Contents

Preface XVII
List of Contributors XIX

1 A Chemist's Survey of Different Antibiotic Classes 1
Sonia Ilaria Maffioli

1.1 Introduction 1
1.2 Aminoglycosides 1
1.3 β-Lactams 3
1.4 Linear Peptides 4
1.4.1 Glycopeptides-Dalbaheptides 4
1.4.2 Lantibiotics 6
1.5 Cyclic Peptides 8
1.6 Thiazolylpeptides 11
1.7 Macrolactones 13
1.7.1 Macrolides 13
1.7.2 Difimicin 15
1.8 Ansamycins–Rifamycins 15
1.9 Tetracyclines 16
1.10 Oxazolidinones 16
1.11 Lincosamides 18
1.12 Pleuromutilins 18
1.13 Quinolones 19
1.14 Aminocoumarins 19
References 20

2 Antibacterial Discovery: Problems and Possibilities 23
Lynn L. Silver

2.1 Introduction 23
2.2 Why Is Antibacterial Discovery Difficult? The Problems 24
2.3 Target Choice: Essentiality 24
2.4 Target Choice: Resistance 26
2.5 Cell Entry 31
2.6 Screening Strategies 32
2.6.1 Empirical Screens 32
2.6.2 Phenotypic Whole-Cell Screens 34
2.6.3 In Vitro Screens for Single-Target Inhibitors 37
2.6.4 Chemicals to Screen 38
2.6.4.1 Chemical Collections 38
2.7 Natural Products 40
2.8 Computational Chemistry, Virtual Screening, Structure- and Fragment-Based Drug Design (SBDD and FBDD) 42
2.9 Conclusions 45
References 46

3 Impact of Microbial Natural Products on Antibacterial Drug Discovery 53
Gabriella Molinari
3.1 Introduction 53
3.2 Natural Products for Drug Discovery 54
3.3 Microbial Natural Products 56
3.4 The Challenge of Finding Novel Antibiotics from New Natural Sources 59
3.5 Workflow for Drug Discovery from Microbial Natural Products 60
3.6 Antimicrobial Activities: Targets for Screens 63
3.7 Natural Products: A Continuing Source for Inspiration 65
3.8 Genome Mining in Natural Product Discovery 66
3.9 Conclusions 67
References 68

4 Antibiotics and Resistance: A Fatal Attraction 73
Giuseppe Gallo and Anna Maria Puglia
4.1 To Be or Not to Be Resistant: Why and How Antibiotic Resistance Mechanisms Develop and Spread among Bacteria 73
4.1.1 Horizontal and Vertical Transmission of Resistance Genes 74
4.2 Bacterial Resistance to Antibiotics by Enzymatic Degradation or Modification 79
4.2.1 Antibiotic Resistance by Hydrolytic Enzymes 80
4.2.1.1 β-Lactamases 81
4.2.1.2 Macrolide Esterases 81
4.2.1.3 Epoxidases 81
4.2.1.4 Proteases 83
4.2.2 Antibiotic Transferases Prevent Target Recognition 83
4.2.2.1 Acyltransfer 83
4.2.2.2 Phosphotransferases 84
4.2.2.3 Nucleotidyltransferases 85
4.2.2.4 ADP-Ribosyltransferases 85
4.2.2.5 Glycosyltransferases 85
4.2.3 Redox Enzymes 86

4.3 Antibiotic Target Alteration: The Trick Exists and It Is in the Genetics 86

4.3.1 Low-Affinity Homologous Genes 86

4.3.1.1 Rifamycin Low-Affinity RpoB 87

4.3.1.2 Mutated Genes Conferring Resistance to Quinolone, Fluoroquinolone and Aminocoumarins 87

4.3.1.3 PBP2a: A Low-Affinity Penicillin-Binding Protein 87

4.3.1.4 Dihydropteroate Synthases Not Inhibited by Sulfonamide 88

4.3.2 Chemical Modification of Antibiotic Target 88

4.3.2.1 23S rRNA Modification 88

4.3.2.2 16S rRNA Modification 88

4.3.2.3 Reprogramming Chemical Composition of a Bacterial Cell-Wall Precursor 89

4.3.3 Ribosomal Protection and Tetracycline Resistance 89

4.3.4 Chromosomal Mutations in Genes Required for Membrane Phospholipid Metabolism: Lipopeptide Resistance 91

4.3.5 Covalent Modifications on Lipopolysaccharide Core Conferring Polymyxine Resistance 92

4.4 Efflux Systems 92

4.4.1 The ATP-Binding Cassette (ABC) Superfamily 94

4.4.2 The Major Facilitator Superfamily (MSF) 94

4.4.3 The Small Multidrug-Resistance Family (SMR) 96

4.4.4 The Resistance-Nodulation-Division (RND) Superfamily 96

4.4.5 The Multidrug and Toxic Compound Extrusion (MATE) Family 97

4.5 The Case Stories of Intrinsic and Acquired Resistances 98

4.5.1 β-Lactam Resistome of P. aeruginosa: Intrinsic Resistance Is Genetically Determined 98

4.5.2 Acquired Antibiotic Resistance in S. aureus 98

4.5.2.1 Acquired Resistance to β-Lactams and Glycopeptides 99

4.5.2.2 Acquired Resistance to Fluoroquinolones 100

4.6 Strategies to Overcome Resistance 100

References 101

5 Fitness Costs of Antibiotic Resistance 109

Pietro Alifano

5.1 Introduction 109

5.2 Methods to Estimate Fitness 110

5.2.1 Experimental Methods 110

5.2.2 Epidemiological Methods 111

5.3 Factors Affecting Fitness 112

5.3.1 Genetic Nature of the Resistant Determinant 112

5.3.2 Expression of the Antibiotic-Resistance Determinant 118

5.3.3 Microbial Cell Physiology, Metabolism, and Lifestyle 119

5.3.4 Genetic Background of the Antibiotic-Resistant Mutant 120
5.4 Mechanisms and Dynamics Causing Persistence of Chromosomal and Plasmid-Borne Resistance Determinants 121
5.4.1 Compensatory Genetic Mechanisms That Restore or Improve Fitness without Loss of Resistance 121
5.4.2 Linked Selection and Segregation Stability of Resistance Determinants 126
5.4.3 Reacquisition of Antimicrobial Resistance 127
References 128

6 Inhibitors of Cell-Wall Synthesis 133
Stefano Donadio and Margherita Sosio
6.1 Introduction 133
6.2 MraY Inhibitors 134
6.3 Lipid II Targeting Compounds 137
6.3.1 Glycopeptides 137
6.3.2 Lantibiotics 139
6.3.3 Ramoplanin and Enduracidin 143
6.3.4 Other Compounds 143
6.4 Bactoprenol Phosphate 145
6.5 Conclusions 146
Acknowledgments 146
References 147

7 Inhibitors of Bacterial Cell Partitioning 151
Bhavya Jindal, Anusri Bhattacharya, and Dulal Panda
7.1 Introduction 151
7.2 Bacterial Cell Division 152
7.2.1 Filamentous Temperature-Sensitive Z (FtsZ) 152
7.2.2 Structure and Assembly Properties of FtsZ 152
7.2.3 Z-Ring: A Dynamic Structure That Drives Bacterial Cell Division 153
7.2.4 Proteins Regulating FtsZ Assembly 155
7.2.5 Proteins Involved in Septum Formation 156
7.2.6 Role of Other Cytoskeleton Proteins in Bacterial Cell Division 157
7.3 Cell Division Proteins as Therapeutic Targets 158
7.3.1 FtsZ as a Therapeutic Target 158
7.3.1.1 Identification of FtsZ-Targeting Antibacterial Agents 158
7.3.1.2 FtsZ Inhibitors 161
7.3.2 Other Cell Division Proteins as Therapeutic Targets 170
7.4 Status of FtsZ-Targeting Compounds: From Laboratory to Clinic 172
7.5 Conclusion 173
Acknowledgment 173
Abbreviations 173
References 174
8 The Membrane as a Novel Target Site for Antibiotics to Kill Persisting Bacterial Pathogens 183

Xiaoqian Wu and Julian G. Hurdle

8.1 Introduction 183
8.2 The Challenge of Treating Dormant Infections 184
8.3 Discovery Strategies to Prevent or Kill Dormant Bacteria 185
8.4 Why Targeting the Membrane Could Be a Suitable Strategy 186
8.5 Target Essentiality and Selectivity 186
8.6 Multiple Modes of Actions 188
8.6.1 Bactericidal and Low Potential for Resistance Development 189
8.7 Therapeutic Use of Membrane-Damaging Agents against Biofilms 190
8.8 New Approaches to Identifying Compounds That Kill Dormant Bacteria 196
8.9 Challenges for Biofilm Control with Membrane-Active Agents 196
8.9.1 Test Methods 197
8.9.2 Spectrum of Activity 197
8.9.3 Pharmacological 198
8.9.4 Genetic Resistance 199
8.10 Potential for Membrane-Damaging Agents in TB Disease 200
8.11 Application to Treatment of Clostridium difficile Infection 202
8.12 Is Inhibition of Fatty Acid/Phospholipid Biosynthesis Also an Approach? 203
8.13 Concluding Remarks 204

References 204

9 Bacterial Membrane, a Key for Controlling Drug Influx and Efflux 217

Eric Valade, Anne Davin-Regli, Jean-Michel Bolla, and Jean-Marie Pagès

9.1 Introduction 217
9.2 The Mechanical Barrier 219
9.2.1 The Outer Membrane Barrier and Porin Involvement 219
9.2.2 Membrane Modification 221
9.2.3 Efflux Barrier 222
9.3 Circumventing the Bacterial Membrane Barrier 224
9.3.1 Increasing the Influx: Antibiotic plus Permeabilizer, “Increase I_n” 224
9.3.1.1 Permeabilizers such as Polymyxins 224
9.3.1.2 Natural Compounds 225
9.3.1.3 Silver Nanoparticles 225
9.3.2 Blocking the Efflux: Antibiotic plus Efflux Blocker, “Decrease E_{df}” 225
9.3.2.1 The Chemical Response 226
9.3.2.2 Natural Products as Efflux Modulators 228
9.4 Conclusion 229

Acknowledgments 231

References 231
10 Interference with Bacterial Cell-to-Cell Chemical Signaling in Development of New Anti-Infectives 241
Jacqueline W. Njoroge and Vanessa Sperandio

10.1 Introduction 241
10.2 Two-Component Systems (TCSs) as Potential Anti-Infective Targets 242
10.3 WalK/WalR and MtrB/MtrA: Case Studies of Essential TCSs as Drug Targets 243
10.4 Targeting Nonessential TCS 246
10.4.1 QseC/QseB 248
10.4.2 AgrC/AgrA 248
10.4.3 FsrC/FsrA 249
10.4.4 PhoQ/PhoP 249
10.4.5 HrpX/HrpY 250
10.5 Non-TCSs Targeting Biofilm Formation and Quorum Sensing in Pseudomonas spp. 250
10.6 Conclusions 253
References 254

11 Recent Developments in Inhibitors of Bacterial Type IIA Topoisomerases 263
Pan F. Chan, Jianzhong Huang, Benjamin D. Bax, and Michael N. Gwynn

11.1 Introduction 263
11.2 DNA-Gate Inhibitors 267
11.2.1 Quinolones and Related Compounds 267
11.2.1.1 Development of the Fluoroquinolone Class and Mechanism of Action 267
11.2.1.2 Phase 2 Fluoroquinolones 271
11.2.1.3 Quinazolinediones (“Diones”) 271
11.2.1.4 Isothiazolones 272
11.2.2 “NBTIs,” Novel Bacterial Type II Topoisomerase Inhibitors 272
11.2.3 QPT (Quinoline Pyrimidine Trione) 274
11.2.4 Other DNA-Gate Inhibitors 275
11.2.4.1 Albicidin 275
11.2.4.2 Clerocidin 275
11.2.4.3 Nybomycin 275
11.2.4.4 Macromolecular Inhibitors That Stabilize Complexes with DNA 276
11.3 ATPase-Domain Inhibitors 276
11.3.1 Natural Products That Inhibit the ATPase Domain 276
11.3.1.1 Aminocoumarins 276
11.3.1.2 Cyclothialidines 280
11.3.1.3 Kibdelomycin and Amycolamicin 280
11.3.2 Recent GyrB and Dual-Targeting GyrB/ParE ATPase Inhibitors 281
11.3.2.1 Aminobenzimidazole Ureas 282
11.3.2.2 Imidazopyridines and Triazolopyridines 282
11.3.2.3 Pyrrolopyrimidines and Pyrimidoindoles 283
11.3.2.4 Pyrazolthiazoles 283
11.3.2.5 Pyrrolamides 284
11.3.2.6 Clinical Progression of ATPase Inhibitors 284
11.4 Simocyclinones, Gyramides, and Other Miscellaneous Inhibitors 284
11.4.1 Simocyclinone D8 284
11.4.2 Gyramides 286
11.4.3 Other Miscellaneous Inhibitors 286
11.4.3.1 Pyrazoles 286
11.4.3.2 Quercetin Derivatives 286
11.4.3.3 Macromolecular Inhibitors of DNA Binding 286
11.5 Conclusions and Perspectives 287
References 288

12 Antibiotics Targeting Bacterial RNA Polymerase 299
Konstantin Brodolin
12.1 Introduction 299
12.2 Antibiotics Blocking Nascent RNA Extension 304
12.2.1 Ansamycins (Rifamycins) 304
12.2.2 Sorangicin 306
12.3 Antibiotics Targeting RNAP Active Center 307
12.3.1 Streptolydigin and Other Acyl-Tetramic Acid Family Antibiotics 307
12.3.2 Lasso Peptides: Microcin j25 and Capistruin 308
12.3.3 CBR703 Series 309
12.4 Antibiotics Blocking Promoter Complex Formation 310
12.4.1 Myxopyronin 310
12.4.2 Corallopyronin 311
12.4.3 Ripostatin 311
12.4.4 Lipiarmycin 312
12.5 Inhibitors Hindering σ–Core Interactions 313
12.5.1 SB2 and Analogs (Phenyl-Furanyl-Rodanines) 313
12.6 Inhibitors with Unknown Mechanisms and Binding Sites 314
12.6.1 GE23077 314
12.6.2 Ureidothiophene 315
12.7 Conclusions and Perspectives 315
12.7.1 Bacterial RNA Polymerase Inhibitors are a Valid Source of Clinical Drugs 315
12.7.2 The σ Subunit of RNAP Modulates Antibiotics Activity 315
References 316

13 Inhibitors Targeting Riboswitches and Ribozymes 323
Isabella Moll, Attilio Fabbretti, Letizia Brandi, and Claudio O. Gualerzi
13.1 Introduction 323
13.2 Riboswitches as Antibacterial Drug Targets 323
13.2.1 Purine Riboswitches 329
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2.2</td>
<td>c-di-GMP (Bis-3′-5′-Cyclic Dimeric Guanosine Monophosphate) Riboswitch</td>
<td>331</td>
</tr>
<tr>
<td>13.2.3</td>
<td>FMN Riboswitches</td>
<td>334</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Thiamine Pyrophosphate (TPP) Riboswitch</td>
<td>335</td>
</tr>
<tr>
<td>13.2.5</td>
<td>Lysine Riboswitch</td>
<td>337</td>
</tr>
<tr>
<td>13.2.6</td>
<td>SAM (S-Adenosylmethionine) Riboswitches</td>
<td>339</td>
</tr>
<tr>
<td>13.3</td>
<td>Ribozymes as Antibacterial Drug Targets</td>
<td>340</td>
</tr>
<tr>
<td>13.4</td>
<td>Concluding Remarks and Future Perspectives</td>
<td>344</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>346</td>
</tr>
<tr>
<td>14</td>
<td>Targeting Ribonuclease P</td>
<td>355</td>
</tr>
<tr>
<td>Chrisavgi Toumpeki, Vassiliki Stamatopoulou, Maria Bikou, Katerina Grafanaki, Sophia Kallia-Raftopoulou, Dionysios Papaioannou, Constantinos Stathopoulos, and Denis Drainas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>355</td>
</tr>
<tr>
<td>14.2</td>
<td>Targeting RNase P with Antisense Strategies</td>
<td>357</td>
</tr>
<tr>
<td>14.3</td>
<td>Aminoglycosides</td>
<td>359</td>
</tr>
<tr>
<td>14.4</td>
<td>Peptidyltransferase Inhibitors</td>
<td>361</td>
</tr>
<tr>
<td>14.5</td>
<td>Substrate Masking by Synthetic Inhibitors</td>
<td>363</td>
</tr>
<tr>
<td>14.6</td>
<td>Peculiar Behavior of Macrolides on Bacterial RNase P</td>
<td>363</td>
</tr>
<tr>
<td>14.7</td>
<td>Antipsoriatic Compounds</td>
<td>364</td>
</tr>
<tr>
<td>14.8</td>
<td>Conclusions and Future Perspectives</td>
<td>366</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>366</td>
</tr>
<tr>
<td>15</td>
<td>Involvement of Ribosome Biogenesis in Antibiotic Function, Acquired Resistance, and Future Opportunities in Drug Discovery</td>
<td>371</td>
</tr>
<tr>
<td>Gloria M. Culver and Jason P. Rife</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>371</td>
</tr>
<tr>
<td>15.2</td>
<td>Ribosome Biogenesis</td>
<td>372</td>
</tr>
<tr>
<td>15.3</td>
<td>Antibiotics and Ribosome Biogenesis</td>
<td>373</td>
</tr>
<tr>
<td>15.4</td>
<td>Methyltransferases</td>
<td>375</td>
</tr>
<tr>
<td>15.5</td>
<td>Methyltransferase Integration into the Ribosome Biogenesis Pathway</td>
<td>380</td>
</tr>
<tr>
<td>15.6</td>
<td>Ribosome Biogenesis Factors, Virulence, and Vaccine Development</td>
<td>381</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>383</td>
</tr>
<tr>
<td>16</td>
<td>Aminoacyl-tRNA Synthetase Inhibitors</td>
<td>387</td>
</tr>
<tr>
<td>Urs A. Ochsner and Thale C. Jarvis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>387</td>
</tr>
<tr>
<td>16.2</td>
<td>Enzymatic Mechanism of Action of aaRS</td>
<td>388</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Condensation of Amino Acid and Cognate tRNA</td>
<td>388</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Classification of aaRS</td>
<td>389</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Fidelity and Proof Reading</td>
<td>391</td>
</tr>
<tr>
<td>16.2.4</td>
<td>Transamidation Pathway</td>
<td>392</td>
</tr>
</tbody>
</table>
16.2.5 aaRSs as Targets for Antimicrobial Agents: General Modes of Inhibition 392
16.3 aaRS Inhibitors 393
16.3.1 Mupirocin, a Paradigm 393
16.3.2 Old and New Compounds with aaRS Inhibitory Activity 393
16.3.2.1 Natural Products That Inhibit aaRS 394
16.3.2.2 AaRS Inhibitors Identified in Screening Programs 397
16.3.3 Novel aaRS Inhibitors in Clinical Development 399
16.3.3.1 CRS3123, a Fully Synthetic MetRS Inhibitor 399
16.3.3.2 AN2690 (Tavaborole) and AN3365 (GSK2251052), Boron-Containing LeuRS Inhibitors 401
16.4 Considerations for the Development of aaRS Inhibitors 403
16.4.1 Resistance Development 403
16.4.2 Selectivity over Eukaryotic and Mitochondrial Counterparts 404
16.4.3 Spectrum of Activity 404
16.4.4 Amino Acid Antagonism 404
16.5 Conclusions 405

References 405

17 Antibiotics Targeting Translation Initiation in Prokaryotes 411
Cynthia L. Pon, Attilio Fabbretti, Letizia Brandi, and Claudio O. Gualerzi
17.1 Introduction 411
17.2 Mechanism of Translation Initiation 411
17.3 Inhibitors of Folate Metabolism 414
17.4 Methionyl-tRNA Formyltransferase 417
17.5 Inhibitors of Peptide Deformylase 417
17.6 Inhibitors of Translation Initiation Factor IF2 418
17.7 ppGpp Analogs as Potential Translation Initiation Inhibitors 422
17.8 Translation Initiation Inhibitors Targeting the P-Site 423
References 429

18 Inhibitors of Bacterial Elongation Factor EF-Tu 437
Attilio Fabbretti, Anna Maria Giuliodori, and Letizia Brandi
18.1 Introduction 437
18.2 Enacyloxins 438
18.3 Kirromycin 444
18.4 Pulvomycin 446
18.5 GE2270A 448
References 449

19 Aminoglycoside Antibiotics: Structural Decoding of Inhibitors Targeting the Ribosomal Decoding A Site 453
Jiro Kondo and Eric Westhof
19.1 Introduction 453
19.2 Chemical Structures of Aminoglycosides 455
<table>
<thead>
<tr>
<th>Book Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3 Secondary Structures of the Target A Sites</td>
<td>455</td>
</tr>
<tr>
<td>19.4 Overview of the Molecular Recognition of Aminoglycosides by the Bacterial A Site</td>
<td>458</td>
</tr>
<tr>
<td>19.5 Role of Ring I: Specific Recognition of the Binding Pocket</td>
<td>459</td>
</tr>
<tr>
<td>19.6 Role of Ring II (2-DOS Ring): Locking the A-Site Switch in the “On” State</td>
<td>459</td>
</tr>
<tr>
<td>19.7 Dual Roles of Extra Rings: Improving the Binding Affinity and Eluding Defense Mechanisms</td>
<td>461</td>
</tr>
<tr>
<td>19.8 Binding of Semisynthetic Aminoglycosides to the Bacterial A Sites</td>
<td>463</td>
</tr>
<tr>
<td>19.9 Binding of Aminoglycosides to the Antibiotic-Resistant Bacterial Mutant and Protozoal Cytoplasmic A Sites</td>
<td>464</td>
</tr>
<tr>
<td>19.10 Binding of Aminoglycosides to the Human A Sites</td>
<td>464</td>
</tr>
<tr>
<td>19.11 Other Aminoglycosides Targeting the A Site but with Different Modes of Action</td>
<td>465</td>
</tr>
<tr>
<td>19.12 Aminoglycosides that Do Not Target the A Site</td>
<td>465</td>
</tr>
<tr>
<td>19.13 Nonaminoglycoside Antibiotic Targeting the A Site</td>
<td>466</td>
</tr>
<tr>
<td>19.14 Conclusions</td>
<td>466</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>467</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Peptidyltransferase Inhibitors of the Bacterial Ribosome</td>
<td>471</td>
</tr>
<tr>
<td>Daniel Wilson</td>
<td></td>
</tr>
<tr>
<td>20.1 Peptide Bond Formation and Its Inhibition by Antibiotics</td>
<td>471</td>
</tr>
<tr>
<td>20.2 Puromycin Mimics the CCA-End of tRNAs</td>
<td>472</td>
</tr>
<tr>
<td>20.3 ChloramphenicolS Inhibit A-tRNA Binding in an Amino-Acid-Specific Manner</td>
<td>475</td>
</tr>
<tr>
<td>20.4 The Oxazolidinones Bind at the A-Site of the PTC</td>
<td>476</td>
</tr>
<tr>
<td>20.5 Lincosamide Action at the A-Site of the PTC</td>
<td>478</td>
</tr>
<tr>
<td>20.6 Blasticidin S Mimics the CCA-End of the P-tRNA at the PTC</td>
<td>478</td>
</tr>
<tr>
<td>20.7 Sparsomycin Prevents A-Site and Stimulates P-Site tRNA Binding</td>
<td>480</td>
</tr>
<tr>
<td>20.8 Pleuromutilins Overlap A- and P-Sites at the PTC</td>
<td>481</td>
</tr>
<tr>
<td>20.9 The Synergistic Action of Streptogramins at the PTC</td>
<td>483</td>
</tr>
<tr>
<td>20.10 Future Perspectives</td>
<td>484</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>484</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Book Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Antibiotics Inhibiting the Translocation Step of Protein Elongation on the Ribosome</td>
<td>491</td>
</tr>
<tr>
<td>Frank Peske and Wolfgang Wintermeyer</td>
<td></td>
</tr>
<tr>
<td>21.1 Introduction</td>
<td>491</td>
</tr>
<tr>
<td>21.2 Translocation: Overview</td>
<td>491</td>
</tr>
<tr>
<td>21.3 Antibiotics Inhibiting Translocation</td>
<td>494</td>
</tr>
<tr>
<td>21.3.1 Target: 30S Subunit, Decoding Site</td>
<td>494</td>
</tr>
<tr>
<td>21.3.2 Target: 30S Body</td>
<td>496</td>
</tr>
<tr>
<td>21.3.3 Target: 30S Subunit, Head Domain</td>
<td>496</td>
</tr>
<tr>
<td>21.3.4 Target: Intersubunit Bridge 2a</td>
<td>497</td>
</tr>
<tr>
<td>21.3.5 Target: 50S Subunit, GTPase-Associated Center</td>
<td>498</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>21.3.6</td>
<td>Target: EF-G</td>
</tr>
<tr>
<td>21.4</td>
<td>Antibiotics Inhibiting Translocation in Eukaryotes</td>
</tr>
<tr>
<td>21.4.1</td>
<td>Target: 40S Subunit, Decoding Site</td>
</tr>
<tr>
<td>21.4.2</td>
<td>Target: 60S Subunit, E Site</td>
</tr>
<tr>
<td>21.4.3</td>
<td>Target: eEF2</td>
</tr>
<tr>
<td>21.5</td>
<td>Antibiotics Inhibiting Ribosome Recycling in Bacteria</td>
</tr>
<tr>
<td>21.5.1</td>
<td>Target: Intersubunit Bridge 2a</td>
</tr>
<tr>
<td>21.5.2</td>
<td>Target: 50S Subunit, GTPase-Associated Center</td>
</tr>
<tr>
<td>21.5.3</td>
<td>Target: EF-G</td>
</tr>
<tr>
<td>21.6</td>
<td>Perspective</td>
</tr>
</tbody>
</table>

References: 504

22 Antibiotics at the Ribosomal Exit Tunnel—Selected Structural Aspects | 509

Ella Zimmerman, Anat Bashan, and Ada Yonath

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1</td>
<td>Introduction</td>
<td>509</td>
</tr>
<tr>
<td>22.2</td>
<td>The Multifunctional Tunnel</td>
<td>510</td>
</tr>
<tr>
<td>22.3</td>
<td>A Binding Pocket within the Multifunctional Tunnel</td>
<td>512</td>
</tr>
<tr>
<td>22.4</td>
<td>Remotely Resistance</td>
<td>513</td>
</tr>
<tr>
<td>22.5</td>
<td>Resistance Warfare</td>
<td>514</td>
</tr>
<tr>
<td>22.6</td>
<td>Synergism</td>
<td>515</td>
</tr>
<tr>
<td>22.7</td>
<td>Pathogen and “Patients” Models</td>
<td>517</td>
</tr>
<tr>
<td>22.8</td>
<td>Conclusion and Future Considerations</td>
<td>519</td>
</tr>
</tbody>
</table>

Acknowledgments: 519

References: 520

23 Targeting HSP70 to Fight Cancer and Bad Bugs: One and the Same Battle? | 525

Jean-Hervé Alix

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>A Novel Target: The Bacterial Chaperone HSP70</td>
<td>525</td>
</tr>
<tr>
<td>23.2</td>
<td>An In vivo Screening for Compounds Targeting DnaK</td>
<td>528</td>
</tr>
<tr>
<td>23.3</td>
<td>Drugging HSP70</td>
<td>528</td>
</tr>
<tr>
<td>23.4</td>
<td>Cooperation between the Bacterial Molecular Chaperones DnaK and HtpG</td>
<td>530</td>
</tr>
<tr>
<td>23.5</td>
<td>Drugging HSP90</td>
<td>531</td>
</tr>
</tbody>
</table>

References: 532

Index: 539