Index

References to figures are given in italic type. Reference to tables are given in bold type.

absorbed dose	103–8, 174–5, 284
anthropomorphic phantom experiments	212–14, 215
per organ	108–9
accident dosimetry	281–2
basic considerations	284–5
building materials	294–6
dental materials	299–301
electronic components	295–9
household materials	287–94
portable dosimeters	311–14
accumulated dose	135–6, 241, 254
ALARA principle	101, 163
albedo dosimetry	156–7
alkali halides	19
aluminum oxide (carbon doped)	6, 80, 81, 83, 85–8, 124, 307
available forms	129
beam quality corrections	265–9
bleaching	80, 130, 131, 242
dose response	132–5, 188–9
emission and stimulation spectra	77, 78
energy response	137–9, 138
fading	139
fluence response	195
medical applications	222, 260–9, 269–72
calibration	241–2
neutron detection	150–1, 152–3, 158–9
in optical fiber systems	250–1
preparation and handling	129–32
radioluminescence	254–5
sensitivity changes	135–6
step-annealing	80–2
temperature dependence	139–40, 264–5, 266
ambient dose equivalent	111
ammonium salts	150
annealing	81–2, 129–30, 242
anthropomorphic phantom experiments	212–14, 273, 299
Apollo spacecraft	207
area dosimetry	
calibration	118–19
space	206–8, 210–12
astronauts	163–4, 172
health risks	177–8
atomic bomb explosions	283
automated readers	71–2, 244
background dose	289–90
band structure	2–3
perfect crystals	17–18
see also energy levels	
bandpass optical filters	67
barium fluoro-halides	92–4
batch calibration	240–1
Becquerel, Edmond and Henri	2
beryllium oxide	89–92, 93, 124
available forms	141
bleaching	141
dose response	141
beryllium oxide (Continued)
energy response, 142
fading, 143
preparation and handling, 141
bleaching
aluminium oxide, 80, 130, 131, 242
beryllium oxide, 141
feldspar, 97
Boltzmann factor, 24
boron-10, 151, 152
Boyle, Robert, 1
brachytherapy, 222, 224, 231, 271–2
BRADOS experiment, 215–16
Bragg peak, 232
Bragg-Gray cavities, 125–6
bricks, 291
building materials, 97, 287–94, 288–94
cadmium sulfide, 3
calcium chloride, 296
calcium sulfide, 83, 95, 311
calibration, 115–16, 150–1
InLight systems, 149–50
medical dosimetry, 238–46
personal and area dosimetry, 115–16, 118–19
space dosimetry, 178–82
cancers, 177, 229–30
caractogenesis, 225
carbon beams, 234
carbon-doped aluminum oxide see aluminum oxide
caves, 316
ceramics, 97
dental, 305–6
see also beryllium oxide; porcelain
Cerium, 31, 32
cesium chloride, 299–300
charge traps see traps
charge-coupled devices (CCD), 66–7, 145–6
Cherenkov radiation, 249
Chernobyl accident, 288
collimators, 228
Compton scattering, 21
computed tomography see X-ray
computed tomography
concrete, 293
certainty intervals, 122–3
configurational coordinates, 29–30
confocal microscopy, 76
continuous-wave OSL, 6, 48–50, 56
conversion to linear modulation OSL curve, 57
coron mass ejection, 171–2
cosmic rays, 165–7
CR-39, 206
crystals
with defects, 18–19
perfect, 17–18
cyclotron, 232–3, 233
dating, 5–6
decay curves, 14–15, 35, 36, 188–9
dose dependence, 132, 134, 188
energy dependence, 137, 191, 275
linear modulation OSL, 56–7
linear stimulation, 49–50
potassium bromide, 95
pulsed OSL, 51–4
deep traps, 26–7, 37, 88
aluminum oxide, 134–5
defects, 18–19
alumnum oxide, 85
charge trapping, 22–3, 87–8
electron-hole recombination, 27–8
spatially correlated, 46–7
X-ray storage phosphors, 75, 92–3
see also F-centers
δ-rays, 20
dental ceramic, 305–6
dental enamel, 83, 98, 283, 299–305
detection limits, 129
detector materials, 82–5, 98–9, 129–40
aluminum oxide see aluminum oxide
artificial, 85–95
barium oxide, 88–92
ceramics, 97
defects see defects
detection limit, 129
directional anisotropy, 265
dose response see dose response
effective atomic number, 125
fading, 262–4
medical applications, 260–9
natural, 95–8
non-linearity, 261
see also supralinear detector response
optical fiber systems, 250–3
particle fluence response, 195–6
photon energy response, 123–6, 137–9, 138
plastic nuclear track see plastic nuclear
track detectors
retrospective and accident dosimetry,
284
sensitivity changes, 135–6
temperature dependence, 264–5, 266
tissue-equivalent, 124
X-ray storage phosphors, 92–4
diagnostic radiology, 221, 223–7
calibration, 240
dose levels, 224
distance-to-agreement, 231
dose equivalent, 110–11, 115, 117, 156,
167, 175–6, 197, 208
anthropomorphic phantom experiments,
213–14, 215
see also equivalent dose
dose mapping, 75–6, 278–9
dose metrics
absorbed dose, 103–8, 174–5, 284
background dose, 289–90
effective dose, 176
equivalent dose see equivalent dose
gray equivalent, 8, 164, 176–7
medical dosimetry, 234–8
neutron, 118
reading, 236
space dosimetry, 174–7
dose rate, 258–9, 262
dose response, 126–8, 188
aluminum oxide, 132–5
beryllium oxide, 141
radial distribution, 190–1, 190
supralinearity, 127–8, 245–6
dosimetry, 5–6, 14–15
accident see accident dosimetry
albedo, 156–7
imaging, 145
instrumentation see instrumentation
medical see medical dosimetry
neutron, 118, 150–1, 158–61
personal see personal dosimetry
protection quantities, 108–10
readers see readers
reconstructive see reconstructive
dosimetry
in space see space dosimetry
standards, 102, 104, 234–40
stimulation modalities
continuous, 48–50
linear modulation, 55–8
pulsed, 50–5
ultraviolet, 309–10
uncertainty analysis, 120–3
Dynamo Color, 296
dynodes, 63–4
effective atomic number, 125
effective dose, 108–9, 176
effective linear energy transfer, 197
electron beams, 229
quality corrections, 267–8
electron paramagnetic resonance (EPR)
spectroscopy, 19
electron weighting factor, 109
electron-hole recombination see
recombination
electronic components, 98, 295
emission, 27–33
decay curves see decay curves
intensity, 14–15, 35–6, 49
temperature dependence, 40–4
lifetime, 28
models, 255–7
quantum efficiency, 29–30
selection rules for transitions, 28–9
stimulation see stimulation
wavelength, 28
spectra, 76–7, 90, 96, 96–7, 97
stimulation wavelength and, 47–8,
Index

energy levels
 crystals with defects, 31–3
 perfect crystals, 17–18
energy response
 aluminum oxide, 137–9
 beryllium oxide, 142
entrance dose, 239
environmental monitoring, 305–9
equivalent dose, 285, 287
 shallow and deep, 117–18
 see also dose equivalent
europium, 32, 94–5
excitation, 13, 14, 19–22
exposure, 106–7
eye, 110
F-centers, 19, 40, 93–4, 135, 309
 aluminum oxide, 85, 86–7
 X-ray storage phosphors, 92
fading, 262
 aluminum oxide, 139, 262
 beryllium oxide, 143
dental enamel, 304
feldspar, 46–7, 83, 96–7
fiber optics see optical fiber systems
 filters, 67–9, 148
fluence, 105, 195, 196
fluorescence, 2, 29
fluoroscopy, 222, 224, 225, 276–7
Frenkel defect, 19
future developments, 10–11
gadolinium, 150
galactic cosmic rays, 165–7, 166, 168, 169, 177
gamma rays, 21, 108, 159, 267
Gaussian distribution, 120
Goiânia, 299–300
gray-equivalent, 176–7
halogen lamps, 59
handling of materials, 129–32, 141
health risk, 177–8
heaters, 69–70
heavy charged particles (HCP), 174, 175, 178–80
 see also heavy ions; protons
heavy ions, 20, 268–9
helium, 196
high temperature ratio, 183
holes
 trapping at defects, 22–3
 see also recombination; traps
household materials, 84, 294–6
hydrogen, 196
hydroxyapatite, 83, 98
ICCHIBAN experiments, 200–1, 202
imaging, 9, 66–7, 145–6, 223, 278, 278–9
 instrumentation, 75–6
influence qualities, 236
InLight systems, 73–4, 73
 calibration, 149–50
 detectors, 146–8
 readers, 148–9
instrumentation
 automated, 71–2, 244
 calibration, 115–16, 149–50, 178–82, 238–46
 commercial, 73–4
detector materials see detector materials
 experimental, 70–1
 heaters, 69–70
 imaging, 75–6
InLight, 146–50
integrated sensors, 311–14
light collection, 69–70
light detectors, 63–7, 311
light sources, 59–62
optical fiber systems, 74, 250–60, 264–5, 270, 307, 308
optical filters, 67–70
personal dosimetry, 143–50
plastic nuclear track detector, 206–8
portable, 76, 306–7, 311–15
 readers, 47–8
integrated sensors, 311–14, 312
 passive/active, 314–15
intensity-modulated proton therapy (IMPT), 219–20, 232

intensity-modulated radiation therapy (IMRT), 219, 222

International Atomic Energy Agency (IAEA), 220, 270

International Commission on Radiation Units and Measurements, 103

International Space Station, 166, 177, 207

MATROSHKA experiments, 215

International Standard for Thermoluminescence Dosimetry Systems, 103

ion beams, 20

see also heavy ions

irradiation, 13

kerma, 106, 226–7

lamps, 59

Landauer Inc., 241

Landauer, Inc., 273

see also Luxel

lasers, 61–2, 68, 71

latex, 13–14, 14

LED see light-emitting diode

lenses, 69

light collection, 69, 302

light detectors, 63–7

photodiode, 311

light sources, 59–62, 68

light-emitting diodes (LED), 59–61, 68

linear accelerators, 228, 262

linear energy transfer (LET), 8, 107–8

effective, 197

proton beams, 234, 275

in space, 180–1

linear modulation OSL, 55–8

feldspar, 97

lithium carbonate, 155

lithium fluoride, 158–9, 182–8, 210

lithium-6, 21, 151, 156

Luxel detectors, 8, 73–4, 136, 138, 143–6, 189–90, 264–5, 269, 270

magnesium aluminate, 98

magnesium oxide (terbium-doped), 83, 98

magnesium sulfide, 83, 95, 250

magnetosphere, 165

main dosimetric traps (MDT), 37

see also traps

mammography, 222, 223, 224, 225, 278

MATROSHKA, 213

MATROSHKA experiments, 213–14

medical dosimetry, 9–10

brachytherapy, 231, 271–2

calibration, 238–46

batch, 240–1

standards, 238–40

data readout, 242–6

dose levels, 224

fluoroscopy, 222, 224, 225, 276–7

imaging, 9

mammography, 222, 223, 224, 225, 278

optical fiber systems, 247–9

postal audits, 270–1

quantities of interest, 234–8

radiation therapy see radiation therapies

results reporting, 246–7

Mir space station, 166, 207

mirrors, 69

moissanite, 297–8

Montpellier University, 216–17

Moon, 163–4

mortar, 293

Mott-Seitz model, 40, 90

NASA, 164, 165

neon, 196

neutron detectors, 150–4

ionization density effects, 157–61

properties, 154–7

neutron dose, 118

neutrons, 20, 21, 278

weighting factor, 109

noise, 64–5

nomenclature, 3–5, 4

nuclear weapons, 10, 282, 315
Index

Omo Sensitive, 296
operational quantities, 110–11
optical fiber systems, 74, 223, 270, 308
detector materials, 250–3
environmental monitoring, 307
readout, 253–60
temperature dependence, 264–5
optical filters, 67–9, 68, 71
optically stimulated luminescence (OSL)
process, 2, 13–17
applications, 7–10
dating, 5–6
imaging see imaging
OSL emission spectroscopy, 67
see also medical dosimetry; personal
dosimetry, reconstructive
dosimetry; space dosimetry
electron-hole recombination, 14, 22–3,
27–8
emission see emission
excitation, 19–22
higher-order kinetics, 44–6
history, 3–6
latency, 13–14, 14
models
deep, shallow and main dosimetric
traps, 37–40
one-trap-one recombination center
(OTTOR), 33–7, 44
spatially correlated defects, 46–7
erate equations, 33–40
relation to other phenomena, 3–4, 6,
15–16, 82
thermoluminescence, 79–82
stimulation see stimulation
temperature dependence, 40–3,
80–1
vibrational state effects, 29–30
organs, 108, 110
OTTOR model, 33–7, 34
oxyorthosilicates, 314–15

percentage depth dose (PDD), 229
perfect crystals, 17–18, 23
personal dose equivalent, 111, 117–18
personal dosimetry, 7–8, 311–14
calibration, 115–16
reference fields, 118–19
definitions of terms, 111–14
dose calculation algorithm, 114–18
dosimetric quantities, 103–8
operational quantities, 110–11
space, 210–12
phosphorescence, 3, 16, 24–5
photodiodes, 311
photoelectric effect, 21
photoionization, 25–6
photoluminescence, 2, 62
photomultiplier tube (PMT), 47, 48, 63–6,
63, 235
photon counting, 65
see also light detectors
photon energy, 116–17
detector response, 123–6, 137–9
photon weighting factor, 109
planned exposure situations, 101
plastic nuclear track detector (PNTD),
206–9, 215–16
anthropomorphic phantom experiments,
210–14, 211
plastic nuclear track detectors (PNTD),
8–9
plutonium, 315
porcelain, 84, 97, 294
portable instrumentation, 76
postal audits, 270–1
potassium bromide, 83, 94–5, 250, 253
potassium chloride, 83, 94–5
preparation and handling
aluminum oxide, 129–32
beryllium oxide, 141
Primary Standards Dosimetry Laboratory,
238
ProCure treatment center, 233
projection radiography, 225
protection quantities, 108–10
proton beams, 268–9
proton therapy, 219–20, 232–4, 274–6
protons
 flux in Earth’s magnetic field, 169–70
 flux from solar particle events, 171–2, 172, 173
 see also heavy charged particles
pseudo-OSL, 6, 50–5, 71, 254
 decay rates, 51–2
 experimental setup, 70–1, 71
 separation of overlapping emission bands, 54–5
 time-resolved measurements, 78

Q-switching, 62
quality assurance, 220–1, 269–71
quality control, 220
quality factor, 105, 111
 see also dose equivalent
quantum efficiency, 29, 30
 photomultiplier tubes, 64
quartz, 83, 95–6, 286–9, 292–3, 307
 copper-doped, 94, 251–2
quasi-equilibrium, 32–4

radiation exposure sources, 221
radiation therapies, 219–20, 222, 224, 227–31
 beam energy, 229
 calibration, 239–40
 quality assurance, 269–71
 radiative transition rate, 29
radiodiagnostics, 9–10
radiography, 224
radiological protection, 101–2
radioluminescence, 16, 248, 254–5, 264
rare-earth ions, 32
reader calibration factor, 115
readout, 47–8, 112, 242–6, 253–60
 optical fiber systems, 253–60
 real-time, 257–60
 stimulation modalities, 48–58
recombination, 14, 22–3, 27–8
 models, 33–40
regenerative dose, 286–9, 288
resistors, 298, 299
results reporting, 246–7

retrospective dosimetry, 282–3, 306–9
 basic considerations, 284–5
 building materials, 288–94
 dental materials, 299–306
 electronic components, 295–9
 household materials, 294–6
 methodology, 285–9
 ultraviolet, 309–10
 uncertainty analysis, 291–2
risk assessment, 177–8
Risø TL/OSL readers, 60, 67, 72, 74, 138, 139
robotic systems, 217

salt, 82, 84, 296
sample heaters, 69–70
scattering mechanisms, 20–1
scintillators, 314
SCK-CEN, 215–16
second-order kinetics, 44–5
secondary radiation, space, 173–4
security applications, 10, 315–16
selection rules, 28–9
selenium, 252–3
Semipalatinsk, 291
shallow doses, 117–18
shallow traps, 37, 41–3, 88
signal, 112–13, 235
silicon, 196
single-aliquot regenerative (SAR), 286, 288
Skylab, 207
sodium chloride, 84
solar particle events, 166, 171–3
South Atlantic Anomaly, 171

 space
 radiation environment, 165–74
 secondary radiation, 173–4

 space dosimetry, 8–9
 anthropomorphic phantom experiments, 212–14
 calibration, 178–82
 instrumentation, 206–9
 mixed radiation fields, 197–206
 quantities of interest, 174–6
 thermoluminescent, 182–8
Index

Space Shuttle, 207

Spacecraft, 163–4, 167, 173–4

Special nuclear materials, 315–16

Standard deviation, 120

Standards, medical dosimetry, 234–8

Stem effect, 249

 Mitigation, 254–60

Step-annealing, 81

Stimulation, 14, 25–7

 Continuous-wave, 48–50

 High-intensity, 62

 Light sources, 58–61

 Linear modulation, 55–8

 Non-linear, 58

 Pulsed, 50–5, 78

 Spectral measurement, 75–7

 Spectral profile, 77

 Thermally assisted, 43

 Wavelength, 47–8, 77

Stopping power, 107

Strontium sulfide, 83, 95, 279

Supralinear dose response, 127–8, 132–4, 183–7, 245–6, 274

Synchrotron, 233

Telephone chip-cards, 98, 296–7

Temperature dependence, optically stimulated luminescence (OSL), 40–3

Terrorism, 10, 282

Thermal quenching, 40–1, 90

Thermal stimulation, charge trapping, 24–5

Thermoluminescence, 16, 283

 Aluminum oxide, 85–8

 Beryllium oxide, 89–90

 Correlations with OSL, 78–84

 Definition, 1–2

 Effect of bleaching, 80

 Emission spectra, 85–6

 Feldspar, 96–7

 Higher-order kinetics, 44

 Lithium fluoride, 182–8

 Quartz, 96

 Rate equations, 33–40

 Other models, 37–40

 OTOR, 33–7

Space dosimetry, 182–8

Spatially correlated defects, 46

Stimulation and emission, 24–5

Thermoluminescence dosimetry, 8–9

Tissue weighting factors, 110

Tissue-equivalent detectors, 124–5

TLD-100, 183, 212

TLD-500, 129, 201

TLD-600, 153, 156, 182, 184, 198, 207

TLD-700, 153, 155, 156, 182, 207

Traps, 13–14, 22–4, 79

 Bleaching see bleaching

 Deep, 26–7, 37, 88, 134–5

 Models, 33–7

 Optical stimulation, 25–7

 Shallow, 37, 41–3, 88

 Thermal stimulation, 24–5

 See also F-centers

Tungsten halogen lamps, 59

Ultraviolet dosimetry, 309–10

Uncertainty analysis, 114, 120, 177

 Confidence intervals, 122–3

 Reconstructive dosimetry, 291–2

 Uncertainty propagation, 121–2

United States, 221

Uranium, 315

Valence band, 18

Van Allen belts, 167–71

Washing powder, 84, 294–5, 296

Water softener, 296

World Health Organization (WHO), 270–1

X-ray beam therapy, 228

X-ray computed tomography (CT), 76, 221, 222, 224, 225–6, 227, 272–4

 Dose index, 227, 272–3

 Dose mapping, 278–9

X-ray storage phosphors, 75, 92–4

X-rays, 21, 225, 228–9, 265–6

Yttrium silicon oxide (YSO), 314

Zinc sulfide, 3, 58