Contents

Preface xv

About the Authors xix

CHAPTER 1
Introduction 1
 1.1 The Need for Better Financial Modeling of Asset Prices 1
 1.2 The Family of Stable Distribution and Its Properties 5
 1.2.1 Parameterization of the Stable Distribution 5
 1.2.2 Desirable Properties of the Stable Distributions 7
 1.2.3 Considerations in the Use of the Stable Distribution 8
 1.3 Option Pricing with Volatility Clustering 9
 1.3.1 Non-Gaussian GARCH Models 11
 1.4 Model Dependencies 12
 1.5 Monte Carlo 13
 1.6 Organization of the Book 14
References 15

CHAPTER 2
Probability Distributions 19
 2.1 Basic Concepts 19
 2.2 Discrete Probability Distributions 20
 2.2.1 Bernoulli Distribution 21
 2.2.2 Binomial Distribution 21
 2.2.3 Poisson Distribution 22
 2.3 Continuous Probability Distributions 22
 2.3.1 Probability Distribution Function, Probability Density Function, and Cumulative Distribution Function 23
 2.3.2 Normal Distribution 26
 2.3.3 Exponential Distribution 28
 2.3.4 Gamma Distribution 28
CONTENTS

2.3.5 Variance Gamma Distribution 29
2.3.6 Inverse Gaussian Distribution 30

2.4 Statistic Moments and Quantiles 30
2.4.1 Location 31
2.4.2 Dispersion 31
2.4.3 Asymmetry 31
2.4.4 Concentration in Tails 32
2.4.5 Statistical Moments 32
2.4.6 Quantiles 34
2.4.7 Sample Moments 35

2.5 Characteristic Function 35

2.6 Joint Probability Distributions 39
2.6.1 Conditional Probability 39
2.6.2 Joint Probability Distribution Defined 40
2.6.3 Marginal Distribution 41
2.6.4 Dependence of Random Variables 41
2.6.5 Covariance and Correlation 42
2.6.6 Multivariate Normal Distribution 43
2.6.7 Elliptical Distributions 46
2.6.8 Copula Functions 47

2.7 Summary 54

References 54

CHAPTER 3

Stable and Tempered Stable Distributions 57

3.1 α-Stable Distribution 58
3.1.1 Definition of an α-Stable Random Variable 58
3.1.2 Useful Properties of an α-Stable Random Variable 61
3.1.3 Smoothly Truncated Stable Distribution 63

3.2 Tempered Stable Distributions 65
3.2.1 Classical Tempered Stable Distribution 65
3.2.2 Generalized Classical Tempered Stable Distribution 68
3.2.3 Modified Tempered Stable Distribution 69
3.2.4 Normal Tempered Stable Distribution 70
3.2.5 Kim-Rachev Tempered Stable Distribution 73
3.2.6 Rapidly Decreasing Tempered Stable Distribution 75

3.3 Infinitely Divisible Distributions 76
3.3.1 Exponential Moments 80

3.4 Summary 82
CONTENTS

6.2 Fitting α-Stable and Tempered Stable Distributions 126
 6.2.1 Fitting the Characteristic Function 126
 6.2.2 Maximum Likelihood Estimation with
 Numerical Approximation of the Density Function 127
 6.2.3 Assessing the Goodness of Fit 127
6.3 Illustration: Parameter Estimation for Tempered
 Stable Distributions 131
6.4 Summary 135
6.5 Appendix: Numerical Approximation of Probability
 Density and Cumulative Distribution Functions 135
 6.5.1 Numerical Method for the Fourier Transform 139
 References 140

CHAPTER 7

Option Pricing in Exponential Lévy Models 141
7.1 Option Contract 141
7.2 Boundary Conditions for the Price of an Option 142
7.3 No-Arbitrage Pricing and Equivalent Martingale Measure 145
7.4 Option Pricing under the Black-Scholes Model 148
7.5 European Option Pricing under Exponential
 Tempered Stable Models 149
 7.5.1 Illustration: Implied Volatility 152
 7.5.2 Illustration: Calibrating Risk-Neutral Parameters
 and Risk-Neutral Parameters Together 161
7.6 Subordinated Stock Price Model 164
 7.6.1 Stochastic Volatility Lévy Process Model 166
7.7 Summary 167
 References 167

CHAPTER 8

Simulation 169
8.1 Random Number Generators 170
 8.1.1 Uniform Distributions 170
 8.1.2 Discrete Distributions 172
 8.1.3 Continuous Nonuniform Distributions 172
 8.1.4 Simulation of Particular Distributions 177
8.2 Simulation Techniques for Lévy Processes 182
 8.2.1 Taking Care of Small Jumps 183
 8.2.2 Series Representation: A General Framework 186
 8.2.3 Rosiński Rejection Method 191
 8.2.4 α-Stable Processes 192
Contents

8.3 Tempered Stable Processes 193
 8.3.1 Kim-Rachev Tempered Stable Case 196
 8.3.2 Classical Tempered Stable Case 198

8.4 Tempered Infinitely Divisible Processes 199
 8.4.1 Rapidly Decreasing Tempered Stable Case 201
 8.4.2 Modified Tempered Stable Case 202

8.5 Time-Changed Brownian Motion 203
 8.5.1 Classical Tempered Stable Processes 205
 8.5.2 Variance Gamma and Skewed Variance Gamma Processes 206
 8.5.3 Normal Tempered Stable Processes 207
 8.5.4 Normal Inverse Gaussian Processes 208

8.6 Monte Carlo Methods 209
 8.6.1 Variance Reduction Techniques 210
 8.6.2 A Nonparametric Monte Carlo Method 214
 8.6.3 A Monte Carlo Example 216
 Appendix 217
 References 220

CHAPTER 9
Multi-Tail \(t \)-Distribution 225

9.1 Introduction 225
9.2 Principal Component Analysis 227
 9.2.1 Principal Component Tail Functions 228
 9.2.2 Density of a Multi-Tail \(t \) Random Variable 231
9.3 Estimating Parameters 232
 9.3.1 Estimation of the Dispersion Matrix 233
 9.3.2 Estimation of the Parameter Set \(\Theta \) 233
9.4 Empirical Results 237
 9.4.1 Comparison to Other Models 237
 9.4.2 Two-Dimensional Analysis 238
 9.4.3 Multi-Tail \(t \) Model Check for the DAX 242
9.5 Summary 244
 References 246

CHAPTER 10
Non-Gaussian Portfolio Allocation 247

10.1 Introduction 247
10.2 Multifactor Linear Model 248
10.3 Modeling Dependencies 251
10.4 Average Value-at-Risk 253
10.5 Optimal Portfolios 255
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>The Algorithm</td>
<td>257</td>
</tr>
<tr>
<td>10.7</td>
<td>An Empirical Test</td>
<td>259</td>
</tr>
<tr>
<td>10.8</td>
<td>Summary</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>269</td>
</tr>
<tr>
<td>11</td>
<td>Normal GARCH models</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>271</td>
</tr>
<tr>
<td>11.2</td>
<td>GARCH Dynamics with Normal Innovation</td>
<td>272</td>
</tr>
<tr>
<td>11.3</td>
<td>Market Estimation</td>
<td>275</td>
</tr>
<tr>
<td>11.4</td>
<td>Risk-Neutral Estimation</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Out-of-Sample Performance</td>
<td>282</td>
</tr>
<tr>
<td>11.5</td>
<td>Summary</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>285</td>
</tr>
<tr>
<td>12</td>
<td>Smoothly Truncated Stable GARCH Models</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>287</td>
</tr>
<tr>
<td>12.2</td>
<td>A Generalized NGARCH Option Pricing Model</td>
<td>288</td>
</tr>
<tr>
<td>12.3</td>
<td>Empirical Analysis</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>Results under the Objective Probability Measure</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>Explaining S&P 500 Option Prices</td>
<td>296</td>
</tr>
<tr>
<td>12.4</td>
<td>Summary</td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>307</td>
</tr>
<tr>
<td>13</td>
<td>Infinitely Divisible GARCH Models</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Stock Price Dynamic</td>
<td>311</td>
</tr>
<tr>
<td>13.2</td>
<td>Risk-Neutral Dynamic</td>
<td>312</td>
</tr>
<tr>
<td>13.3</td>
<td>Non-Normal Infinitely Divisible GARCH</td>
<td></td>
</tr>
<tr>
<td>13.3.1</td>
<td>Classical Tempered Stable Model</td>
<td>315</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Generalized Tempered Stable Model</td>
<td>317</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Kim-Rachev Model</td>
<td>319</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Rapidly Decreasing Tempered Stable Model</td>
<td>322</td>
</tr>
<tr>
<td>13.3.5</td>
<td>Inverse Gaussian Model</td>
<td>324</td>
</tr>
<tr>
<td>13.3.6</td>
<td>Skewed Variance Gamma Model</td>
<td>326</td>
</tr>
<tr>
<td>13.3.7</td>
<td>Normal Inverse Gaussian Model</td>
<td>329</td>
</tr>
<tr>
<td>13.4</td>
<td>Simulate Infinitely Divisible GARCH</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Appendix</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>334</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>