineering technologies for, 54
Soybean meal, 6, 6
Soybean oil, in biodiesel production, 227
Soybean refineries
 for biodiesel production, 4–5, 5, 5
 nutritional products of, 6–7
 technologies used in, 5
Soybeans
 components of, 5, 5
 U.S. production of, 4
Soybean seed, composition of, 53
Starch, 111
 as amylase substrate, 112–113
 components of, 112, 112–113
 ethanol from, 62
 properties of, 112
Starch crops, 33, 322–33
agricultural practices, 38, 39
agronomic traits, 38, 39
in biorefinery, 37–40, 39, 41, 42, 42, 43, 43
cassava, 28, 29, 35–36
characteristics and properties of, 33, 33
chemical compositions of, 32, 32
corn, 29, 33–34
potato, 28, 29, 32
rice, 28, 29, 36–37
wheat, 28, 29, 33, 34
world distribution of, 28, 28
world production of, 28, 29
Steryl glucosides, in biodiesel, 220
Stirred-tank reactors (STRs), 340, 385
Strain improvement, 384
Styrene, structures and process for, 15
Submerged fermentation (SMF), of amylases, 119
Succinic acid, 375
engineered strains of, 317, 318
properties of, 317
recovery and purification, 324
electrodialysis in, 326, 326
ion exchange and crystallization, 326–327
precipitation, 325
reactive extraction, 325, 325–326
from renewable resources, 317–318
structures and process for, 15
Succinic acid producers, 318
A. succiniciproducens, 318–319, 320
A. succinogenes, 319, 320
C. glutamicum, 320, 321
carbon sources for, 322–323
E. coli, 320, 321–322
M. succiniciproducens, 319, 320, 321
Succinic acid production
downstream processes of, 317
evolutionary engineering in, 322
fermentation process optimization in, 323–324
integrated process for, 327
processes in, 317, 318
reactive extraction process in, 325, 325–326
Sucrose, ethanol from, 62
Sugar beet (Beta vulgaris)
agronomic options to increase yields for, 67, 67
as energy crop, 64, 67–68
Sugar beet crops
agricultural practices, 38, 38
agronomic traits of, 38, 38
chemical composition of, 29
processing of, 29
world distribution of, 28, 28
world production of, 28, 29
Sugar beet molasses, chemical composition and properties of, 40, 40
Sugarcane (Saccharum spp.)
bioethanol using, 195
as energy crop, 68–69
sugar production from, 28–30, 30
Sugarcane bagasse, in propionic acid production, 338
Sugarcane biorefineries, 7, 7
Sugarcane crops, 28–31, 29, 30
agricultural practices, 38, 38
agronomic traits of, 38, 38
chemical composition of, 29
as energy crop, 41
refinery process in, 30–31
world distribution of, 28, 28
world production of, 28, 29
Sugarcane molasses, chemical composition and properties of, 40, 40
Sugar compounds, and yeast fermentation, 40, 40–41
Sugar crops
agricultural practices, 38, 38
agronomic traits of, 38, 38
in biorefinery, 27–28, 37–40, 38, 40, 40–41
sugar beet, 28, 29
sugarcane, 28–31, 29, 30
sweet sorghum, 29, 31–32
world distribution of, 28, 28
world production of, 28, 29
Sugars, as substrates for 2,3-butanediol production, 407–408
Sunflower (Helianthus annuus L.), achene oil concentration in, 48
Sunflower (Helianthus annuus L.) crops, 55
Supercritical fluids, in biodiesel production, 211–212
Surface area, in enzyme hydrolysis, 98
Sweet sorghum. See Sorghum
Switchgrass (Panicum virgatum)
biomass yield losses during mechanized harvest of, 70
effects of delayed harvest on, 71
as energy crop, 64, 69, 69–70, 70, 71
yield for, 69
Syngas for biofuels production, 245
fermentation pathways in, 240
Synthetic biology approaches, 254
Systems biology, 393
Systems metabolic engineering, of M. succiniciproducens, 327
Tall oil, as alternative feedstock, 224
Technology Information, Forecasting & Assessment Council (TIFAC), 194
Terpene-based biofuels, 14
Terpenes, 13
Textile industry, use of laccase in, 182
Textiles, xylanases in cleaning of, 159
Thermoanerobacterium saccharolyticum, 201
Thermomyces lanuginosus, in xylanase production, 155, 157
Tissue engineering, γ-PGA in, 435
“Total solids” (TS), 280
Trace metals, in acid production, 388
Transport costs, for energy crops, 73
Triacylglycerols (TAGs), from microalgae, 83
Tricarboxylic acid (TCA) cycle, in carboxylic acid biosynthesis, 379, 379–380, 381

United Nations Environment Programme (UNEP), 194

Vaccines, γ-PGA in, 435
Valeric acid, PHA formed on, 419
Van Soest Test, 280
Vegetable oil feedstocks, fatty acids in, 213, 213–214
Vegetable oils
biofuel use of, 47
composition of, 49
Vegetable processing, by-products of, 441
Veratryl alcohol, LiP-catalyzed oxidation of
Versatile peroxidase, in lignin degradation, 168, 169
Vitamins, affected by fermentation, 389

Waste oils, 222, 223–224
Waste residues, in ethanol production, 194
Wastes
for amylase production, 121
biogas from, 289, 289–290
biorefining of food processing, 1
from commercial food processing, 446
cooking oil, 222, 223–224
deprocessing by-products, 441–442
antioxidants, 443–445, 444
dietary fiber, 442, 442–443
food colorants, 445–446
incineration of, 280
municipal solid waste, 286, 289, 289–290, 290

Water
biophotolysis of, 264, 264, 265
as source of fuel contamination, 219
Waste recycling, in biorefinery industry, 18
Wet-milling processes
in corn biorefineries, 3, 3
in ethanol production, 41, 42
Wheat
characteristics and properties of, 33, 33
chemical composition of, 32, 32
Wheat crops, 34
agricultural practices, 38, 39
agronomic traits, 38, 39
utilization of, 35

world distribution of, 28, 28
world production of, 28, 29
Wheat flour, 35
Whey protein, in propionic acid production, 337
White-rot fungi, in wastewater treatment, 181–182
Willow (Salix spp.), as energy crop, 65, 71–72
Wine industry, laccases used in, 182–183
WoLF PSORT algorithms, 382
Wood-Ljungdahl pathway, 12
in acetic acid production, 352–355, 353
growth of homoacetogens via, 360
Wood-Werkman cycle, 333
Woody biomass, 2
Woody crops, as energy resource, 64, 65, 71–72

Xylan, chemical structure of, 147–148, 148
Xylanases, 147, 150, 151
applications for
bioethanol production, 156
cereal-based, 158
in pulp and paper biotechnology, 159
retting of flax, 159–160
textiles, 159
xylol-oligosaccharides production, 158–159
biochemical characteristics of
catalytic mechanisms, 149
catalytic properties, 150, 151
chemical structure of xylan, 147–148, 148
crystal structure, 149, 149–150
source of xylanolytic enzymes, 148–149
xylanase inhibitors, 150–152
heterologous expression of, 157
production of, 152, 152
cloning with suitable hosts, 155
induction by carbon source, 153–154
mode of fermentation, 153
S. cerevisiae in, 155–156
selection of hyperproducer, 152–153
statistical methods, 154–155
Xylo-oligosaccharides (XO)
branched, 158–159
linear, 158

Yellow greases, as alternative feedstock, 222, 224