Introduction 2

WHY STUDY MATERIALS SCIENCE? 4
1.1 Overview of Materials Science 4

WHAT ISSUES IMPACT MATERIALS SELECTION AND DESIGN? 4
1.2 Property Considerations for Specific Applications 5
1.3 Impact of Bonding of Material Properties 10
1.4 Changes of Properties over Time 17
1.5 Impact of Economics on Decision Making 18
1.6 Sustainability and Green Engineering 18

WHAT CHOICES ARE AVAILABLE? 21
1.7 Classes of Materials 21

Structure in Materials 30

HOW ARE ATOMS ARRANGED IN MATERIALS? 32
2.1 Introduction 32
2.2 Levels of Order 33
2.3 Lattice Parameters and Atomic Packing Factors 36
2.4 Density Estimations 40
2.5 Crystallographic Planes 41
2.6 Miller Indices 43

HOW ARE CRYSTALS MEASURED? 45
2.7 X-Ray Diffraction 45
2.8 Microscopy 52

HOW DO CRYSTALS FORM AND GROW? 53
2.9 Nucleation and Grain Growth 53
METALS

104

HOW DO YOU WORK WITH METALS? 106

4.1 Forming Operations 106

WHAT ADVANTAGES DO ALLOYS OFFER? 110

4.2 Alloys and Phase Diagrams 110

4.3 Carbon Steel 118

4.4 Phase Transitions 127

4.5 Age Hardening (Precipitation Hardening) 131

4.6 Copper and Its Alloys 132

4.7 Aluminum and Its Alloys 135

WHAT LIMITATIONS DO METALS HAVE? 137

4.8 Corrosion 137

WHAT HAPPENS TO METALS AFTER THEIR COMMERCIAL LIFE? 141

4.9 Recycling of Metals 141

POLYMERS

148

WHAT ARE POLYMERS? 150

5.1 Polymer Terminology 150

5.2 Types of Polymers 153

HOW ARE POLYMER CHAINS FORMED? 161

5.3 Addition Polymerization 162

5.4 Condensation Polymerization 163

5.5 Importance of Molecular Weight Distributions 165

WHAT INFLUENCES THE PROPERTIES OF POLYMERS? 167

5.6 Constitution 167

5.7 Configuration 169
Composites 224
WHAT ARE COMPOSITE MATERIALS AND HOW ARE THEY MADE? 226
7.1 Classes of Composites 226
7.2 Fiber-Reinforced Composites 227
7.3 Particulate Composites 237
7.4 Laminar Composites 242
WHAT HAPPENS TO OBSOLETE COMPOSITES? 243
7.5 Recycling of Composite Materials 243

Electronic and Optical Materials 246
HOW DO ELECTRONS FLOW THROUGH METALS? 248
8.1 Conductivity in Metals 248
8.2 Electrical Resistivity 253
WHAT HAPPENS WHEN THERE ARE NO FREE ELECTRONS? 254
8.3 Insulators 254
8.4 Intrinsic Semiconduction 254
8.5 Extrinsic Semiconduction 256
HOW DO ELECTRONIC DEVICES OPERATE? 258
8.6 Diodes 258
8.7 Transistors 259
8.8 Integrated Circuits 260
8.9 Dielectric Behavior and Capacitors 261
WHAT OTHER ELECTRICAL BEHAVIORS DO SOME MATERIALS DISPLAY? 262
8.10 Ferroelectric and Piezoelectric Materials 262
WHAT ARE OPTICAL PROPERTIES AND WHY DO THEY MATTER? 263

8.11 Optical Properties 263
8.12 Applications of Optical Materials 267

Biomaterials and Biological Materials 272

WHAT TYPES OF MATERIALS INTERACT WITH BIOLOGICAL SYSTEMS? 274

9.1 Biomaterials, Biological Materials, and Biocompatibility 274

WHAT BIOLOGICAL MATERIALS PROVIDE STRUCTURAL SUPPORT AND WHAT BIOMATERIALS INTERACT WITH OR REPLACE THEM? 275

9.2 Structural Biological Materials and Biomaterials 275

WHAT BIOMATERIALS SERVE A NONSTRUCTURAL FUNCTION IN THE BODY? 285

9.3 Functional Biomaterials 285

WHAT ETHICAL ISSUES ARE UNIQUE TO BIOMATERIALS? 294

9.4 Ethics and Biomaterials 294

APPENDIX A: MAJOR PRODUCERS OF METALS AND POLYMERS 299

APPENDIX B: PROPERTIES OF MAJOR METALS AND ALLOYS 303

GLOSSARY 309

INDEX 327