Contents

Foreword XXI
Preface XXV
List of Contributors XXXIII

Part I: Chemistry Education: A Global Endeavour 1

1 Chemistry Education and Human Activity 3
Peter Mahaffy
 1.1 Overview 3
 1.2 Chemistry Education and Human Activity 3
 1.3 A Visual Metaphor: Tetrahedral Chemistry Education 4
 1.4 Three Emphases on Human Activity in Chemistry Education 5
 1.4.1 The Human Activity of Learning and Teaching Chemistry 6
 1.4.1.1 Atoms or Learners First? 6
 1.4.1.2 Identifying Learners and Designing Curriculum to Meet Their Needs 7
 1.4.1.3 Effective Practices in the Human Activity of Learning and Teaching Chemistry 8
 1.4.1.4 Identifying and Eliminating Worst Practices as a Strategy? 8
 1.4.1.5 Exemplar: Emphasizing the Human Activity of Learning and Teaching Chemistry 9
 1.4.2 The Human Activity of Carrying Out Chemistry 10
 1.4.2.1 Explicit and Implicit Messages about the Nature of Chemistry 10
 1.4.2.2 Breathing the Life of Imagination into Chemistry’s Facts 11
 1.4.2.3 Exemplars: Emphasizing the Human Activity of Carrying Out Chemistry 13
 1.4.3 Chemistry Education in the Anthropocene Epoch 14
 1.4.3.1 Planetary Boundaries: A Chemistry Course Outline? 15
 1.4.3.2 Steps toward Anthropocene-Aware Chemistry Education 16
 1.4.3.3 Exemplars: Anthropocene-Aware Chemistry Education 17
 1.5 Teaching and Learning from Rich Contexts 18
 1.5.1 Diving into an Ocean of Concepts Related to Acid–Base Chemistry 18
1.5.2 What Is Teaching and Learning from Rich Contexts? \hspace{1cm} 20
1.5.3 Teaching and Learning from Rich Contexts – Evidence for Effectiveness \hspace{1cm} 21
1.5.4 From “Chemical” to “Chemistry” Education – Barriers to Change \hspace{1cm} 22
Acknowledgments \hspace{1cm} 23
References \hspace{1cm} 24

2 \hspace{1cm} Chemistry Education That Makes Connections: Our Responsibilities \hspace{1cm} 27
\hspace{1cm} Cathy Middlecamp

2.1 What This Chapter Is About \hspace{1cm} 27
2.2 Story #1: Does This Plane Have Wings? \hspace{1cm} 28
2.3 Story #2: Coaching Students to “See” the Invisible \hspace{1cm} 30
2.4 Story #3: Designing Super-Learning Environments for Our Students \hspace{1cm} 34
2.5 Story #4: Connections to Public Health (Matthew Fisher) \hspace{1cm} 37
2.6 Story #5: Green Chemistry Connections (Richard Sheardy) \hspace{1cm} 39
2.7 Story #6: Connections to Cardboard (Garon Smith) \hspace{1cm} 41
2.8 Story #7: Wisdom from the Bike Trail \hspace{1cm} 44
2.9 Conclusion: The Responsibility to “Connect the Dots” \hspace{1cm} 46
References \hspace{1cm} 48

3 \hspace{1cm} The Connection between the Local Chemistry Curriculum and Chemistry Terms in the Global News: The Glocalization Perspective \hspace{1cm} 51
\hspace{1cm} Mei-Hung Chiu and Chin-Cheng Chou

3.1 Introduction \hspace{1cm} 51
3.2 Understanding Scientific Literacy \hspace{1cm} 52
3.3 Introduction of Teaching Keywords-Based Recommendation System \hspace{1cm} 55
3.4 Method \hspace{1cm} 56
3.5 Results \hspace{1cm} 57
3.5.1 Example 1: Global Warming \hspace{1cm} 57
3.5.2 Example 2: Sustainability \hspace{1cm} 57
3.5.3 Example 3: Energy \hspace{1cm} 58
3.5.4 Example 4: Acid \hspace{1cm} 59
3.5.5 Example 5: Atomic Structure \hspace{1cm} 60
3.5.6 Example 6: Chemical Equilibrium \hspace{1cm} 61
3.5.7 Example 7: Ethylene \hspace{1cm} 62
3.5.8 Example 8: Melamine \hspace{1cm} 63
3.5.9 Example 9: Nano \hspace{1cm} 64
3.6 Concluding Remarks and Discussion \hspace{1cm} 65
3.7 Implications for Chemistry Education \hspace{1cm} 68
Acknowledgment \hspace{1cm} 70
References \hspace{1cm} 70
6 Lifelong Learning: Approaches to Increasing the Understanding of Chemistry by Everybody

John K. Gilbert and Ana Sofia Afonso

6.1 The Permanent Significance of Chemistry

6.2 Providing Opportunities for the Lifelong Learning of Chemistry

6.2.1 Improving School-Level Formal Chemistry Education

6.2.2 Formal Lifelong Chemical Education

6.2.3 Informal Chemical Education

6.2.4 Emphases in the Provision of Lifelong Chemical Education

6.3 The Content and Presentation of Ideas for Lifelong Chemical Education

6.3.1 The Content of Lifelong Chemical Education

6.3.2 The Presentation of Chemistry to Diverse Populations

6.4 Pedagogy to Support Lifelong Learning

6.5 Criteria for the Selection of Media for Lifelong Chemical Education

6.6 Science Museums and Science Centers

6.6.1 Museums

6.6.2 Science Centers

6.7 Print Media: Newspapers and Magazines

6.8 Print Media: Popular Books

6.9 Printed Media: Cartoons, Comics, and Graphic Novels

6.9.1 Three Allied Genre

6.9.2 The Graphic Novel

6.9.3 The Educational Use of Graphic Novels in Science Education

6.9.4 Case Study: A Graphic Novel Concerned with Cancer Chemotherapy

6.10 Radio and Television

6.11 Digital Environments

6.12 Citizen Science

6.13 An Overview: Bringing About Better Opportunities for Lifelong Chemical Education

References

Part II: Best Practices and Innovative Strategies

7 Using Chemistry Education Research to Inform Teaching Strategies and Design of Instructional Materials

Renée Cole

7.1 Introduction

7.2 Research into Student Learning

7.3 Connecting Research to Practice

7.3.1 Misconceptions

7.3.2 Student Response Systems

References
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.3</td>
<td>Concept Inventories</td>
<td>158</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Student Discourse and Argumentation</td>
<td>159</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Problem Solving</td>
<td>161</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Representations</td>
<td>161</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Instruments</td>
<td>163</td>
</tr>
<tr>
<td>7.4</td>
<td>Research-Based Teaching Practice</td>
<td>165</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Interactive Lecture Demonstrations</td>
<td>166</td>
</tr>
<tr>
<td>7.4.2</td>
<td>ANAPOGIL: Process-Oriented Guided Inquiry Learning in Analytical Chemistry</td>
<td>167</td>
</tr>
<tr>
<td>7.4.3</td>
<td>CLUE: Chemistry, Life, the Universe, and Everything</td>
<td>169</td>
</tr>
<tr>
<td>7.5</td>
<td>Implementation</td>
<td>171</td>
</tr>
<tr>
<td>7.6</td>
<td>Continuing the Cycle</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>174</td>
</tr>
<tr>
<td>8</td>
<td>Research on Problem Solving in Chemistry</td>
<td>181</td>
</tr>
<tr>
<td>8.1</td>
<td>Why Do Research on Problem Solving?</td>
<td>181</td>
</tr>
<tr>
<td>8.2</td>
<td>Results of Early Research on Problem Solving in General Chemistry</td>
<td>184</td>
</tr>
<tr>
<td>8.3</td>
<td>What About Organic Chemistry</td>
<td>186</td>
</tr>
<tr>
<td>8.4</td>
<td>The “Problem-Solving Mindset”</td>
<td>192</td>
</tr>
<tr>
<td>8.5</td>
<td>An Anarchistic Model of Problem Solving</td>
<td>193</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusion</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>Do Real Work, Not Homework</td>
<td>203</td>
</tr>
<tr>
<td>9.1</td>
<td>Thinking About Real Work</td>
<td>203</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Defining Real Work: Authentic Learning Experiences</td>
<td>203</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Doing Real Work: Situated Learning</td>
<td>206</td>
</tr>
<tr>
<td>9.2</td>
<td>Attributes of Real Work</td>
<td>209</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Balance Convergent and Divergent Tasks</td>
<td>209</td>
</tr>
<tr>
<td>9.2.1.1</td>
<td>Convergent Assignments</td>
<td>212</td>
</tr>
<tr>
<td>9.2.1.2</td>
<td>Divergent Assignments</td>
<td>213</td>
</tr>
<tr>
<td>9.2.1.3</td>
<td>Balancing Convergent and Divergent Assignments</td>
<td>214</td>
</tr>
<tr>
<td>9.2.1.4</td>
<td>Convergent Assignments in Team Learning</td>
<td>215</td>
</tr>
<tr>
<td>9.2.1.5</td>
<td>Divergent Assignments in Team Learning</td>
<td>216</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Peer Presentations, Review, and Critique</td>
<td>218</td>
</tr>
<tr>
<td>9.2.2.1</td>
<td>Calibrated Peer Review</td>
<td>221</td>
</tr>
<tr>
<td>9.2.2.2</td>
<td>Guided Peer Review and Revision</td>
<td>221</td>
</tr>
<tr>
<td>9.2.2.3</td>
<td>Argumentation and Evidence</td>
<td>222</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Balance Teamwork and Individual Work</td>
<td>222</td>
</tr>
<tr>
<td>9.2.3.1</td>
<td>Team-Based Learning: Face-to-Face Teams</td>
<td>222</td>
</tr>
<tr>
<td>9.2.3.2</td>
<td>Team-Based Learning: Virtual Teams</td>
<td>223</td>
</tr>
<tr>
<td>9.2.3.3</td>
<td>Team-Based Learning: Laboratory Projects</td>
<td>223</td>
</tr>
</tbody>
</table>
Contents

10 Context-Based Teaching and Learning on School and University Level 259
Ilka Parchmann, Karolina Broman, Maike Busker, and Julian Rudnik

10.1 Introduction 259
10.2 Theoretical and Empirical Background for Context-Based Learning 260
10.3 Context-Based Learning in School: A Long Tradition with Still Long Ways to Go 261
10.4.1 Strategies to Approach Context-Based Tasks 265
10.4.2 Application of Chemical Knowledge 267
10.4.3 Outlook on the Design of Tasks and Research Studies 269
10.5 Context-Based Learning on University Level: Goals and Approaches 269
10.5.1 Design of Differentiated CBL-Tasks 271
10.5.2 Example 1 Physical and Chemical Equilibria of Carbon Dioxide – Important in Many Different Contexts 272
10.5.3 Example 2 Chemical Switches – Understanding Properties like Color and Magnetism 273
10.5.4 Feedback and Implications 275
10.6 Conclusions and Outlook 275
References 276

11 Active Learning Pedagogies for the Future of Global Chemistry Education 279
Judith C. Poë

11.1 Problem-Based Learning 280
11.1.1 History 281
11.1.2 The Process 281
11.1.3 Virtual Problem-Based Learning 283
11.1.4 The Problems 285
11.1.4.1 Selected Problems for Introductory Chemistry at the UTM 285
11.1.4.2 Project for a UTM Upper Level Bioinorganic Chemistry Course 288
11.1.5 PBL – Must Content Be Sacrificed? 289
11.2 Service-Learning 290
11.2.1 The Projects 291
11.2.1.1 Selected Analytical/Environmental Chemistry Projects 291
11.2.1.2 Selected Projects in Chemistry Education 292
11.2.1.3 Project for an Upper Level Bioinorganic Chemistry Course at UTM 293
11.2.2 Benefits of Service-Learning 294
11.3 Active Learning Pedagogies 296
11.4 Conclusions and Outlook 297
References 297

12 Inquiry-Based Student-Centered Instruction 301
Ram S. Lamba
12.1 Introduction 301
12.2 Inquiry-Based Instruction 303
12.3 The Learning Cycle and the Inquiry-Based Model for Teaching and Learning 304
12.4 Information Processing Model 308
12.5 Possible Solution 308
12.6 Guided Inquiry Experiments for General Chemistry: Practical Problems and Applications Manual 310
12.7 Assessment of the Guided-Inquiry-Based Laboratories 314
12.8 Conclusions 316
References 317

13 Flipping the Chemistry Classroom with Peer Instruction 319
Julie Schell and Eric Mazur
13.1 Introduction 319
13.2 What Is the Flipped Classroom? 320
13.2.1 Three Big Ideas about Flipped Classrooms 321
13.2.2 Blended Learning and Flipped Classrooms 322
13.2.3 A Brief History of the Flipped Classroom 323
13.2.4 Traditional versus a Flipped Chemistry Classroom 323
13.2.5 Flipped Classrooms and Dependency on Technology 324
13.3 How to Flip the Chemistry Classroom 325
13.3.1 Common Myths about Flipped Classrooms 326
13.3.1.1 Myth 1: Flipped Classrooms are Just Video Lectures 326
13.3.1.2 Myth 2: Flipped Classrooms Have No Lectures 326
13.3.1.3 Myth 3: Students Won’t Be Prepared for Class 327
13.3.1.4 Myth 4: Flipping Your Classroom Means Changing Everything You Do 327
13.3.1.5 Myth 5: Flipped Classrooms Solve All Students’ Problems Immediately 328
13.3.2 FLIP 329
13.3.3 Student Attitudes toward Flipping General Chemistry 329
13.4 Flipping Your Classroom with Peer Instruction 329
13.4.1 What Is Peer Instruction? 330
13.4.2 What Is a ConcepTest? 331
13.4.3 Workflow in a Peer Instruction Course 332
13.4.4 ConcepTest Workflow 333
13.4.5 Peer Instruction and Classroom Response Systems 333
13.4.6 The Instructional Design of a Peer Instruction Course 334
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4.7 Research on Peer Instruction</td>
<td>336</td>
</tr>
<tr>
<td>13.4.8 Strategies for Avoiding Common Pitfalls of Flipping the Classroom with Peer Instruction</td>
<td>336</td>
</tr>
<tr>
<td>13.4.8.1 Effective Grouping</td>
<td>337</td>
</tr>
<tr>
<td>13.4.8.2 Response Opportunities</td>
<td>337</td>
</tr>
<tr>
<td>13.4.8.3 Peer Discussion Opportunities</td>
<td>337</td>
</tr>
<tr>
<td>13.4.8.4 Response Sharing</td>
<td>338</td>
</tr>
<tr>
<td>13.4.9 Flipping the Chemistry Classroom with Peer Instruction</td>
<td>338</td>
</tr>
<tr>
<td>13.5 Responding to Criticisms of the Flipped Classroom</td>
<td>339</td>
</tr>
<tr>
<td>13.6 Conclusion: The Future of Education</td>
<td>341</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>341</td>
</tr>
<tr>
<td>References</td>
<td>341</td>
</tr>
</tbody>
</table>

14 Innovative Community-Engaged Learning Projects: From Chemical Reactions to Community Interactions 345

Claire McDonnell

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 The Vocabulary of Community-Engaged Learning Projects</td>
<td>345</td>
</tr>
<tr>
<td>14.1.1 Community-Based Learning</td>
<td>346</td>
</tr>
<tr>
<td>14.1.2 Community-Based Research</td>
<td>346</td>
</tr>
<tr>
<td>14.1.3 Developing a Shared Understanding of CBL and CBR</td>
<td>347</td>
</tr>
<tr>
<td>14.2 CBL and CBR in Chemistry</td>
<td>349</td>
</tr>
<tr>
<td>14.2.1 Chemistry CBL at Secondary School (High School) Level</td>
<td>352</td>
</tr>
<tr>
<td>14.2.2 Chemistry Projects Not Categorized as CBL or CBR</td>
<td>352</td>
</tr>
<tr>
<td>14.2.3 Guidelines and Resources for Getting Started</td>
<td>352</td>
</tr>
<tr>
<td>14.3 Benefits Associated with the Adoption of Community-Engaged Learning</td>
<td>353</td>
</tr>
<tr>
<td>14.3.1 How Do Learners Gain from CBL and CBR?</td>
<td>354</td>
</tr>
<tr>
<td>14.3.1.1 Personal Development and Graduate Attributes</td>
<td>354</td>
</tr>
<tr>
<td>14.3.1.2 High-Impact Educational Practices</td>
<td>354</td>
</tr>
<tr>
<td>14.3.2 How Do HEIs and Schools Gain from CBL and CBR?</td>
<td>356</td>
</tr>
<tr>
<td>14.3.3 How Do Communities Gain from CBL and CBR?</td>
<td>359</td>
</tr>
<tr>
<td>14.3.3.1 Reciprocity</td>
<td>359</td>
</tr>
<tr>
<td>14.3.3.2 Maximizing Impact for Community Partners</td>
<td>359</td>
</tr>
<tr>
<td>14.4 Barriers and Potential Issues When Implementing Community-Engaged Learning</td>
<td>360</td>
</tr>
<tr>
<td>14.4.1 Clarity of Purpose</td>
<td>360</td>
</tr>
<tr>
<td>14.4.2 Regulatory and Ethical Issues</td>
<td>360</td>
</tr>
<tr>
<td>14.4.3 Developing Authentic Community Partnerships</td>
<td>361</td>
</tr>
<tr>
<td>14.4.3.1 Useful Frameworks</td>
<td>361</td>
</tr>
<tr>
<td>14.4.3.2 Case Studies on Developing Authentic Community Partnerships</td>
<td>361</td>
</tr>
<tr>
<td>14.4.4 Sustainability</td>
<td>362</td>
</tr>
<tr>
<td>14.4.5 Institutional Commitment and Support</td>
<td>363</td>
</tr>
<tr>
<td>14.4.6 An Authentic Learning Environment</td>
<td>363</td>
</tr>
<tr>
<td>14.4.7 Reflection</td>
<td>363</td>
</tr>
</tbody>
</table>
14.5 Current and Future Trends 364
14.5.1 Geographic Spread 364
14.5.2 Economic Uncertainty 364
14.5.3 The Scholarship of Community-Engaged Learning 365
14.5.4 Online Learning 365
14.5.5 Developments in Chemistry Community-Engaged Learning 366
14.6 Conclusion 366
References 367

15 The Role of Conceptual Integration in Understanding and Learning Chemistry 375
Keith S. Taber
15.1 Concepts, Coherence, and Conceptual Integration 375
15.1.1 The Nature of Concepts 375
15.1.2 Concepts and Systems of Public Knowledge 377
15.1.3 Conceptual Integration 378
15.2 Conceptual Integration and Coherence in Science 381
15.2.1 Multiple Models in Chemistry 383
15.3 Conceptual Integration in Learning 385
15.3.1 The Drive for Coherence 386
15.3.2 Compartmentalization of Learning 387
15.3.3 When Conceptual Integration Impedes Learning 388
15.3.4 Conceptual Integration and Expertise 389
15.4 Conclusions and Implications 390
15.4.1 Implications for Teaching 390
15.4.2 Directions for the Research Programme 391
References 392

16 Learners Ideas, Misconceptions, and Challenge 395
Hans-Dieter Barke
16.1 Preconcepts and School-Made Misconceptions 395
16.2 Preconcepts of Children and Challenge 396
16.3 School-Made Misconceptions and Challenge 396
16.3.1 Ions as Smallest Particles in Salt Crystals and Solutions 397
16.3.1.1 Challenge of Misconceptions 398
16.3.2 Chemical Equilibrium 401
16.3.2.1 Most Common Misconceptions 402
16.3.2.2 Challenge of Misconceptions 402
16.3.3 Acid–Base Reactions and Proton Transfer 405
16.3.4 Redox Reactions and Electron Transfer 411
16.4 Best Practice to Challenge Misconceptions 415
16.4.1 Misconceptions 416
16.4.2 Integrating Misconceptions into Instruction 417
16.5 Conclusion 419
References 419
17 The Role of Language in the Teaching and Learning of Chemistry
Peter E. Childs, Silvija Markic, and Marie C. Ryan

17.1 Introduction 421
17.2 The History and Development of Chemical Language 423
17.2.1 Chemical Symbols: From Alchemy to Chemistry, from Dalton to Berzelius 423
17.2.2 A Systematic Nomenclature 425
17.3 The Role of Language in Science Education 428
17.4 Problems with Language in the Teaching and Learning of Chemistry 430
17.4.1 Technical Words and Terms 432
17.4.2 Nontechnical Words 433
17.4.3 Logical Connectives 434
17.4.4 Command Words 435
17.4.5 Argumentation and Discourse 436
17.4.6 Readability of Texts 436
17.5 Language Issues in Dealing with Diversity 437
17.5.1 Second Language Learners 437
17.5.2 Some Strategies for Improving Language Skills of SLLs 440
17.5.3 Special-Needs Students 440
17.6 Summary and Conclusions 441
References 442
Further Reading 445

18 Using the Cognitive Conflict Strategy with Classroom Chemistry Demonstrations 447
Robert (Bob) Bucat

18.1 Introduction 447
18.2 What Is the Cognitive Conflict Teaching Strategy? 448
18.3 Some Examples of Situations with Potential to Induce Cognitive Conflict 449
18.4 Origins of the Cognitive Conflict Teaching Strategy 451
18.5 Some Issues Arising from A Priori Consideration 453
18.6 A Particular Research Study 455
18.7 The Logic Processes of Cognitive Conflict Recognition and Resolution 459
18.8 Selected Messages from the Research Literature 461
18.9 A Personal Anecdote 465
18.10 Conclusion 466
References 467

19 Chemistry Education for Gifted Learners 469
Manabu Sumida and Atsushi Ohashi

19.1 The Gap between Students’ Images of Chemistry and Research Trends in Chemistry 469
19.2 The Nobel Prize in Chemistry from 1901 to 2012: The Distribution and Movement of Intelligence 470
19.3 Identification of Gifted Students in Chemistry 472
19.3.1 Domain-Specificity of Giftedness 472
19.3.2 Natural Selection Model of Gifted Students in Science 474
19.4 Curriculum Development and Implementation of Chemistry Education for the Gifted 477
19.4.1 Acceleration and Enrichment 477
19.4.2 Higher Order Thinking and the Worldview of Chemistry 478
19.4.3 Promoting Creativity and Innovation 479
19.4.4 Studying Beyond the Classrooms 480
19.4.5 Can the Special Science Program Meet the Needs of Gifted Students? 482
19.5 Conclusions 484
References 486

20 Experimental Experience Through Project-Based Learning 489
Jens Josephsen and Søren Hvidt
20.1 Teaching Experimental Experience 489
20.1.1 Practical Work in Chemistry Education 489
20.1.2 Why Practical Work in Chemistry Education? 490
20.1.3 Practical Work in the Laboratory 491
20.2 Instruction Styles 492
20.2.1 Different Goals and Instruction Styles for Practical Work 492
20.2.2 Emphasis on Inquiry 493
20.3 Developments in Teaching 494
20.3.1 Developments at the Upper Secondary Level 494
20.3.2 Trials and Changes at the Tertiary Level 495
20.3.3 Lessons Learned 497
20.4 New Insight and Implementation 498
20.4.1 Curriculum Reform and Experimental Experience 498
20.4.1.1 Problem-Based Group-Organized Project Work 498
20.4.1.2 Second Semester Project Work 499
20.4.2 Analysis of Second Semester Project Reports 502
20.4.2.1 Analysis of Reports from a Chemistry Point of View 503
20.4.2.2 Elements of Experimental Work 503
20.5 The Chemistry Point of View Revisited 511
20.6 Project-Based Learning 512
References 514

21 The Development of High-Order Learning Skills in High School Chemistry Laboratory: “Skills for Life” 517
Avi Hofstein
21.1 Introduction: The Chemistry Laboratory in High School Setting 517
21.2 The Development of High-Order Learning Skills in the Chemistry Laboratory 519
21.2.1 Introduction 519
21.2.2 What Are High-Order Learning Skills? 520
21.3 From Theory to Practice: How Are Chemistry Laboratories Used? 522
21.4 Emerging High-Order Learning Skills in the Chemistry Laboratory 523
21.4.1 First Theme: Developing Metacognitive Skills 523
21.4.2 Second Theme: Scientific (Chemical) Argumentation 527
21.4.2.1 The Nature of Argumentation in Science Education 527
21.4.2.2 Argumentation in the Chemistry Laboratory 528
21.4.3 Asking Questions in the Chemistry Laboratory 531
21.5 Summary, Conclusions, and Recommendations 532

References 535

22 Chemistry Education Through Microscale Experiments 539
Beverly Bell, John D. Bradley, and Erica Steenberg
22.1 Experimentation at the Heart of Chemistry and Chemistry Education 539
22.2 Aims of Practical Work 540
22.3 Achieving the Aims 540
22.4 Microscale Chemistry Practical Work – “The Trend from Macro Is Now Established” 541
22.5 Case Study I: Does Scale Matter? Study of a First-Year University Laboratory Class 542
22.6 Case Study II: Can Microscale Experimentation Be Used Successfully by All? 543
22.7 Case Study III: Can Quantitative Practical Skills Be Learned with Microscale Equipment? 544
22.7.1 Volumetric Analysis – Microtitration 544
22.7.2 Gravimetric Measurements 546
22.7.3 The Role of Sensors, Probes, and the Digital Multimeter in Quantitative Microscale Chemistry 548
22.7.3.1 Cell Potential Measurements 549
22.7.3.2 Electrical Conductivity, Light Absorption, and Temperature Measurements 551
22.8 Case Study IV: Can Microscale Experimentation Help Learning the Scientific Approach? 554
22.9 Case Study V: Can Microscale Experimentation Help to Achieve the Aims of Practical Work for All? 555
22.9.1 The UNESCO-IUPAC/CCE Global Microscience Program and Access to Science Education for All 555
22.9.2 The Global Water Experiment of the 2011 International Year of Chemistry – Learning from the Experience 556
22.10 Conclusions 559
References 559

Part III: The Role of New Technologies 563

23 Twenty-First Century Skills: Using the Web in Chemistry Education 565
Jan Apotheker and Ingeborg Veldman
23.1 Introduction 565
23.2 How Can These New Developments Be Used in Education? 567
23.3 MOOCs (Massive Open Online Courses) 572
23.4 Learning Platforms 574
23.5 Online Texts versus Hard Copy Texts 575
23.6 Learning Platforms/Virtual Learning Environment 577
23.7 The Use of Augmented Reality in (In)Formal Learning 579
23.8 The Development of Mighty/Machtig 580
23.9 The Evolution of MIGHT-y 580
23.10 Game Play 581
23.11 Added Reality and Level of Immersion 582
23.12 Other Developments 586
23.13 Molecular City in the Classroom 587
23.14 Conclusion 593
References 593

24 Design of Dynamic Visualizations to Enhance Conceptual Understanding in Chemistry Courses 595
Jerry P. Suits
24.1 Introduction 595
24.1.1 Design of Quality Visualizations 595
24.1.2 Mental Models and Conceptual Understanding 596
24.2 Advances in Visualization Technology 598
24.3 Dynamic Visualizations and Student’s Mental Model 603
24.4 Simple or Realistic Molecular Animations? 607
24.5 Continuous or Segmented Animations? 608
24.6 Individual Differences and Visualizations 609
24.6.1 Self-Explanations and Spatial Ability 609
24.6.2 Individual Differences and Visualization Studies 610
24.7 Simulations: Interactive, Dynamic Visualizations 611
24.7.1 Pedagogic Simulations 611
24.7.2 An Organic Pre-Lab Simulation 613
24.8 Conclusions and Implications 615
Acknowledgments 616
References 616
25 Chemistry Apps on Smartphones and Tablets 621
Ling Huang

25.1 Introduction 621
25.2 Operating Systems and Hardware 625
25.3 Chemistry Apps in Teaching and Learning 626
25.3.1 Molecular Viewers and Modeling Apps 626
25.3.2 Molecular Drawing Apps 629
25.3.3 Periodic Table Apps 631
25.3.4 Literature Research Apps 633
25.3.5 Lab Utility Apps 634
25.3.5.1 Flashcard Apps 635
25.3.5.2 Dictionary/Reference Apps 636
25.3.5.3 Search Engine Apps 637
25.3.5.4 Calculator Apps 639
25.3.5.5 Instrumental Apps 640
25.3.6 Apps for Teaching and Demonstration 641
25.3.7 Gaming Apps 642
25.3.8 Chemistry Courses Apps 644
25.3.9 Test-Prep Apps 644
25.3.10 Apps are Constantly Changing 645
25.4 Challenges and Opportunities in Chemistry Apps for Chemistry Education 646
25.5 Conclusions and Future Perspective 647
References 649

26 E-Learning and Blended Learning in Chemistry Education 651
Michael K. Seery and Christine O'Connor

26.1 Introduction 651
26.2 Building a Blended Learning Curriculum 652
26.3 Cognitive Load Theory in Instructional Design 654
26.4 Examples from Practice 655
26.4.1 Podcasts and Screencasts 656
26.4.2 Preparing for Lectures and Laboratory Classes 657
26.4.3 Online Quizzes 659
26.4.4 Worked Examples 661
26.4.5 Clickers 662
26.4.6 Online Communities 663
26.5 Conclusion: Integrating Technology Enhanced Learning into the Curriculum 665
References 666

27 Wiki Technologies and Communities: New Approaches to Assessing Individual and Collaborative Learning in the Chemistry Laboratory 671
Gwendolyn Lawrie and Lisbeth Grøndahl

27.1 Introduction 671
Contents

27.2 Shifting Assessment Practices in Chemistry Laboratory Learning 672
27.3 Theoretical and Learning Design Perspectives Related to Technology-Enhanced Learning Environments 675
27.4 Wiki Learning Environments as an Assessment Platform for Students’ Communication of Their Inquiry Laboratory Outcomes 678
27.4.1 Co-Construction of Shared Understanding of Experimental Observations 679
27.4.2 Enhancing the Role of Tutors in the Wiki Laboratory Community 679
27.5 Practical Examples of the Application of Wikis to Enhance Laboratory Learning Outcomes 681
27.5.1 Supporting Collaborative Discussion of Experimental Data by Large Groups of Students during a Second-Level Organic Chemistry Inquiry Experiment 681
27.5.2 Virtual Laboratory Notebook Wiki Enhancing Laboratory Learning Outcomes from a Collaborative Research-Style Experiment in a Third-Level Nanoscience Course 682
27.5.3 Scaffolding Collaborative Laboratory Report Writing through a Wiki 682
27.6 Emerging Uses of Wikis in Lab Learning Based on Web 2.0 Analytics and Their Potential to Enhance Lab Learning 684
27.6.1 Evaluating Student Participation and Contribution as Insight into Engagement 684
27.6.2 Categorizing the Level of Individual Student Understanding 686
27.7 Conclusion 688
References 689

28 New Tools and Challenges for Chemical Education: Mobile Learning, Augmented Reality, and Distributed Cognition in the Dawn of the Social and Semantic Web 693
Harry E. Pence, Antony J. Williams, and Robert E. Belford
28.1 Introduction 693
28.2 The Semantic Web and the Social Semantic Web 694
28.3 Mobile Devices in Chemical Education 702
28.4 Smartphone Applications for Chemistry 706
28.5 Teaching Chemistry in a Virtual and Augmented Space 708
28.6 The Role of the Social Web 717
28.7 Distributed Cognition, Cognitive Artifacts, and the Second Digital Divide 721
28.8 The Future of Chemical Education 726
References 729

Index 735