Contents

Preface

PART I BASIC PRINCIPLES

1 Principles of Waveguides
1.1 Introduction
1.2 Basic Optical Waveguides
1.3 Maxwell’s Equations
1.4 The Wave Equation and Its Solutions
1.5 Boundary Conditions
1.6 Phase and Group Velocity
 1.6.1 Phase Velocity
 1.6.2 Group Velocity
1.7 Modes in Planar Optical Waveguide
 1.7.1 Radiation Modes
 1.7.2 Confinement Modes
1.8 Dispersion in Planar Waveguide
 1.8.1 Intermodal Dispersion
 1.8.2 Intramodal Dispersion
1.9 Summary
References

2 Fundamentals of Photonic Crystals
2.1 Introduction
2.2 Types of PhCs
 2.2.1 1D PhCs
 2.2.2 2D PhCs
 2.2.3 3D PhCs

COPYRIGHTED MATERIAL
2.3 Photonic Band Calculations
2.3.1 Maxwell’s Equations and the PhC
2.3.2 Floquet–Bloch Theorem, Reciprocal Lattice, and Brillouin Zones
2.3.3 Plane Wave Expansion Method
2.3.4 FDTD Method
 2.3.4.1 Band Structure
 2.3.4.2 Transmission Diagram
2.3.5 Photonic Band for Square Lattice
2.4 Defects in PhCs
2.5 Fabrication Techniques of PhCs
 2.5.1 Electron-Beam Lithography
 2.5.2 Interference Lithography
 2.5.3 Nano-Imprint Lithography
 2.5.4 Colloidal Self-Assembly
2.6 Applications of PhCs
2.7 Photonic Crystal Fiber
 2.7.1 Construction
 2.7.2 Modes of Operation
 2.7.2.1 High Index Guiding Fiber
 2.7.2.2 PBG Fibers
2.7.3 Fabrication of PCF
2.7.4 Applications of PCF
2.8 Summary
References

3 Fundamentals of Liquid Crystals
3.1 Introduction
3.2 Molecular Structure and Chemical Composition of an LC Cell
3.3 LC Phases
 3.3.1 Thermotropic LCs
 3.3.1.1 Nematic Phase
 3.3.1.2 Smectic Phase
 3.3.1.3 Chiral Phases
 3.3.1.4 Blue Phases
 3.3.1.5 Discotic Phases
 3.3.2 Lyotropic LCs
 3.3.3 Metallotropic LCs
3.4 LC Physical Properties in External Fields
 3.4.1 Electric Field Effect
 3.4.2 Magnetic Field Effect
 3.4.2.1 Frederiks Transition
3.5 Theoretical Treatment of LC
 3.5.1 LC Parameters
 3.5.1.1 Director
 3.5.1.2 Order Parameter
 3.5.2 LC Models
PART II NUMERICAL TECHNIQUES

4 Full-Vectorial Finite-Difference Method
4.1 Introduction 59
4.2 Overview of Modeling Methods 59
4.3 Formulation of the FVFDM 60
4.3.1 Maxwell’s Equations 60
4.3.2 Wave Equation 61
4.3.3 Boundary Conditions 63
4.3.4 Maxwell’s Equations in Complex Coordinate 64
4.3.5 Matrix Solution 65
4.3.5.1 Power Method 65
4.3.5.2 Inverse Power Method 66
4.3.5.3 Shifted Inverse Power Method 66
4.4 Summary 66
References 66

5 Assessment of the Full-Vectorial Finite-Difference Method
5.1 Introduction 69
5.2 Overview of the LC-PCF 69
5.3 Soft Glass 70
5.4 Design of Soft Glass PCF with LC Core 71
5.5 Numerical Results 73
5.5.1 FVFDM Validation 73
5.5.2 Modal Hybridness 74
5.5.3 Effective Index 75
5.5.4 Effective Mode Area 76
5.5.5 Nonlinearity 76
5.5.6 Birefringence 77
5.5.7 Effect of the NLC Rotation Angle 80
5.5.8 Effect of the Temperature 81
5.5.9 Elliptical SGLC-PCF 83
5.6 Experimental Results of LC-PCF 84
5.6.1 Filling Temperature 84
5.6.2 Filling Time 84
5.7 Summary 85
References 85
6 Full-Vectorial Beam Propagation Method

6.1 Introduction 89
6.2 Overview of the BPMs 89
6.3 Formulation of the FV-BPM
 6.3.1 Slowly Varying Envelope Approximation 91
 6.3.2 Paraxial and Wide-Angle Approximation 92
6.4 Numerical Assessment 93
 6.4.1 Overview of Directional Couplers 93
 6.4.2 Design of the NLC-PCF Coupler 94
 6.4.3 Effect of the Structural Geometrical Parameters 94
 6.4.4 Effect of Temperature 97
 6.4.5 Effect of the NLC Rotation Angle 98
 6.4.6 Elliptical NLC-PCF Coupler 98
 6.4.7 Beam Propagation Analysis of the NLC-PCF Coupler 101
6.5 Experimental Results of LC-PCF Coupler 102
6.6 Summary 103
References 103

7 Finite-Difference Time Domain Method

7.1 Introduction 105
7.2 Numerical Derivatives 106
7.3 Fundamentals of FDTD
 7.3.1 1D Problem in Free Space 107
 7.3.2 1D Problem in a Lossless Medium 109
 7.3.3 1D Problem in a Lossy Medium 109
 7.3.4 2D Problem 110
 7.3.5 3D Problem 112
7.4 Stability for FDTD 115
7.5 Feeding Formulation 116
7.6 Absorbing Boundary Conditions
 7.6.1 Mur’s ABCs 117
 7.6.2 Perfect Matched Layer 117
7.7 1D FDTD Sample Code 120
 7.7.1 Source Simulation 120
 7.7.2 Structure Simulation 121
 7.7.3 Propagation Simulation 122
7.8 FDTD Formulation for Anisotropic Materials 124
7.9 Summary 126
References 126

Part III APPLICATIONS OF LC DEVICES

8 Polarization Rotator Liquid Crystal Fiber

8.1 Introduction 131
8.2 Overview of PRs 132
8.3 Practical Applications of PRs 133
8.4 Operation Principles of PRs 134
8.5 Numerical Simulation Strategy 135
8.6 Design of NLC-PCF PR 136
8.7 Numerical Results 138
 8.7.1 Hybridness 138
 8.7.2 Operation of the NLC-PCF PR 139
 8.7.3 Effect of Structure Geometrical Parameters 142
 8.7.3.1 Effect of the d/Λ Ratio 142
 8.7.3.2 Effect of the Hole Pitch Λ 143
 8.7.4 Tolerance of the NLC Rotation Angle 143
 8.7.5 Tolerance of Structure Geometrical Parameters 144
 8.7.5.1 Tolerance of the d/Λ Ratio 144
 8.7.5.2 Tolerance of the Hole Shape 145
 8.7.5.3 Tolerance of the Hole Position 146
 8.7.6 Tolerance of the Temperature 148
 8.7.7 Tolerance of the Operating Wavelength 150
8.8 Ultrashort Silica LC-PCF PR 150
8.9 Fabrication Aspects of the NLC-PCF PR 155
8.10 Summary 156
References 156

9 Applications of Nematic Liquid Crystal-Photonic Crystal Fiber Coupler 159
9.1 Introduction 159
9.2 Multiplexer–Demultiplexer 159
 9.2.1 Analysis of NLC-PCF MUX–DEMUX 159
 9.2.2 Beam Propagation Study of the NLC-PCF MUX–DEMUX 161
 9.2.3 CT of the NLC-PCF MUX–DEMUX 162
 9.2.4 Feasibility of the NLC-PCF MUX–DEMUX 163
9.3 Polarization Splitter 164
 9.3.1 Analysis of the NLC-PCF Polarization Splitter 164
 9.3.2 Beam Propagation Study of the NLC-PCF Polarization Splitter 164
 9.3.3 CT of the NLC-PCF Splitter 166
 9.3.4 Feasibility of the NLC-PCF Polarization Splitter 168
9.4 Summary 169
References 169

10 Coupling Characteristics of a Photonic Crystal Fiber Coupler with Liquid Crystal Cores 171
10.1 Introduction 171
10.2 Design of the PCF Coupler with LC Cores 172
10.3 Numerical Results 173
 10.3.1 Effect of the Structural Geometrical Parameters 173
 10.3.2 Effect of Temperature 177
 10.3.3 Polarization Splitter Based on PCF Coupler with LC Cores 178
Contents

10.3.3.1 Analysis of the Polarization Splitter 178
10.3.3.2 Beam Propagation Analysis 179
10.3.3.3 Crosstalk 181
10.3.3.4 Feasibility of the Polarization Splitter 182

10.4 Summary 183
References 183

11 Liquid Crystal Photonic Crystal Fiber Sensors 185
11.1 Introduction 185
11.2 LC-PCF Temperature Sensor 186
 11.2.1 Design Consideration 186
 11.2.2 Effects of the Structural Geometrical Parameters 189
 11.2.3 Effect of the Temperature 191
 11.2.4 Effect of the LC Rotation Angle 191
 11.2.5 Sensitivity Analysis 192
11.3 Design of Single Core PLC-PCF 192
 11.3.1 Design Consideration 192
 11.3.2 Effect of the LC Rotation Angle 197
 11.3.3 Effect of the Structural Geometrical Parameters 197
 11.3.4 Effect of the Temperature 201
11.4 Summary 202
References 202

12 Image Encryption Based on Photonic Liquid Crystal Layers 205
12.1 Introduction to Optical Image Encryption systems 205
12.2 Symmetric Encryption Using PhC Structures 207
 12.2.1 Design Concept 207
 12.2.2 Encryptor/Decryptor Design 211
 12.2.3 Simulation Results 212
12.3 Multiple Encryption System Using Photonic LC Layers 216
 12.3.1 Proposed Encryption System 217
 12.3.1.1 PBG Structure 217
 12.3.1.2 Liquid Crystals 217
 12.3.1.3 Phase Modulator/Photodetector 219
 12.3.1.4 System Operation 219
 12.3.2 Simulation Results 219
12.4 Summary 226
References 227

13 Optical Computing Devices Based on Photonic Liquid Crystal Layers 229
13.1 Introduction to Optical Computing 229
13.2 All-Optical Router Based on Photonic LC Layers 231
 13.2.1 Device Architecture 231
 13.2.1.1 PBG Structure 231
 13.2.1.2 Liquid Crystals 232
 13.2.1.3 System Operation 233
13.2.2 Simulation Results 233
13.2.3 Fabrication Tolerance 236

13.3 Optical Logic Gates Based on Photonic LC Layers 237
13.3.1 OR Logic Gate Based on PhC Platform 237
 13.3.1.1 PhC Platform 238
 13.3.1.2 Optical OR Gate Architecture 239
 13.3.1.3 Results and Discussion for OR Gate 239
13.3.2 AND Logic Gate Based on a PhC Platform 241
 13.3.2.1 Optical AND Gate Architecture 242
 13.3.2.2 Results and Discussion for AND Gate 242
13.3.3 Reconfigurable Gate Based on Photonic NLC Layers 245
 13.3.3.1 Device Architecture 245
 13.3.3.2 Bandgap Analysis of Photonic Crystal Platform 246
 13.3.3.3 Simulation Results of the Reconfigurable Gate 247

13.4 Optical Memory Based on Photonic LC Layers 252
13.4.1 PhC Platform 253
13.4.2 Tunable Switch 253
13.4.3 Simulation Results 255
13.4.4 Fabrication Challenges 255

13.5 Summary 256
References 257

Index 259