Index

A

A La Carte model, about, 49–50, 57, 59; as disruptive model, 76–77, 85; educational modularity and, 194–195; Quakertown’s use of, 99–100; table of options, 242–243; Virtual Learning Labs use of, 106

About this book, 18

Abraham, Salem, 49–50

Academic performance. See Scholastic performance

Academic Performance Index (API), 16–17, 147

Acton Academy, 101, 155–156, 159, 254–255

AdvancePath Academics, 232

Agency for students, 148

Alabama Connecting Classrooms, Educators, & Students Statewide (ACCESS) Distance Learning Program, 14–15

Aladjem, Terry, 43

Amato, Paul R., 174

American Enterprise Institute, 257

Anacostia High School, 257

Apple: iPhone vs. earlier technology, 189; operating system for, 203–204; product architecture of, 192–193

Architecture: aligning strategies to existing, 208; effect on K–12 education, 78–79; interfaces and product, 190; job, 145–146, 156–157; modular and interdependent, 190–192, 209; open, 205–208; personal computer, 192–193. See also Modular architecture

Arthur Ashe Charter School, 100–101, 102

Aspire ERES Academy, 40

AT&T, 221

Athena, 172

Autonomous teams: blended learning models to implement with, 224–226, 240; characteristics of, 118–120; developing blended learning, 126–129; illustrated, 115, 121; overview, 132; pros/cons of, 130–131

Avenues World School, The, 40, 41

B

Bergmann, Jon, 43, 229–230

Bergsagel, Victoria, 206

Big Picture Learning schools, 174–175

Blank, Steve, 267

Blended learning: A La Carte model, 49–50, 57, 59; about, 4; blueprint for, 285–286; brick-and-mortar schools and, 35; building
Blended learning (continued)

experts in, 17–18; cost controls with, 16–17; defined, 34–36, 53, 54; defining goals for, 99–103; developing teams for, 283–285; disruptive models of, 71–72, 85; effect on culture, 249–250; element of student control in, 34–35, 52–53; Enriched Virtual, 50–52, 57, 60; Flex Model for, 46–48, 56, 59; functional teams for, 115–116, 120–123, 131; hybrid models of, 71–72, 73–75, 85; identifying student meta-experiences, 148–152, 157; implementing in phases, 282–283; integrated modalities in, 35–36; integrating technology in classrooms, 95–96; K–12 use of, 31–32; mixing models of, 52; models of, 37, 38; motivating teachers about, 179–181; questions for choosing, 220–221, 223–236, 240; recognizing applications of, 36–37; replicating successes in, 220, 240; roots in online learning, 32–33; Rotation model, 37–46; SMART goals for, 102–103, 104, 109; table of options for, 242–243; taxonomy for K–12, 55–60; teachers’ role in, 169–170, 182; technology-rich instruction vs., 53; using, 5–6. See also Implementing blended learning; Starting blended learning programs

Blended Learning Universe (BLU), 39, 42, 44, 53; Enriched Virtual programs in, 51; Flex programs in, 48; list of online content, 203, 210–212

Bloom, Benjamin, 9

Bloomberg Businessweek, 46

Bonobos, 33

Brick-and-mortar schools: custodial supervision of, 33, 52; grounding online learning with, 32–33; hybrid models of blended learning in, 71–72; origins of, 6–7; as part of blended learning, 35

Burns, Robert, 265

C

Carpe Diem Schools, 45–46, 228, 231, 258–259, 267

Change: hybrid solutions and, 69–71; resistance to innovation and, 67–69. See also Disruptive innovations; Sustaining innovations

Christensen, Clayton M., 2, 193

Christensen Institute, 39, 53, 169

CityBridge Foundation, 219

Classrooms: active learning in, 43; adapting to Flex model instruction, 48; aligning learning strategies to architecture of, 208; effect of childhood experiences on, 151–152, 157; implementing blended learning in, 79–84; integrated vs. modular physical space in, 205–208; integrating technology into, 95–96; online learning in, 32–33; open architecture in, 207–208; sample daily schedules for, 154, 158, 159; traditional, 3–5. See also Designing virtual and physical setups

ColorMatch, 176–177

Columbus Signature Academy, 207

Commonwealth Connections Academy (CCA), 50–51

Competency-based learning, 8, 9–10

Core problems: best blended-learning models for, 223–224; identifying, 104; sustaining innovations for, 221, 240
Costs: classroom innovation, 206; educational challenges of, 11–12; facilitated network, 200–201; integrated software, 198, 202; KIPP's control of, 15–17; losing pupil funding to cyber schools, 99–100, 101; savings with Lab Rotation, 42
Course Access programs, 194–195
Courses. See Online content
Cuban, Larry, 96–97
Culture: adding to school meetings, 253–254; Anacostia High School, 257; assumptions about, 272; Carpe Diem, 258–259; defining, 250–251, 261; effect of blended learning on, 249–250; Gilroy Prep School, 257–258; helping develop, 252; how to shape, 254–256, 261; importance in blended learning schools, 256–259; reshaping existing, 260–261, 262
Da Vinci Schools, 237
Daily schedules: Acton Academy, 159; Gilroy Prep, 158; KIPP Comienza Community Prep, 158; Summit Public Schools, 154
Danner, John, 41
Danville Independent Schools, 239
Darling-Hammond, Linda, 206
Dell, 143, 193
Dempsey, Martin, 171
Designing teacher’s role: acknowledging mastery of skills, 181; granting authority to blended learning teams, 181; integrating motivators into blended learning, 179–181; integrating teacher in blended learning, 169–170, 182; teaching in teams, 180–181
Designing virtual and physical setups: aligning strategies to circumstances, 208; building interdependent architectures, 190, 209; building own content, 196–197; changes in personal computer architecture, 192–193; choosing online content, 195–201; choosing operating systems, 203–205; choosing software, 202–203; integrated vs. modular physical space, 205–208; matching to learning model, 232–234, 240; outside content providers, 197–199; overview, 209; shifting to modular architecture, 194–195. See also Online content
Digital Equipment Corporation (DEC), 68
Discovery-driven planning: about, 266–268; assumptions during brainstorming, 271–272; creating assumptions checklist, 269–273, 277; implementing team decisions, 276–277, 278; mapping confidence in assumptions, 273, 274; starting with outcomes in, 268–269, 277; testing assumptions, 273–276
Discussion questions, 289–293
Disrupting Class (Horn), 2, 17, 33, 140
Distance learning: Alabama’s ACCESS program, 14–15; opportunities and challenges in, 11
DIY online content, 196–197
Duran, George T., 102
Dwyer, Tommy, 208
Education Achievement Authority (EAA), 47–48
Elizondo, Alison, 123
Enriched Virtual model: about, 50–52, 57, 60; as disruptive model, 76–77, 85; Enriched Virtual vs., 60; table of options for, 242–243
Evergreen Education Group, 31
Expeditions at Summit Public Schools, 154–155, 157
Eyre, Richard and Linda, 252, 254

F
Facilitated networks, 199–201
Facilities. See Schools; Designing virtual and physical setups
Factory-model schools, 6, 7–8
Fates, Steve, 174
Feedback by students, 149
FirstLine Public Schools, 100–101, 102, 268, 270–271
Flex model: about, 46–48, 56, 59; benefits of Summit Public Schools’ use of, 171–172; as disruptive model, 76–77, 85; table of options for, 242–243
Flipped Classroom model: about, 55; building own content for, 196; Enriched Virtual model vs., 60; as hybrid, 72, 73–74, 85; illustrated, 38, 58; mixing with other models, 52; redefining performance in, 75; table of options for, 242–243

G
Getting Smart (Vander Ark), 47
Gilbert, Clark, 107–108
Gilroy Prep School, 158, 257–258
Girard Education Foundation, 152
Goals: integrating resources to meet, 152–155; setting aspirational, 100–102; SMART mnemonic for, 102–103, 109; teaching children to set, 252; telling students about learning, 149
Google Chromebooks, 204–205

H
H&R Block, 3
Harris, Nadine Burke, 151
Harris, Shelby, 44
Healey, Michelle, 219
Heavyweight teams: characteristics of, 117–118; developing blended learning, 124–126; illustrated, 115, 121; implementing models with, 224–226, 240; overview, 132; pros/cons of, 130–131
Herllerup School, 207
Hernandez, Alex, 128–129
Herzberg, Frederick, 177, 179, 180, 181
High Tech High, 32
Horn, M. B., 2, 17, 33, 140
Hybrid solutions: automobiles, 70–71; delaying disruption, 71; models of blended learning as, 73–75; steamboats, 69–70

I
Illuminate Education, 152
Impact Academy, 51, 52
Implementing blended learning: blueprint for, 285–286; conditions needed for, 265–266; developing expertise in blended learning, 17–18; discovery-driven planning, 266–268; disruptive models of blended learning, 71–72, 76–77; effect on schools, 79–84; foreseeing revolution in K–12 education, 77–79, 85; overview, 277–278; in phases, 281–283; process of innovation and, 67–69; team decisions for, 276–277, 278; using hybrid models, 73–75. See also Discovery-driven planning
Individual Rotation: about, 45–46, 55–56; as disruptive model, 76–77, 85; illustrated, 38, 58; table of options for, 242–243
Infinity Cyber Academy, 100, 108, 196
Innovation. See Disruptive innovations; Hybrid solutions; Sustaining innovations
Integrated modalities in blended learning, 35–36
Integrated vs. modular operating systems, 203–205
Interdependent architecture, 190–192, 209
Interface, 190
Investing in Innovation (i3) grant competition, 113
IZone initiative, 129

J
J. A. and Kathryn Albertson Foundation, 44
Jefferson, Thomas, 6
Jobs-to-be-done framework: architecture of jobs, 145–146, 157; blended learning and fulfilling student jobs, 155–156; combining jobs for motivation, 142–143; evaluating failed products in, 139–142, 176–177; fulfilling job experience for students, 146–152; hiring milkshakes, 140–142; overview, 157; understanding students’ jobs to be done, 143–145
Jones, Keitha, 173

K
K–12 education: effect of architecture on, 78–79; effect of implementing blended learning on, 79–84; foreseeing revolution in, 77–79, 85; KIPP kindergarten programs, 16–17; one-to-one computer programs in, 96–97; taxonomy for blended learning, 55–60; use of blended learning in, 31–32
Kasrai, Bibi, 176
Kerr, Mike, 15–16
Key terms, 54–55
Khan Academy, 5–6, 31, 44, 199–200, 201, 266
Khan, Sal, 31, 179, 199–200
Klein, Joe, 12–13
Knowledge Is Power Program (KIPP): cost control achievements by, 15–17; hybrid model of, 73; identifying core opportunities, 104; KIPP Comienza Community Prep, 158, 235; KIPP Empower, 16–17, 235

L
Lab Rotation model: about, 41–42, 55; examples of, 42; as hybrid, 72, 73–74, 85; illustrated, 38, 57; mixing with other models, 52; table of options for, 242–243
Ladjevardi, Max, 176
Lean start-up method, 266, 267
Learning: active and passive, 43; closing gaps in, 105–107; creating student-centered, 8–11; effect of stressful childhood experiences on, 151–152, 157; in factory-model education, 7–8; recognizing blended, 36–37; using learning playlists, 13. See also Blended learning; Motivating students; Online learning; Student-centered learning
Learning Cycle (Summit Public Schools), 152–153, 157
Liang-Vergara, Chris, 102
Lightweight teams: characteristics of, 116–117; illustrated, 115, 121; implementing models with, 224–226, 240; overview of, 131; using for blended learning, 123–124
Lockheed Martin, 191

M
MacMillan, Ian C., 267
Mapping assumption confidence, 273, 274
Marysville Getchell High School, 207
Mastery: awarding teachers for, 181; by students, 148
Matsuoka, Cary, 123, 125
McDonalds, 139, 140–142
McGrath, Rita Gunther, 267
Measure of Academic Progress (MAP) assessment, 14
Measuring outcomes, 268–269
Meetings, 253–254
Megastudy, 179
Memory, 43
Mentoring: benefits of, 174–175, 182; example of successful, 173; students, 150, 155
Mentor, 172
Metropolitan Regional Career and Technical Center, The (The Met), 207
Microsoft, 193, 204
Miller, Rick, 122
Miller, Zack, 232
Mission Delores Academy, 40
Models of blended learning: A La Carte model, 49–50, 57, 59; assumptions about, 272; choosing for core or nonconsumption problems, 223–224, 240; disruptive models, 71–72, 76–77; Enriched Virtual model, 50–52, 57, 60; Flex model, 46–48, 56, 59, 76–77; hybrid vs. disruptive models, 71–72; matching to desired student experience, 226–229, 240; mixing, 52; overview, 37, 38, 53; questions for choosing, 220–221, 223–236, 240; Rotation models, 37–46; table of options, 242–243; using multiple models, 237–238, 240. See also Choosing learning models; and specific models
Modular architecture: about, 191–192, 209; concept of modularity, 190; modularity of education courses, 194–195, 196; shift in personal computer to, 192–193
Montessori For All, 282
Motivating students: combining jobs for, 142–143; designing programs for, 137–138; identifying critical student meta-experiences, 148–152, 157; integrating resources to meet goals for, 152–155; personalizing educational experience for students, 146–152; redesigning job architecture, 156–157; SMART goals designed for, 148–150; student willingness to learn, 138–139; understanding students’ jobs to be done, 143–145; viewing from jobs-to-be-done framework, 139–143. See also Jobs-to-be-done framework
Motivator-hygiene theory (Herzberg), 177, 182
Murray, John, 232–233
N
National Education Association, 181
Networking, 284–285
New Classrooms, 14
New Learning Academy, 208
NewSchools Venture Fund, 219
Nolan Elementary-Middle School, 46
Nonconsumption: blended learning models best for, 223–224, 240; defined, 4–5; finding opportunities in, 105–107, 109; rates in high school of, 5; targeting disruptive innovation in areas of, 221–223, 240; traditional classrooms and, 4, 5
Northwest Evaluation Association (NWEA), 14
O
Oakland Unified School District, 104, 282
Odyssey Initiative, 219
Off-campus learning, 154–155
Ogston, Rick, 258, 259
“One More Time, How Do You Motivate Employees?” (Herzberg), 177
One-to-one computer programs, 96–97
One-to-One Institute, 96–97
Online content: BLU list of, 203, 210–212; building own, 196–197; choosing software for, 202–203; combining multiple outside providers, 198–199; facilitated networks for, 199–201; operating systems and, 203–205; outside providers for, 197–198; strategies for, 195–196, 209
Online learning: advantages for students, 4–5; blended learning as part of, 34–35; blending into student-centered learning, 10–11; defined, 54; disruptive models of blended learning in, 71–72, 76–77; impact
on education, 2; pattern of disruptive innovation in, 3–5; roots of blended learning in, 32–33; technological innovations fueling, 4; using Khan Academy for, 5–6. See also Online content
Operating systems, 203–205
Osborne Executive, 189
Outside content providers, 197–199
Oversold and Underused (Cuban), 96–97

P
Parents, 283–284
Personal computers: changes in architecture, 192–193; number in schools, 96; one-to-one computer programs at K–12, 96–97
Personalized learning: about, 9; integrating into blended learning, 157; need for, 11; as part of student-centered learning, 8; Rose’s innovative programs in, 12–14
Peters, Brooke, 219
Phasing in blended learning, 282–283
Physical activity, 150–151
Pilot programs, 273–276
Planning. See Discovery-driven planning Processes, 268
Products: architecture of, 190; failure to produce successful, 139–142; interdependent and modular architecture of, 191–192; unsuccessful ColorMatch innovation, 176–177
Project-based learning, 55
Prototype tests, 273–276

Q
Quakertown Community School District, 99–100, 269, 271
Questions: for choosing blended learning models, 220–221, 223–236, 240; discussion, 289–293

R
Ratey, John, 150
Reading: making time for student, 149, 154; READ 180 program outcomes, 31, 39
Reed, Lanita, 173
Replicating blended learning successes, 220, 240
Response-to-Intervention (RTI) method, 100
Ridge Middle School, 208
Right Denied, A, 1
Riley, Bob, 14
Rocketship Education, 41, 42, 267
Rogers Family Foundation, 104
Rose, Joel, 12–14, 45
Rosenstock, Larry, 32
Rosetta Stone, 32
Rotation model: about, 38, 55; Flex vs., 47; Flipped Classroom, 42–44, 55, 58; hybrid solutions of, 72, 73–75, 85; Individual Rotation, 45–46, 55–56, 58; Lab Rotation, 38, 41–42, 55, 57; Station Rotation, 39–41, 55, 56; table of options, 242–243. See also specific types of Rotation models

S
Sams, Aaron, 231
San Francisco Flex Academy, 48
SanDefer, Jeff and Laura, 101, 254–255
Schein, Edgar, 250, 261
Scholastic performance: of children of divorced parents, 173; disruptive innovations and, 3; Individual Rotation and, 46; measuring KIPP’s, 16–19; READ 180, 39; redefining for Flipped Classroom, 75

Index 301
School of One, 12–13

Schools: aligning new strategies to current, 208; applying team framework to, 120–129; effect of blended learning on culture, 249–250; factory-model, 6, 7–8; importance of culture in, 253–254; integrated vs. modular physical space in, 205–208; interest in online learning, 11–17; open architecture in, 207–208; origins of, 6–7; processes and priorities of, 251; providing meaningful student experiences, 149–150; shaping culture for, 254–256, 260–261, 262. See also Brick-and-mortar schools; Designing virtual and physical setups

Schools for the Future (SFF), 237, 239

Sicat, Oliver, 256

Simms, Aaron, 43, 44

Sleep deprivation, 150, 157

SMART goals: measuring outcomes with, 268, 277; overview, 109; setting, 102–103, 104; for Summit Public Schools, 148–150

Smith, Preston, 41

Societal influences on students: divorce, 174; learning and stressful childhood experiences, 151–152, 157

Software: assumptions about, 272; choosing, 202–203; combining modules of, 198–199; pros and cons of integrated, 198

Sony, 222

Specialized teacher roles, 179–180

Starting blended learning programs: choosing sustaining or disruptive innovations, 103–104, 109; finding nonconsumption opportunities, 105–107, 109; identifying core opportunities, 104–105; problems integrating technology into classroom, 95–96; reframing threats as opportunities, 107–108, 109; setting SMART goals, 102–103, 104, 109

Station Rotation model: about, 39–41, 55; as hybrid, 72, 73–74, 85; illustrated, 38, 56; table of options, 242–243

Student-centered learning: access to learning, 11, 14–15; competency-based learning in, 8, 9–10; cost controls and, 11–12, 15–17; defined, 8; finding innovative opportunities for, 107–108, 109; implementing, 10–11; personalized learning in, 8, 9. See also Personalized learning

Student experience: assumptions about, 272; factory-model education and, 7–8; job architecture and, 145–146; matching learning model to desired, 226–229, 240; mentoring, 172–175; personalizing, 11, 12–14, 146–152; reconsidering top-down instruction, 170–172, 182; role of blended learning in fulfilling jobs for, 155–156; teachers’ role in, 169–170, 182. See also Brick-and-mortar schools; Student-centered learning

Students: agency for, 148; availability of internet-enabled devices for, 4, 234–236, 240; benefits of blended learning for, 5–6; choosing learning modalities, 12–14; control of learning by, 34–35, 52–53, 226–229; custodial supervision of, 33, 52; feedback by, 149; handling control and flexibility, 249–250; improving active learning of, 43; internships for, 174; limitations of online learning for, 33; mastery by, 148; meaningful work experiences for, 149–150; mentoring, 150, 155, 172–175, 182; playlists of materials for, 45; positive group experiences for, 150; sleep deprivation and physical activity for, 57, 150–151, 157; solitary reading time for, 149, 154; stressful experiences of, 151–152, 157, 173; transparent learning goals for, 149; using hybrid innovations with existing, 74; willingness to learn, 138–139. See also Motivating students; Student experience

Summit Public Schools: assumptions of, 269–270; daily schedule for, 154; Expeditions at, 154–155, 157; identifying
critical student meta-experiences, 148–152, 157; integrating resources to meet goals, 152–155; lean-startup method of, 266–267; Learning Cycle, 152–153, 157; mentoring in, 175; open architecture of, 207; shifting from teaching to tutoring, 171–172; SMART goals of, 146–150, 268

Sustaining innovations: blended learning models using, 223–224; choosing disruptive or, 103–104, 109; disruptive vs., 77; internet-enabled devices needed for, 234–236, 240; matching to student experience, 226–229, 240; selecting physical space for model, 232–234; teacher roles and, 229–232, 240; teams needed for, 224–226, 240; using for core problems, 221. See also Hybrid solutions

Sutler, Todd, 219

T

Tavenner, Diane, 147, 149

Teach to One program, 45, 180

Teachers: adapting technology in practices, 96–97; administering School of One learning, 13–14; assigning special responsibilities, 179–180; assumptions about, 272; dealing with student motivation, 138–139; designing role to match learning model, 229–232, 240; designing student’s experience, 145–146; extending reach of, 179; freeing up time of, 41–42; hygiene and motivators for, 177–178, 182; integrating into blended learning, 169–170, 182; mentoring students, 150, 155, 172–175, 182; role in Flipped Classroom, 44; shifting from top-down instruction, 170–172, 182; teaching in teams, 180–181; using technology for effective teaching, 98. See also Designing teacher’s role; Motivating students

Technology: assumptions about hardware and software, 272; availability of internet-enabled devices, 234–236, 240; changes in personal computer architecture, 192–193; contributions to online learning, 4; cramming, 96, 108; integrated vs. modular operating systems, 203–205; integrating into classroom, 95–96; one-to-one computer programs at K–12, 96–97; rooting in educational effectiveness, 98; sustaining vs. disruptive, 221

Technology-rich instruction, 53, 54

Telemachus, 172

Testing assumptions, 273–276

The Avenues World School, 40, 41

Tough, Paul, 173

Toyota teams, 116–120

Traditional classrooms, 3–5

Traditional instruction: defined, 54; reconsidering top-down instruction, 170–172, 182

Transparent learning goals, 149

TurboTax, 2, 3

Tutoring: disrupting elementary classrooms, 78

2 Sigma Problem study (Bloom), 9
U
Uchiyamada, Takeshi, 19
U.S. Department of Education, 113
U.S. News & World Report, 46
USC Hybrid School, 256, 267

V
Vander Ark, Tom, 47
VanLehn, Kurt, 9
Video clips: Aaron Sams on Flipped
 Classrooms, 44; Alliance-College Ready
 Public Schools, 40; Aspire ERES Academy,
 40; Burnett Elementary School, 123; Carpe
 Diem Schools, 46; Florida Virtual School,
 106; Gilroy Prep School, 257–258; Impact
 Academy, 52; KIPP Empower, 16; Korean
 School using Flipped Classroom, 44; Mis-
 sion Delores Academy, 40; Quakertown
 Community School District, 99;
 Rocketship Education, 42; San Francisco
 Flex Academy, 48; School of One, 13;
 Summit Public Schools, 148; The Avenues
 World School, 41; USC Hybrid School, 256
 Virtual Learning Labs, 105–106

W
Waiting for Superman, 1
Western Governors University (WGU), 200
What Works Clearinghouse (WWC), 39
“Will Computers Replace Teachers?”
(Christensen Institute), 169
Wraparound advocacy, 172

Y
Yahoo’s Doodle notepad, 200
Youth Advocates Program (YAP), 173