Contents

Preface xvii
About the Companion Website xxiii
Previous Publications xxiv
Acknowledgments xxv
List of Symbols and Abbreviations xxvii

Part One EVALUATION DECISION PROBLEMS 1

1.1 Intuitive Evaluation as a Logic Decision Process 5
 1.1.1 Main Observable Steps of the Intuitive Evaluation Process 6
 1.1.2 Subjective and Objective Components in Evaluation 18

1.2 Quantitative Evaluation—An Introductory Example 21
 1.2.1 Stakeholders and Their Goals 21
 1.2.2 Attributes 22
 1.2.3 Attribute Criteria 23
 1.2.4 Simple Direct Ranking 27
 1.2.5 Aggregation of Attribute Suitability Degrees 29
 1.2.6 Using Cost and Suitability to Compute the Overall Value 32

1.3 Drawbacks of Simple Additive and Multiplicative Scoring and Utility Models 35
 1.3.1 Simple Additive Scoring: The Irresistible Attractiveness of Simplicity 36
 1.3.2 Simple Multiplicative Scoring 45
 1.3.3 Logic Unsuitability of Scoring and Utility Theory Models in Professional Evaluation 47
Contents

Part One

1. **Introduction to Professional Quantitative Evaluation**
 1.4.1 Five Fundamental Types of Professional Evaluation Problems... 51
 1.4.2 A Survey of Typical Professional Evaluation Problems... 54
 1.4.3 Components of Methodology for Professional Quantitative Evaluation... 58

Part Two

2. **GRADED LOGIC AND AGGREGATION**
 2.1 Graded Logic as a Generalization of Classical Boolean Logic
 2.1.1 Aggregators and Their Classification... 70
 2.1.1.1 Means... 71
 2.1.1.2 General Aggregation Functions... 71
 2.1.1.3 Logic Aggregators... 73
 2.1.1.4 Triangular Norms and Conorms... 73
 2.1.2 How Do Human Beings Aggregate Subjective Categories?... 75
 2.1.3 Definition and Classification of Logic Aggregators... 85
 2.1.4 Logic Bisection, Trisection, and Quadrisection of the Unit Hypercube... 92
 2.1.5 Propositions, Value Statements, Graded Logic, and Fuzzy Logic... 95
 2.1.6 Classical Bivalent Boolean Logic... 100
 2.1.7 Six Generalizations of Bivalent Boolean Logic
 2.1.7.1 Expansion of Function Domain... 109
 2.1.7.2 Expansion of Logic Domain... 111
 2.1.7.3 Expansion of Annihilator Adjustability... 112
 2.1.7.4 Expansion of Semantic Domain... 115
 2.1.7.5 Expansion of Compensative Logic Functions... 117
 2.1.7.6 Expansion of the Range of Andness/Orness from Drastic Conjunction to Drastic Disjunction... 118
 2.1.8 GL Conjecture: Ten Necessary and Sufficient GL Functions... 123
 2.1.9 Basic Idempotent GL Aggregators... 127
 2.1.10 A Summary of Differences between Graded Logic and Bivalent Boolean Logic... 134
 2.1.11 Relationships between Graded Logic, Perceptual Computing, and Fuzzy Logic... 136
 2.1.12 A Brief History of Graded Logic... 142
 2.2 Observable Properties of Human Evaluation Logic
 2.2.1 Perceptual Computer and Its Basic Properties... 152
 2.2.2 Simultaneity and Substitutability in Evaluation Models... 177
2.2.3 Basic Semantic Aspects of Evaluation Logic Reasoning 190
2.2.4 Multipolarity: Grouping and Aggregation of Semantically Heterogeneous Inputs 212
2.2.5 Grouping and Aggregation of Semantically Homogeneous Inputs 218
2.2.6 Imprecision, Incompleteness, Logic Inconsistency, and Errors 222

2.3 Andness and Orness 237
2.3.1 A General Definition of Andness/Orness 237
2.3.2 Local Andness and Orness in the Simplest Case of Two Variables 239
2.3.3 Variability of Local Andness 242
2.3.4 Mean Local Andness and Orness in the Case of Two Variables 248
2.3.5 Local and Mean Local Andness and Orness in the Case of \(n \) Variables 251
2.3.6 Global Andness and Orness 253
2.3.7 Mean Global Andness/Orness Theorems and Their Applications 272
2.3.8 Geometric Interpretations of Andness and Orness 275

2.4 Graded Conjunction/Disjunction and Logic Modeling of Simultaneity and Substitutability 283
2.4.1 Definitions and Basic Mathematical Properties of Logic Aggregators 284
2.4.2 Classification of Conjunctive and Disjunctive Logic Aggregators 295
2.4.3 Properties of Means Used in Logic Aggregation 298
2.4.4 Algebraic Properties of Aggregators Based on Weighted Power Means 304
2.4.5 Logic Aggregators Based on Weighted Means with Adjustable Andness/Orness 313
2.4.6 Selection and Use of the Threshold Andness Aggregator 318
2.4.7 Andness-Directed Interpolative GCD Aggregators 327
2.4.8 Uniform and Nonuniform Interpolative GCD Aggregators 334
2.4.8.1 The Uniform Interpolative GCD Aggregator (UGCD) 334
2.4.8.2 An Extremely Soft Interpolative Aggregator 338
2.4.8.3 An Extremely Hard Interpolative Aggregator 338
2.4.9 Extending GCD to Include Hyperconjunction and Hyperdisjunction 342
2.4.10 From Drastic Conjunction to Drastic Disjunction: A General GCD Aggregator 347
2.4.11 Gamma Aggregators versus Extended GCD Aggregators 348
 2.4.11.1 Multiplicative and Additive Gamma Aggregators 351
 2.4.11.2 Comparison of Gamma Aggregators and GCD 355
2.4.12 Four Main Families of GCD Aggregators and Sixteen Conditions They Must Satisfy 361

2.5 The Percept of Importance and the Use of Weights 367
 2.5.1 Multiplicative, Implicative, and Exponential Weights as Importance Quantifiers 369
 2.5.1.1 Multiplicative Weights 370
 2.5.1.2 Implicative Weights and the Weighted Conjunction/Disjunction 374
 2.5.1.3 Exponential Weights 390
 2.5.2 Impact of Weights on Aggregation Results 393
 2.5.3 Semantic Components in Logic Aggregation Models 398
 2.5.4 Seven Techniques for Weight Adjustment 402
 2.5.4.1 Importance Decomposition Method 402
 2.5.4.2 Direct Weight Assessment 405
 2.5.4.3 Weights Based on Ranking 405
 2.5.4.4 Weights Based on Menu 407
 2.5.4.5 Collective Weight Determination 409
 2.5.4.6 Weights Obtained from Pairwise Comparisons 411
 2.5.4.7 Weights Based on Preferential Neuron Training 414
 2.5.5 Multivariate Weighted Aggregation Based on Binary Aggregation Trees 417

2.6 Partial Absorption: A Fundamental Asymmetric Aggregator 429
 2.6.1 Conjunctive Partial Absorption 430
 2.6.2 Disjunctive Partial Absorption 436
 2.6.3 Visualizing the Partial Absorption Function, Penalty, and Reward 439
 2.6.4 Mathematical Models of Penalty and Reward 442
 2.6.5 Selecting Parameters of Partial Absorption 449

2.7 Logic Functions That Use Negation 453
 2.7.1 Negation and De Morgan’s Duality 453
 2.7.2 De Morgan’s Laws for Weighted Aggregators and Dualized Weighted Aggregators 455
 2.7.3 De Morgan’s Duals of Compound Functions 458
 2.7.4 Nonidempotent Logic Functions 460
2.8 Penalty-Controlled Missingness-Tolerant Aggregation

2.8.1 Missing Data in Evaluation Problems
2.8.2 Penalty-Controlled Numerical Coding of Missing Data
2.8.3 A Penalty-Controlled Missingness-Tolerant Aggregation Algorithm
2.8.4 The Impact of Penalty on Missingness-Tolerant Aggregation

2.9 Rating Scales and Verbalization

2.9.1 Design of Rating Scales
2.9.1.1 Strict Monotonicity of Linguistic Labeling
2.9.1.2 Linearity of Rating Scales
2.9.1.3 Balance of Rating Scales
2.9.1.4 Cardinality of Rating Scales
2.9.1.5 Hybrid Rating Scales
2.9.2 Stepwise Refinement of Rating Scales for Andness and Orness
2.9.3 Scaling and Verbalizing Degrees of Importance
2.9.4 Scaling and Verbalizing Degrees of Suitability/Preference

Part Three LSP METHOD

3.1 An Overview of the LSP Method

3.1.1 Characterization of Stakeholder and Organization of an Evaluation Project
3.1.2 Development of the Suitability Attribute Tree
3.1.3 Elementary Attribute Criteria
3.1.4 Logic Aggregation of Suitability
3.1.4.1 Logic Aggregation Using Graded Conjunction/Disjunction
3.1.4.2 Logic Aggregation Using Partial Absorption
3.1.5 Cost/Suitability Analysis and Comparison of Evaluated Objects Using Their Overall Value
3.1.6 Summary of Properties of the LSP Method

3.2 LSP Decision Engineering Framework for Professional Evaluation Projects

3.2.1 Participants in a Professional Evaluation Process Based on LSP DEF
3.2.2 Relationships between Evaluators and Domain Experts
3.2.3 The Structure of LSP DEF and the Corresponding Professional Evaluation Process
3.2.4 Predictive Nature of Evaluation Models
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5</td>
<td>Interpretation of Evaluation Results</td>
<td>552</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Complexity, Completeness, and Accuracy of Evaluation Models</td>
<td>553</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Combining Opinions of (n) Experts</td>
<td>555</td>
</tr>
<tr>
<td>3.2.7.1</td>
<td>The Maximum Likelihood Estimate</td>
<td>555</td>
</tr>
<tr>
<td>3.2.7.2</td>
<td>The Expert Competence Estimate</td>
<td>557</td>
</tr>
<tr>
<td>3.3</td>
<td>Elementary Attribute Criteria</td>
<td>561</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Notation of Elementary Criteria</td>
<td>561</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Verbalization of Elementary Criteria</td>
<td>565</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Continuous Nonlinear Elementary Criteria</td>
<td>566</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Classification of Twelve Characteristic Types of Elementary Criteria</td>
<td>569</td>
</tr>
<tr>
<td>3.4</td>
<td>Aggregation Techniques and Tools</td>
<td>579</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Selecting GCD Aggregators for an LSP Project</td>
<td>579</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Selecting GCD Aggregators by Training Preferential Neurons</td>
<td>581</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Analytic Techniques for Selecting Partial Absorption Aggregators</td>
<td>589</td>
</tr>
<tr>
<td>3.4.3.1</td>
<td>AH Version of the Conjunctive Partial Absorption Aggregator</td>
<td>589</td>
</tr>
<tr>
<td>3.4.3.2</td>
<td>AH Version of the Disjunctive Partial Absorption Aggregator</td>
<td>594</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Boundary Penalty/Reward Tables for Selecting Partial Absorption Aggregators</td>
<td>595</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Selecting Partial Absorption Aggregators by Training Preferential Neurons</td>
<td>597</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Nonstationary LSP Criteria</td>
<td>602</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Graphic Notation of Aggregation Structures</td>
<td>606</td>
</tr>
<tr>
<td>3.5</td>
<td>Canonical Aggregation Structures</td>
<td>611</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Conjunctive CAS with Increasing Andness</td>
<td>611</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Disjunctive CAS with Increasing Orness</td>
<td>614</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Aggregated Mandatory/Optional and Sufficient/Optional CAS</td>
<td>616</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Design of a Simple LSP Evaluator Tool</td>
<td>617</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Distributed Mandatory/Optional and Sufficient/Optional CAS</td>
<td>619</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Nested Mandatory/Desired/Optional and Sufficient/Desired/Optional CAS</td>
<td>621</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Decreasing Andness and Decreasing Orness CAS</td>
<td>622</td>
</tr>
</tbody>
</table>
3.6 Cost/Suitability Analysis as a Graded Logic Problem 623
 3.6.1 Cost Analysis 623
 3.6.2 Cost/Suitability Analysis Based on Linear Equi-Value Model 626
 3.6.3 Using Cost/Suitability Analysis in Competitive Bidding 627
 3.6.4 Conjunctive Suitability-Affordability Method 630

3.7 Sensitivity Analysis and Tradeoff Analysis 635
 3.7.1 Sensitivity Analysis 635
 3.7.1.1 Sensitivity with Respect to Input Suitability Scores 637
 3.7.1.2 Sensitivity Properties of Basic Aggregators 641
 3.7.1.3 Sensitivity with Respect to Input Attributes 643
 3.7.2 Tradeoff Analysis 644
 3.7.2.1 Compensatory Properties of LSP Criteria and Graded Logic Aggregators 647
 3.7.2.2 The Concept of Compensation Ratio 651

3.8 Reliability Analysis 655
 3.8.1 Sources of Errors in LSP Criteria and Their Empirical Analysis 655
 3.8.2 The Problem of Confidence in Evaluation Results 660
 3.8.3 Case Study of Reliability Analysis for a Computer Evaluation Project 664

3.9 System Optimization 671
 3.9.1 Three Fundamental Constrained Optimization Problems 671
 3.9.2 The Cloud Diagram and the Set of Optimum Configurations 673
 3.9.3 A Case Study of Computer Configuration Optimization 675

3.10 LSP Software Technology 683

Part Four APPLICATIONS 689

4.1 Job Selection 693
 4.1.1 Job Selection Attribute Tree 694
 4.1.2 Elementary Attribute Criteria for Job Selection 697
 4.1.3 Logic Aggregation of Suitability for the Job Selection Criterion 701
 4.1.4 A Job Selection Example 705
4.2 Home Selection 711
 4.2.1 Home Selection Using ORE Websites and LSPhome 711
 4.2.2 Home Attribute Tree and Elementary Criteria 716
 4.2.3 Home Suitability Aggregation Structure as a Shade Diagram 717
 4.2.4 Using Missingness-Tolerant LSP Criteria 725
 4.2.5 The Optimum Home Pricing Problem 728
 4.2.6 A Personalized Home Selection Criterion 731

4.3 Evaluation of Medical Conditions 737
 4.3.1 Evaluation of Disease Severity and Patient Disability 738
 4.3.2 Limitations of Medical Rating Scales 740
 4.3.3 LSP Models for Computing OSD, ODD, and PDD 743
 4.3.4 Evaluation of PDD for Peripheral Neuropathy 745
 4.3.5 The Risky Therapy Decision Problem 752
 4.3.6 A Case Study of Anti-MAG Neuropathy 755
 4.3.7 LSPmed—An Internet Tool for Medical Evaluation 758
 4.3.7.1 LSPmed User Types and Their Functions 758
 4.3.7.2 The Use of LSPmed 760
 4.3.7.3 Serving a Patient 762

4.4 LSP Criteria in Ecology: Selecting Multi-Species Habitat Mitigation Projects 769
 4.4.1 Multi-Species Compensatory Mitigation Projects 769
 4.4.2 A Generic LSP Attribute Tree for Evaluation of Habitat Mitigation Projects 771
 4.4.3 Attribute Criteria and the Logic Aggregation Structure 772
 4.4.4 Sensitivity Analysis 777
 4.4.5 Logic Refining of the Aggregation Structure 779
 4.4.6 Cost/Suitability Analysis 781
 4.4.7 MSHCP Software Support 783

4.5 Space Management Decision Problems 785
 4.5.1 A Decision Model for School Location 785
 4.5.1.1 Statement of the Problem 785
 4.5.1.2 School Locations Attribute Tree 786
 4.5.1.3 Elementary Criteria 786
 4.5.1.4 Aggregation of Suitability Degrees 792
 4.5.1.5 Cost Analysis 794
 4.5.1.6 Competitive Locations 795
 4.5.1.7 Cost/Suitability Analysis 796
 4.5.2 Suitability of Locations for Residential Development 798