CONTENTS

<table>
<thead>
<tr>
<th>Section Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Codes for Download</td>
<td>xvii</td>
</tr>
<tr>
<td>1. Modeling and Simulation</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Numerical Approximation</td>
<td>1</td>
</tr>
<tr>
<td>1.2 C++ for Numerical Modeling</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Mathematical Modeling</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Simulation and Its Visualization</td>
<td>6</td>
</tr>
<tr>
<td>1.5 Numerical Methods</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Numerical Applications</td>
<td>7</td>
</tr>
<tr>
<td>2. Fundamental Tools for Mathematical Computing</td>
<td>13</td>
</tr>
<tr>
<td>2.1 C++ for High-Performance Computing</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Dynamic Memory Allocation</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Matrix Reduction Problems</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Matrix Algebra</td>
<td>35</td>
</tr>
<tr>
<td>2.5 Algebra of Complex Numbers</td>
<td>43</td>
</tr>
<tr>
<td>2.6 Number Sorting</td>
<td>51</td>
</tr>
<tr>
<td>2.7 Summary</td>
<td>54</td>
</tr>
<tr>
<td>2.8 Programming Challenges</td>
<td>55</td>
</tr>
<tr>
<td>3. Numerical Interface Designs</td>
<td>56</td>
</tr>
<tr>
<td>3.1 Microsoft Foundation Classes</td>
<td>56</td>
</tr>
<tr>
<td>3.2 Graphics Device Interface</td>
<td>57</td>
</tr>
<tr>
<td>3.3 Writing a Basic Windows Program</td>
<td>60</td>
</tr>
<tr>
<td>3.4 Displaying Text and Graphics</td>
<td>68</td>
</tr>
<tr>
<td>3.5 Events and Methods</td>
<td>69</td>
</tr>
<tr>
<td>3.6 Standard Control Resources</td>
<td>71</td>
</tr>
<tr>
<td>3.7 Menu and File I/O</td>
<td>78</td>
</tr>
<tr>
<td>3.8 Keyboard Control</td>
<td>87</td>
</tr>
<tr>
<td>3.9 MFC Compatibility with .Net</td>
<td>92</td>
</tr>
<tr>
<td>3.10 Summary</td>
<td>95</td>
</tr>
</tbody>
</table>
4. Curve Visualization 96
 4.1 Tools for Visualization 96
 4.2 MyParser 96
 4.3 Drawing Curves 106
 4.4 Generating Curves Using MyParser 115
 4.5 Summary 126
 Programming Challenges 126

5. Systems of Linear Equations 127
 5.1 Introduction 127
 5.2 Existence of Solutions 128
 5.3 Gaussian Elimination Techniques 131
 5.4 LU Factorization Methods 142
 5.5 Iterative Techniques 161
 5.6 Visualizing the Solution: Code5 172
 5.7 Summary 189
 Numerical Exercises 190
 Programming Challenges 192

6. Nonlinear Equations 193
 6.1 Introduction 193
 6.2 Existence of Solutions 194
 6.3 Bisection Method 195
 6.4 False Position Method 198
 6.5 Newton–Raphson Method 201
 6.6 Secant Method 203
 6.7 Fixed-Point Iteration Method 206
 6.8 Visual Solution: Code6 208
 6.9 Summary 225
 Numerical Exercises 225
 Programming Challenges 226

7. Interpolation and Approximation 227
 7.1 Curve Fitting 227
 7.2 Lagrange Interpolation 228
 7.3 Newton Interpolations 231
 7.4 Cubic Spline 239
 7.5 Least-Squares Approximation 244
 7.6 Visual Solution: Code7 249
 7.7 Summary 264
 Numerical Exercises 265
 Programming Challenges 265
CONTENTS

8. Differentiation and Integration 267
 8.1 Introduction 267
 8.2 Numerical Differentiation 268
 8.3 Numerical Integration 271
 8.4 Visual Solution: Code8 279
 8.5 Summary
 Numerical Exercises 286
 Programming Challenges 287

9. Eigenvalues and Eigenvectors 288
 9.1 Eigenvalues and Their Significance 288
 9.2 Exact Solution and Its Existence 289
 9.3 Power Method 291
 9.4 Shifted Power Method 292
 9.5 QR Method 294
 9.6 Visual Solution: Code9 302
 9.7 Summary
 Numerical Exercises 322
 Programming Challenges 323

10. Ordinary Differential Equations 324
 10.1 Introduction 324
 10.2 Initial-Value Problem for First-Order ODE 325
 10.3 Taylor Series Method 327
 10.4 Runge–Kutta of Order 2 Method 330
 10.5 Runge–Kutta of Order 4 Method 333
 10.6 Predictor-Corrector Multistep Method 335
 10.7 System of First-Order ODEs 338
 10.8 Second-Order ODE 341
 10.9 Initial-Value Problem for Second-Order ODE 342
 10.10 Finite-Difference Method for Second-Order ODE 345
 10.11 Differentiated Boundary Conditions 351
 10.12 Visual Solution: Code10 358
 10.13 Summary
 Numerical Exercises 378
 Programming Challenges 380

11. Partial Differential Equations 381
 11.1 Introduction 381
 11.2 Poisson Equation 385
 11.3 Laplace Equation 394
 11.4 Heat Equation 397
CONTENTS

11.5 Wave Equation 406
11.6 Visual Solution: Code11 411
11.7 Summary 437
 Numerical Exercises 437
 Programming Exercises 438

Index 441