Contents

Acknowledgments and Dedication xi
Introduction xiii
Comments on Writing an Article xv

SECTION 1 Early Papers in Micromechanics 1
1.1 There’s Plenty of Room at the Bottom 3
1.2 Infinitesimal Machinery 10
1.3 The Resonant Gate Transistor 21
1.4 Silicon Micromechanical Devices 38
1.5 Anisotropic Etching of Silicon 50
1.6 Silicon as a Mechanical Material 58
 K. E. Petersen, (Proceedings of the IEEE, May 1982).
1.7 Microrobots and Micromechanical Systems 96
 W. S. N. Trimmer (Sensors and Actuators, September 1989).
1.8 Small Machines, Large Opportunities 117

SECTION 2 Side Drive Actuators 145
2.1 IC-Processed Electrostatic Micro-Motors 147
2.2 IC-Processed Micro-Motors: Design, Technology, and Testing 151
2.3 Surface-Micromachining Processes for Electrostatic Microactuator Fabrication 157
2.4 A Study of Three Microfabricated Variable-Capacitance Motors 161
2.5 Friction and Wear in Microfabricated Harmonic Side-Drive Motors 168
2.6 Measurements of Electric Micromotor Dynamics 174

SECTION 3 Comb Drive Actuators 185
3.1 Laterally Driven Polysilicon Resonant Microstructures 187
3.2 Electrostatic-Comb Drive of Lateral Polysilicon Resonators 194
3.3 Electrostatically Balanced Comb Drive for Controlled Levitation 198

3.4 Poly silicon Microgripper 203

SECTION 4 Electrostatic Actuators 207
4.1 The Principle of an Electrostatic Linear Actuator Manufactured by Silicon Micromachining 209

4.2 Design Considerations for a Practical Electrostatic Micro-Motor 213
W. S. N. Trimmer and K. J. Gabriel (Sensors and Actuators, 1987).

4.3 ScoFss: A Small Cantilevered Optical Fiber Servo System 231

4.4 Microactuators for Aligning Optical Fibers 237

4.5 Large Displacement Linear Actuator 246

4.6 Multi-Layered Electrostatic Film Actuator 251

4.7 Movable Micromachined Silicon Plates With Integrated Position Sensing 257

4.8 Micro Electro Static Actuator With Three Degrees of Freedom 261

4.9 The Modelling of Electrostatic Forces in Small Electrostatic Actuators 267

4.10 Silicon Electrostatic Motors 272

4.11 Electrostatic Actuators for Micromechatronics 276

4.12 Electric Micromotors: Electromechanical Characteristics 286

4.13 Electroquasistatic Induction Micromotors 294

4.14 A Perturbation Method for Calculating the Capacitance of Electrostatic Motors 300

SECTION 5 Magnetic Actuators 307
5.1 Magnetically Levitated Micro-Machines 309

5.2 Fabrication and Testing of a Micro Superconducting Actuator Using the Meissner Effect 314

5.3 Room Temperature, Open-Loop Levitation of Microdevices Using Diamagnetic Materials 320

SECTION 6 Harmonic Motors 325
6.1 An Operational Harmonic Electrostatic Motor 327
6.2 The Wobble Motor: An Electrostatic Planetary-Armature, Microactuator 331

6.3 An Electrostatic Top Motor and Its Characteristics 339

6.4 Operation of Microfabricated Harmonic and Ordinary Side-Drive Motors 344

SECTION 7 Other Actuators 353

Thermal
7.1 Micromechanical Silicon Actuators Based on Thermal Expansion Effects 355

7.2 CMOS Electrothermal Microactuators 359

7.3 Electrically-Activated, Micromachined Diaphragm Valves 363

7.4 Study on Micro Engines—Miniaturizing Stirling Engines for Actuators and Heatpumps 368

Shape Memory Alloy
7.5 A Micro Rotary Actuator Using Shape Memory Alloys 372

7.6 Millimeter Size Joint Actuator Using Shape Memory Alloy 379

7.7 Reversible SMA Actuator for Micron Sized Robot 385

7.8 Characteristics of Thin-Wire Shape Memory Actuators 390

7.9 Shape Memory Alloy Microactuators 396

Impact
7.10 Micro Actuators Using Recoil of an Ejected Mass 401

7.11 Precise Positioning Mechanism Utilizing Rapid Deformations of Piezoelectric Elements 406

7.12 Tiny Silent Linear Cybernetic Actuator Driven by Piezoelectric Device With Electromagnetic Clamp 411

7.13 Experimental Model and IC-Process Design of a Nanometer Linear Piezoelectric Stepper Motor 417

Piezoelectric
7.14 Zinc-Oxide Thin Films for Integrated-Sensor Applications 424

7.15 A Micromachined Manipulator for Submicron Positioning of Optical Fibers 427

7.16 Ultrasonic Micromotors: Physics and Applications 428
SECTION 8 Valves and Pumps 435
8.1 A Microminiature Electric-to-Fluidic Valve 437
8.2 The Fabrication of Integrated Mass Flow Controllers 440
8.3 Normally Close Microvalve and Micropump Fabricated on a Silicon Wafer 444
8.4 A Thermopneumatic Micropump Based on Micro-Engineering Techniques 450
8.5 Variable-Flow Micro-Valve Structure Fabricated with Silicon Fusion Bonding 455
8.6 A Pressure-Balanced Electrostatically-Actuated Microvalve 459
8.7 Micromachined Silicon Microvalve 464

SECTION 9 Fluidics 469
9.1 Microminiature Fluidic Amplifier 471
9.2 A Planar Air Levitated Electrostatic Actuator System 473
9.3 Liquid and Gas Transport in Small Channels 478
9.4 Squeeze-Film Damping in Solid-State Accelerometers 487
9.5 A Micromachined Floating-Element Shear Sensor 491
9.6 A Multi-Element Monolithic Mass Flowmeter With On-Chip CMOS Readout Electronics 495
9.7 Environmentally Rugged, Wide Dynamic Range Microstructure Airflow Sensor 499

SECTION 10 Surface Micromachining 503
10.1 Polycrystalline Silicon Micromechanical Beams 505
10.2 Integrated Fabrication of Polysilicon Mechanisms 509
10.3 Integrated Movable Micromechanical Structures for Sensors and Actuators 514
10.4 Polysilicon Microbridge Fabrication Using Standard CMOS Technology 521
10.5 Process Integration for Active Polysilicon Resonant Microstructures 524
10.6 Fabrication of Micromechanical Devices From Polysilicon Films With Smooth Surfaces 532
10.7 Selective Chemical Vapor Deposition of Tungsten for Microelectromechanical Structures 538

SECTION 11 Bulk Micromachining 549
11.1 Fabrication of Hemispherical Structures Using Semiconductor Technology for Use in Thermonuclear Fusion Research 551
11.2 Micromachining of Silicon Mechanical Structures 555
11.3 Strings, Loops, and Pyramids—Building Blocks for Microstructures 565
11.4 Corner Compensation Structures for (110) Oriented Silicon 570
11.5 A Study on Compensating Corner Undercutting in Anisotropic Etching of (100) Silicon 574
11.6 A New Silicon-on-Glass Process for Integrated Sensors 578
11.7 Mechanisms of Anodic Bonding of Silicon to Pyrex® Glass 582
11.8 Silicon Fusion Bonding for Pressure Sensors 584
11.9 Low-Temperature Silicon-to-silicon Anodic Bonding With Intermediate Low Melting Point Glass 588
11.10 Fusing Silicon Wafers With Low Melting Temperature Glass 592
11.11 Silicon Fusion Bonding for Fabrication of Sensors, Actuators and Microstructures 596
11.12 Scaling and Dielectric Stress Compensation of Ultrasensitive Boron-Doped Silicon Microstructures 604
11.13 Field Oxide Microbridges, Cantilever Beams, Coils and Suspended Membranes in SACMOS Technology 610
11.14 Micromachining of Quartz and its Application to an Acceleration Sensor 614

SECTION 12 LIGA 621
12.1 Fabrication of Microstructures using the LIGA Process 623
12.2 Deep X-Ray and UV Lithographies for Micromechanics 634
SECTION 13 Computer Aided Design 639
13.1 OYSTER, a 3D Structural Simulator for Micro Electromechanical Design 641
13.2 A CAD Architecture for Microelectromechanical Systems 647
13.4 CAD for Silicon Anisotropic Etching 655

SECTION 14 Metrology 657
14.1 Can We Design Microbotic Devices Without Knowing the Mechanical Properties of Materials? 659
14.2 The Use of Micromachined Structures for the Measurement of Mechanical Properties and Adhesion of Thin Films 664
14.3 Mechanical Property Measurements of Thin Films Using Load-Deflection of Composite Rectangular Membrane 667
14.4 Fracture Toughness Characterization of Brittle Thin Films 672
14.5 Spiral Microstructures for the Measurement of Average Strain Gradients in Thin Films 675
14.6 Polysilicon Microstructures to Characterize Static Friction 679
14.7 Study on the Dynamic Force/Acceleration Measurements 686
14.8 Anomalous Emissivity from Periodic Micro Machined Silicon Surfaces 690

AUTHOR INDEX 693

SUBJECT INDEX 697

ABOUT THE AUTHOR 701

EDITOR’S NOTES ON THE SECOND PRINTING 702