<table>
<thead>
<tr>
<th>Index Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal fascia, 35</td>
<td></td>
</tr>
<tr>
<td>Action limit (AL), 214</td>
<td></td>
</tr>
<tr>
<td>Acute biomechanical measures, 126</td>
<td></td>
</tr>
<tr>
<td>Acute inflammation, 48, 49, 78</td>
<td></td>
</tr>
<tr>
<td>Acute pain phase, 253</td>
<td></td>
</tr>
<tr>
<td>Acute tissue loads, 92</td>
<td></td>
</tr>
<tr>
<td>Acute trauma pain pathways, 65, 66, 129</td>
<td></td>
</tr>
<tr>
<td>Adenosine diphosphate (ADP), 95</td>
<td></td>
</tr>
<tr>
<td>Adenosine triphosphate (ATP), 95</td>
<td></td>
</tr>
<tr>
<td>Alcohol, 20</td>
<td></td>
</tr>
<tr>
<td>role of, 20</td>
<td></td>
</tr>
<tr>
<td>Alpha motor neuron, 78</td>
<td></td>
</tr>
<tr>
<td>American Society of Orthopaedic Surgeons, 11</td>
<td></td>
</tr>
<tr>
<td>Anatomical cross-sectional area (ACSA), 188</td>
<td></td>
</tr>
<tr>
<td>Anatomy, 9</td>
<td></td>
</tr>
<tr>
<td>Animal models, 51</td>
<td></td>
</tr>
<tr>
<td>Antagonistic muscle, 193, 238</td>
<td></td>
</tr>
<tr>
<td>coactivation of, 193</td>
<td></td>
</tr>
<tr>
<td>reductions in, 238</td>
<td></td>
</tr>
<tr>
<td>Anterior–posterior (A/P) shear, 96, 128, 135, 202, 140, 161, 203, 273, 276</td>
<td></td>
</tr>
<tr>
<td>Anterior longitudinal ligament, 32</td>
<td></td>
</tr>
<tr>
<td>Anthropometry, 19, 187, 200</td>
<td></td>
</tr>
<tr>
<td>differences in, 187</td>
<td></td>
</tr>
<tr>
<td>Articular facet joint, 40</td>
<td></td>
</tr>
<tr>
<td>Automation, 8</td>
<td></td>
</tr>
<tr>
<td>Autonomic nervous system, 77</td>
<td></td>
</tr>
<tr>
<td>Average absolute error (AAE), 104</td>
<td></td>
</tr>
<tr>
<td>Average peak sagittal velocity, 284</td>
<td></td>
</tr>
<tr>
<td>Back anatomy, 41</td>
<td></td>
</tr>
<tr>
<td>brief description of, 41</td>
<td></td>
</tr>
<tr>
<td>Back pain, 12, 52, 120, 233</td>
<td></td>
</tr>
<tr>
<td>patients, 52</td>
<td></td>
</tr>
<tr>
<td>progressive nature of, 233</td>
<td></td>
</tr>
<tr>
<td>Back pain research community, 23</td>
<td></td>
</tr>
<tr>
<td>Biochemical tolerance, 7, 66, 112</td>
<td></td>
</tr>
<tr>
<td>Biomechanical assessment techniques, 300</td>
<td></td>
</tr>
<tr>
<td>Biomechanical factors, 175, 219</td>
<td></td>
</tr>
<tr>
<td>Biomechanical load–tolerance relationship, 7</td>
<td></td>
</tr>
<tr>
<td>Biomechanical modeling, 88</td>
<td></td>
</tr>
<tr>
<td>Blood delivery system, 54</td>
<td></td>
</tr>
<tr>
<td>role of, 54</td>
<td></td>
</tr>
<tr>
<td>Blood vessels, 39</td>
<td></td>
</tr>
<tr>
<td>Bone tolerance, 67</td>
<td></td>
</tr>
<tr>
<td>Box-sorting operation, 179</td>
<td></td>
</tr>
<tr>
<td>Brain functioning, 52</td>
<td></td>
</tr>
<tr>
<td>recent theories, 52</td>
<td></td>
</tr>
<tr>
<td>Brick-laying tasks, 151</td>
<td></td>
</tr>
<tr>
<td>Buttock pain, 54</td>
<td></td>
</tr>
<tr>
<td>Cardinal planes, 29</td>
<td></td>
</tr>
<tr>
<td>Carpal tunnel syndrome, 78</td>
<td></td>
</tr>
<tr>
<td>Case–control methodology, 126</td>
<td></td>
</tr>
<tr>
<td>Cellular dysfunction, 78</td>
<td></td>
</tr>
<tr>
<td>Central nervous system (CNS), 44, 47</td>
<td></td>
</tr>
<tr>
<td>Central pain sensitization, 44, 47, 52, 53</td>
<td></td>
</tr>
<tr>
<td>Central trigger point (CTrP), 75</td>
<td></td>
</tr>
<tr>
<td>Cervical curves, 32</td>
<td></td>
</tr>
<tr>
<td>Chronic inflammation, 49, 50</td>
<td></td>
</tr>
<tr>
<td>Cigarette smoking, 21</td>
<td></td>
</tr>
<tr>
<td>Ciliary neurotrophic factor receptor gene, 81</td>
<td></td>
</tr>
<tr>
<td>Cinderella fibers, 78</td>
<td></td>
</tr>
<tr>
<td>Committee members, 234</td>
<td></td>
</tr>
<tr>
<td>Compact bone, 30</td>
<td></td>
</tr>
<tr>
<td>Compensation costs, 233</td>
<td></td>
</tr>
<tr>
<td>Compression loading, 146</td>
<td></td>
</tr>
<tr>
<td>Conceptual model, 6</td>
<td></td>
</tr>
<tr>
<td>Constrained work postures, 164</td>
<td></td>
</tr>
<tr>
<td>Contact force tolerance, 67</td>
<td></td>
</tr>
<tr>
<td>Controllable workplace factors, 205</td>
<td></td>
</tr>
<tr>
<td>Cortical bone, 30</td>
<td></td>
</tr>
<tr>
<td>Counter clockwise (CCW), 29, 179</td>
<td></td>
</tr>
<tr>
<td>asymmetries, 276</td>
<td></td>
</tr>
<tr>
<td>lift origins, 283</td>
<td></td>
</tr>
<tr>
<td>Coupling multiplier (CM), 217</td>
<td></td>
</tr>
<tr>
<td>Cross-sectional data, 13</td>
<td></td>
</tr>
<tr>
<td>Cumulative biomechanical measures, 126</td>
<td></td>
</tr>
<tr>
<td>Cumulative exposure, 147</td>
<td></td>
</tr>
<tr>
<td>Cumulative loading, 5</td>
<td></td>
</tr>
<tr>
<td>Cumulative trauma, 5, 6</td>
<td></td>
</tr>
<tr>
<td>core of, 6</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

effect of, 6
pathways, 61, 65, 66, 68
prevalence of, 61
Cytokine, 7, 48, 51, 81
roles of, 48

Demand-capacity variable, 291
Disc degeneration, 71, 233
process of, 233
Disc hydration, 72
Disc tolerance, 73
Distance factor (DF), 215
Distribution center interventions, 248
Dorsal ganglion afferent discharge, 51
Dorsal root ganglion (DRG), 37, 44, 53
Dose–response relationship, 16, 50, 74
Drug treatment studies, 2
Dynamic biomechanical model, 168
Dynamic models, 99
Dynamic motion, 93
effect of, 93
Dynamic risk factors, 218
Dynamic stability, 65, 106
Dynamic surveillance tools, 168

Eccentric muscle activity, 146
Electromyographic muscle activity, 146
Electromyography (EMG), 99
EMG-assisted biodynamic model, 103
EMG-assisted biomechanical model, 109, 202, 243
End plate tolerance, 67
Epidemiologic evidence, 17, 61, 298
Epidemiologic studies, 14, 175
control of, 15
problem with, 14
Epidemiology, 9, 13
advantage of, 9
disadvantage of, 9
Ergonomics process, 233, 234
Exposure frequency measure, 219
Extensor activities, 203
External mechanical load, 128
Extroverts, 177, 194

Facet joints, 54
neural arch, 73
Fascia, 35
Fatigue, 55
Fibromyalgia, 52, 56, 79
patients suffering from, 52
Field surveillance studies, 20, 136
Finite-element model (FEM), 105
Fire fighters, 20

studies of, 20
First-class levers, 90
Fitness measures, 20
Flexion-extension tasks, 266
Flexion-relaxation ratio, 256
Flexor activity, 203
Force curves, 267
Forced pacing, 178
Force–velocity relationship, 141
Frequency factor (FF), 215
Frequency multiplier (FM), 217
Functional spinal unit, 31, 53
brain of, 53
Fuzzy-logic estimates, 207
Fuzzy-neural modeling, 108

Gender-specific compression tolerance, 190
Genetic factors, 201
Genetic mapping, 80
Gold standards, 266
Golgi tendon units, 111

Health problems, 2
causality of, 2
Higher order derivatives, 270
Higher order motion, 270
High level conceptual model, 1
High-quality epidemiologic studies, 17
Horizontal factor (HF), 215
Human tissues, 66
characteristics of, 66
Human–work system, 88
Hypothetical model, 22
development of, 48

Imaging techniques, 62, 255
CT scan, 62
X-ray, 62
Impairment assessment, 254
Increased vascular permeability, 48
long-term results of, 48
Independent medical examiner (IME), 255
Individual psychosocial factors, 22
role of, 22
Individual risk, 18
epidemiology of, 18
factors, 12, 203, 242
Industrial-based surveillance studies, 18
Industrial quantitative surveillance, 118
of physical exposure, 118
Industrial workers, 20
study of, 20
Inflammatory cytokine, 81
Inflammatory mediators, 45
Inflammatory response, 7, 50, 78
Ingrained motor recruitment patterns, 154
Interleukin-15, 81
Internal forces, 90
Internal tolerance, 7
Intervertebral disk strain rate, 168
Intervention effectiveness, 243
examples of, 243
Isokinetic lifting strengths, 158
Isometric exertions, 131
Isometric lifting strengths, 158
Jigsaw puzzle, 4, 17
Job-defined kinematics, 292
Job demand index, 214
Job dissatisfaction, 175
Job severity index (JSI), 119
J-shaped curve, 25
Judgers, 177
Kinematic functional abilities, 291
Kinematic functional assessment, 289
Kinematic impairment, 281
Kinematic performance, 264
Kinematic testing methodology, 281
Kinematic variables, 219
L2 nerve root, 37
Laboratory diagnostic techniques, 255
Lactic acid, 78
Lateral motion, 134
Lateral plane, 29
Lumbar curves, 32
Lumbar fascia, 54
Lumbar nerve roots, 37, 56
Lumbar paraspinal muscles, 76
Lumbar segment tolerances, 68
Lumbar spine, 39, 95
blood supply, 39
compression load responses, 176
loading of, 95
Lumbar transverse processes, 35
Lumbar trunk muscle activities, 146
Macrophages, 49
Maladaption, 201
Manual material handling tasks, 225
redesigning, 225
Material handling assessments, 97
Mathematical model, 88
Maximum permissible limitor (MPL), 215
Mechanical tissue tolerance, 212
disability costs, 252
Mental concentration risk, 178
Mental demand, 178
Mental model, 110, 207
of recruitment pattern, 271
Load–tolerance model, 74, 89
Load–tolerance relationship, 5, 6, 96, 127, 207, 212, 280
Long-term peripheral pain, 44
Low back disorder risk, 15, 18, 270
Low back impairment, 263
degree of, 263
Low back pain, 8, 11, 18, 21, 23, 53, 233, 235, 243, 244, 254, 266, 270, 272, 277, 298
CT scans, 255
definition of, 11
episodes, 265
history of, 252
implications for, 53
pathways, 62, 67
recovery, 252
risk, 242
Low back treatment, 4
Low back trends reports, 252
classification error, 266
Low level exertions, 165
Low moment exposures, 154
Mental concentration risk, 178
Mental demand, 178
Mental model, 110, 207
of recruitment pattern, 271
Mental processing, 178, 179
Mental stress, 175
Microfractures, 214
Microvascular dysfunction, 78
Modern EMG-assisted modeling techniques, 154
Moment exposure, 128
Monetary incentives, 4
Morphin receptors, 45
Motion-associated components, 44
Motor control patterns, 35, 110
Motor end plate noise, 76
Motor neuron signal, 78
Motor recruitment pattern, 182, 193, 206
 expectation in, 182
MRI imaging system, 105
MRI technology, 188
Multidimensional approach, 121
Multidimensional risk information, 121
Multidisciplinary perspective, 1
Multiple disorder pathways, 272
Multiple logistic regression model, 121, 289, 290
Multiple muscle biologically assisted models, 300
Multiple muscle system model, 97
Multiple robust evaluation techniques, 262
Multivariate models, 289
Muscle-based low back pain, 74
Muscle coactivity patterns, 190
Muscle cross-sectional area, 101, 187, 188
 gender differences in, 187
Muscle disruption pathways, 165
Muscle force, 93
Muscle function disruption pathway, 178
Muscle-initiated low back pain, 78
Muscle pain, 44
Muscle recruitment patterns, 35, 80, 158
 major change in, 158
Muscle strain, 67
Muscle tension, 201
Muscular-based pain, 55
Muscular recruitment patterns, 206, 270
Musculoskeletal disorders, 6, 16, 22, 48, 74, 235, 245
 control of, 235
 prevention, 235
 relationship between, 22
Musculoskeletal injury rates, 247
Musculoskeletal lever system, 92
 biomechanical arrangement of, 92
Musculoskeletal system, 44, 87, 174, 177, 200, 270,
 272, 279, 284
 reaction of, 174
Myers–Briggs personality inventory, 176, 177
Myofascial pain, 75
Myofascial trigger points (MTrPs), 74
 history of, 74
 NASS symptom questionnaire, 289
 National Health Injury Survey (NHIS), 12
 National Institute for Occupational Safety and Health
 (NIOSH), 214, 215, 216
 analysis, 13
 lifting guide, 214
 revised lifting equation, 155
 National Research Council, 6, 17
 axons, 50
 spontaneous discharge of, 50
 Nerve root compression, 265
 Nerves, 37
 network of, 37
 Nerve sensitization, 51
 Neurologic studies, 54
 Neurophysiologic mechanisms, 50
 Neuropathic pain, 44, 47, 51
 Neuropathic inflammation, 51
 Neuropathic pain, 44, 47, 51
 Neuropathy, 52
 Neutrophils, 49
 Newtonian mechanics, 87
 laws of, 87
 Nitric oxide, 77
 N-Methyl-D-aspartic acid (NMDA), 50
 Nociceptive pain, 44
 Nociceptors, 44, 47, 71
 activation of, 44
 function, 44
 secretions of, 71
 stimulation, 77
 synapses from, 45
 Nonmonotonic spinal loading, 152
 Nonneutral trunk postures, 165
 Nonoptimal muscle recruitment
 patterns, 55
 Nonsagittal plane loading, 133
 Novice subjects, 151
 Nutrition, 40
 Obesity, 20
 review of, 20
 Oblique-oriented muscles, 190
 Observational group, 2
 Occupational risk control, 15
 Occupation-related cumulative trauma, 72
 Off-sagittal plane motions, 134
 Ohio State University, 105
 recent advances in, 105
 Optimization techniques, 102
 Organizational factors, 5, 174
Organizational intervention process, 234
 employee participation, 234
 management leadership, 234
Organizational stress issues, 5
 effects of, 5
OSHA recordable injury reports, 235
Oxygen deprivation, 55

Pain, 43, 52
 mechanisms, 55
 neuropathic, 51
 origins of, 44
 process, 46
 transmission, 46
Pain-inhibiting pathways, 51
Pain-sensing nociceptors, 45
Pain-sensing process, 300
Pain-sensing receptors, 44
Pain-sensitive tissues, 62
Pain tolerance, 74
 mechanics, 74
Patient handling devices, 245
Patient handling interventions, 243
Pelvic rotation kinematics, 279
Peripheral nervous system sensitization, 50
Peripheral pain, 44, 47
Peripheral tissue, 298
 sensitization of, 298
Persistent pain, 44
Personality, 193–194
 role of, 194
 traits, 194
Personality differences, 194
 hallmarks of, 194
PERSON box, 6
Phagocytes, 48
Physical interventions, 246–247
 measure of, 247
 types of, 246
Physical risk factors, 16
 epidemiology of, 16
 existence of, 16
Physical task demands, 178
Physical work characteristics, 5
 influence of, 5
Physical work conditions, 175, 196
Physical work factors, 17, 117, 166, 202
 contribution of, 202
Polymorphisms, 80
Posterior elements, 31
Power-producing muscles, 35, 188
 mechanical advantage, 35
Preemployment testing, 20
Proinflammatory agents, 62

Proinflammatory cytokines, 51, 68, 251, 273, 280
 cellular response to, 51
 role of, 68
 upregulation of, 251
Proinflammatory response, 74
Prolonged recovery process, 77
Proteoglycans, 68
Psychogenic pain, 44
Psychophysical approach, 212
 advantage of, 214
 disadvantage of, 214
Psychophysical tolerance limits, 212, 214
Psychosocial factors, 5, 22, 23, 174, 175, 178, 203, 205, 232
 contribution of, 175
 impact of, 23
 potential interaction of, 23
 relationship between, 22
Psychosocial stress, 179
 components of, 179
Push–pull activities, 160
Quantitative biomechanical assessments, 117, 156
Quantification technique, 266
Quantitative biomechanical literature, 10
Quantitative methods, 235, 267
Quantitative trait loci (QTL), 80
Quantitative workplace measures, 74
Quasi-dynamic 2D biomechanical model, 218
Radicular canal, 37
Randomized controlled trials, 2
Randomized surgical treatment, 2
Range of motion (ROM), 254
Rapid job pacing, 178
Receptor sensitivity, 50
Recruitment patterns, 206
Repetitive loading, 72
Return-to-work programs, 278
Return-to-work strategy, 292
Right external oblique muscles, 190
Risk factors, 2, 16, 200
 categories of, 16
 scales, 221
Risk odds ratios, 217
Sacral curve, 32
Sagittal plane, 29, 104
Scientific techniques, 3
Secondary low back pain, 251
 prevention of, 251
Self-reported pain, 266
Sensitivity-specificity column, 255
Sensitization, 45–46
Sensors, 177
Serial mental processing, 179, 180, 181
Severe back pain, 253
Shear forces, 70
Simultaneous mental processing, 179
Single-equivalent muscle models, 97
Single-risk factor, 5
Somatic nervous systems, 76
Spinal anatomy, 41
brief description of, 41
Spinal cord, 37, 53
Spinal nerve, 53
dorsal root of, 53
Spine load, 97
assessments, 96
models of, 97
reductions, 95
Spine loading, 79, 100, 108, 127, 148, 161, 176, 179,
180, 183, 188, 194, 201, 204, 206, 233, 272
aspect of, 183, 188
biologically driven modeling of, 100
changes, 176
differences in, 180, 280
pattern, 151
Spine support, 32, 34
Spine tolerance data, 70
Spine tolerance literature, 97
Spinous processes, 31, 37, 54
Stability-driven models, 299
Stability process, 107
function of, 110
mechanisms of, 107
State-of-the-art biomechanical assessments, 118
State-of-the-art techniques, 9
Static biomechanical analyses, 168
Static models, 97, 108
Static strength prediction programs, 211
Steering committee, 234
fundamental responsibilities of, 234
Stellate end plate fractures, 72
Stochastic model, 109
Strength endurance, 94
Support structure disruption pathways, 65
Support structure tolerance, 66
Surveillance tools, 168
Sustained muscle tension, 77
System feedback, 81
Systems intervention, 242

Task asymmetry, 138
Task performance, 127
Team lifting, 158
Tendon overload, 77
Tendon strain, 67

Tension myositis syndrome, (TMS), 55, 78
Thinkers, 177
Thoracic curve, 32
Thoracolumbar fascia, 35
Three-dimensional dynamic biomechanical
load, 169
Three-dimensional dynamic loading, 126
Three-dimensional dynamic motions, 219
Three-dimensional spine loading, 99, 132, 202
Three-dimensional static strength prediction program
(3DSSPP), 211
Three risk factor categories, 201
influence of, 201
Threshold limit values (TLVs), 222
advantages of, 226
disadvantage, 226
instructions for, 222
Time-dependent risk exposure, 236
Tissue adaptation, 212
Tissue inflammation, 48
role of, 48
Tissue ischemia, 76
Tissue loading, 87
Tissue tolerance, 105, 200, 207
interactions between, 207
Tolerance, 7
form of, 7
Torsion loading, 73
Torso anthropometry, 102
Trade-offs, 88, 219
Traditional administrative controls, 236
back belts, 238
stretching programs, 237
training, 237
worker rotation, 236
worker selection, 236
Transverse plane, 29
Transverse processes, 31
Trunk dynamics, 219
contribution of, 219
Trunk instantaneous position, 263
measures of, 263
Trunk kinematic 110, 254
characteristics, 204
Trunk moment generation, 137
Trunk motion, 130
measures, 263
quantification, 270
Trunk muscle cocontraction, 129, 182, 194
responses, 233
role of, 129
Trunk muscles, 134
length–strength relationship of, 134
recruitment patterns, 201, 206
Twisting motion, 136
Two-dimensional biomechanical models, 138
Two-dimensional spine compression models, 168
Two-dimensional static model, 148
Two-handed lifting, 142
Two-handed mono-lifting tasks, 222
Two-person lifting situations, 244

Unstable biomechanical systems, 107

Venous plexus, 40
Ventral root, 53
Vertebral body, 30–31
purposes, 31
Vertebral bone, 29
Vertebral end plate microfracture, 69
Vertical factor (VF), 215
Video-based biomechanical models, 218
Voltage-gated calcium channels, 45

Wellness programs, 243
Whole-body free dynamic kinematics, 190
Whole-body vibration, 16
Windows-based model, 103
Withstand physical loading, 5
Wolf’s law, 65, 200
Work, 117, 178
nature of, 178
physical aspects of, 117
Work-associated low back pain, 3, 53, 62

Work experience, 150, 196
Work load, 120–121
dynamic analyses of, 121
static analyses of, 120
Work-oriented biomechanical models, 96
Work-related factors, 1
Work-related low back disorder risk, 4, 7, 13, 17, 207, 217, 235, 299
nature of, 4
prediction of, 217
Work-related musculoskeletal disorders, 61
elements of, 61
Work-related pathways, 7
Work-related physical exposure factors, 22
Work-related psychosocial factors, 22, 174
epidemiology of, 22
Work-rest cycles, 67
Work risk factors, 13
epidemiology of, 13
Worker’s mental model, 175
Worker-specific model, 105
Working environment, 10
major challenge to, 10
Working populations, 12
surveys of, 12
Workplace biomechanical factors, 23
Workplace risk assessment, 4
Workplace risk factors, 12
Zygapophysial joint damage, 72