Index

3D representations, visualization 601–3
4C/ID (four-component instructional design) approach, competency-based undergraduate curriculum 91
AAAS see American Association for the Advancement of Science

a
acceleration program, gifted learners 477
acid, TKRS searches 59–60, 65–7
acid–base chemistry, human activity 16, 18–20
acid–base reactions
— Broensted concept 406, 409–12
— misconceptions 405–12
— proton transfer 405–12
acids/metals experiments, guided-inquiry-based laboratories 311–14
active-learning assignments, classroom 238
active-learning inquiry, laboratory learning 674, 678–81
active learning pedagogies 296
— see also problem-based learning (PBL); service-learning
activity system, competency-based teaching 82–3
ADI model see argument-driven instructional (ADI) model
air bag/gas laws, dynamic visualization 603–6
air quality 32–3
American Association for the Advancement of Science (AAAS)
— real-world chemistry 280
— recommendations 280, 282
America’s Lab Report, high-order learning skills 519
analytical/environmental chemistry projects, service-learning 291–2
ANAPOGIL: Process-Oriented Guided Inquiry Learning in Analytical Chemistry, chemistry education research 167–9
anarchistic model of problem solving, problem-solving research 193–9
animations
— see also visualization
— chemistry education research 161–3
— continuous/segmented 608–9
— molecular animations 607–8
— simple/realistic 607–8
— student-generated animations 225–6
— visualization 607–9
Anthropocene Epoch, human activity 14–16
apps, chemistry see chemistry apps
AR see augmented reality
Argument-Driven Inquiry, chemistry education research 160
argument-driven instructional (ADI) model 81
argumentation
— chemistry education research 159–60
— chemistry laboratory 528–31
— epistemic practice 527–8
— high-order learning skills 526–31
— learning skills 529–31
— nature of 526–31
— Toulmin’s model 528–9
argumentation and discourse, problems with language 436
argumentation and evidence, Real Work 222
ASCI (Attitude toward the Subject of Chemistry Inventory), chemistry education research 164
atomic structure, TKRS searches 60–1, 65–7
atoms first, human activity 6–7
augmented reality (AR) 708–17, 727–8
– game play 581–2
– Internet 566–7, 579–90
– LabQuest2 app 713–14
– layar 566–7, 579, 582
– Marker-based AR and Markerless AR 711–12
– Might3/Mach\textsuperscript{12} 580–90
– modeling apps 714–15
– molecular viewers 714–15
– QR (quick response) codes 711–14
– Second Life 709–10
– wearable devices 715–16
authentic learning
– community-based learning (CBL) 363
– community-based research (CBR) 363
– Real Work 206–9
authentic learning experiences, Real Work 203–6
authentic materials, Real Work 243–4
authentic tasks, Real Work 206–9
authentic texts and evidence 228–32
– Course-Based Undergraduate Research Experiences (CURE) 230–1
– generating questions 230
– interdisciplinary research-based projects 231–2
– literature seminars 229–30
– literature summaries 228–9
– public science courses 230
– Real Work 228–32

b
balls problem, problem solving research 182–4
barcodes, QR (quick response) codes 711–14
Berners-Lee, Tim 694–5, 697
Big Ideas in chemistry 30
bioinorganic chemistry course
– problem-based learning (PBL) 288–9
– service-learning 293–4, 295
Blackboard, Virtual Learning Environment (VLE) 574
blended learning 651–66
– added value 651–2
– clickers 662–3, 664
– cognitive load theory (CLT) 654–5
– curriculum 652–3, 661, 662, 665–6
– curriculum integration 665–6
– defining 322
– discussion boards 653, 663–4
– examples 655–65
– Facebook 664–5
– flipped classrooms 322, 653, 658
– gamification 661
– information processing model 654–5
– iTunesU 656–7
– laboratory classes 657–9
– lectures 657–9
– online communities 663–5
– online quizzes 659–62
– PeerWise 235, 661
– personal response systems 662–3, 664
– podcasts 656–7
– pre-laboratory activities 658–9
– pre-lecture activities 657–8
– preparation for lectures and laboratory classes 657–9
– role in science education 652–3
– social networking 664–5
– Twitter 664–5
– YouTube 656–7
boiling point experiments, cognitive conflict strategy 449, 454, 465–6
books, popular, lifelong learning 135–6
branches of chemistry 469–70
broadcast media, lifelong learning 140–1
Broensted concept, acid–base reactions 406, 409–12

calculator apps 639
calibrated peer review (CPR), Real Work 221, 240–1
carbon cycle 32
carbon dioxide
– combustion connection 32–3
– context-based learning (CBL) 272–3
– physical and chemical equilibria 272–3
cards problem, problem solving research 182
carrying out chemistry, human activity 10–14
cartoons, lifelong learning 136–7
CBL see community-based learning; context-based learning
CBR see community-based research
cell potential measurements, microscale experimentation 549–51
challenging issues, teaching 107–13
ChemCollective virtual laboratory, visualization 600
ChemEd DL (digital library) 697
chemical education
– vs chemistry education 3
– future 726–8
chemical equations
– chemistry education research 155, 156
– strengths/shortcomings 31–2
chemical equilibrium
– misconceptions 401–5
– TKRS searches 61–2, 65–7
chemical markup language (CML) 699–700
chemical switches example, context-based learning (CBL) 273–5
chemical symbols, history and development of chemical language 423–5
chemical tetrahedron, context-based learning (CBL) 270–1
‘Chemie im Kontext’
– context-based learning (CBL) 261–3
– school-level 261–3
chemistry apps 621–49, 706–8
– calculator apps 639
– challenges 646–7
– chemistry courses apps 644
– Chemistry Quiz App 660
– ChemSpider app 697, 706–7, 708, 717–20
– demonstration and teaching apps 641–2
– dictionary/reference apps 636–7
– flashcard apps 635–6
– future perspectives 647–9
– gaming apps 642–4
– hardware 625–6
– instrumental apps 640
– interactive applets 571–2
– lab utility apps 634–40
– LabQuest 2 app 713–14
– literature research apps 633–4
– modeling apps 626–9, 714–15
– Molecular City app 587–92
– molecular drawing apps 629–31
– molecular viewers 626–9, 714–15
– operating systems 625–6
– opportunities 646–7
– Periodic Table apps 631–3
– search engine apps 637–8
– teaching and demonstration apps 641–2
– test-prep apps 644–5
– updating apps 645
chemistry courses apps 644
chemistry education
– vs chemical education 3
– tetrahedral 4–5
chemistry education projects, service-learning 292–3
chemistry education research 151–74
– see also new teaching methods; research-based teaching; teaching strategies
– ANAPOGIL: Process-Oriented Guided Inquiry Learning in Analytical Chemistry 167–9
– animations 161–3
– Argument-Driven Inquiry 160
– argumentation 159–60
– ASCI (Attitude toward the Subject of Chemistry Inventory) 164
– chemical equations 155, 156
– CHEMX (Chemistry Expectations Survey) 163
– CLASS-Chem (Colorado Learning Attitudes about Science Survey) 163
– CLUE: Chemistry, Life, the Universe, and Everything 169–70
– concept inventories 158–9
– connecting research to practice 154–65, 171–2
– cycle of pedagogical research 172–4
– demonstrations, interactive 166–7
– Group Assessment of Logical Thinking (GALT) 164
– implementation 171–2
– instructional practice 155–6, 171–4
– instruments 163–5
– interactive demonstrations 166–7
– logical thinking tests 164
– misconceptions, students’ 154–7
– problem solving 161
– process-oriented guided inquiry learning (POGIL) 160
– professional knowledge/development 171–4
– representations 161–3
– research-based teaching practice 165–70
– Science Writing Heuristic 160
– simulations 161–3
– stoichiometry 155–6
– student argumentation 159–60
– student discourse 159–60
– student learning research 153–4
– student response systems (SRSs) 157–8
– Test of Logical Thinking (TOLT) 164
Chemistry in Context 34
chemistry literacy see scientific literacy
Chemistry Quiz App 660
ChemSpider app 697, 706–7, 708, 717–20
CHEMX (Chemistry Expectations Survey),
chemistry education research 163
citizen science, lifelong learning 143–4
CLASS-Chem (Colorado Learning Attitudes about Science Survey), chemistry
education research 163
classroom response systems, Peer Instruction 333–5, 338
clickers, blended learning 662–3, 664
climate change, human activity 9–10, 16–18, 32–3
CLT see cognitive load theory
CLUE: Chemistry, Life, the Universe, and Everything, chemistry education research 169–70
CML see chemical markup language
cognition levels, gifted learners 477–8
cognitive accommodation, cognitive conflict strategy 451–2
cognitive artifacts 721–6
cognitive conflict recognition/resolution 459–61
cognitive conflict strategy 447–67
– boiling point experiments 449, 454, 465–6
– changing conceptions 452–5
– cognitive accommodation 451–2
– cognitive conflict recognition/resolution 459–61
– cognitive dissonance 451–5
– constructivism 452, 462
– defining 448
– discrepant events 448, 453–9, 461–5
– disequilibrium 451–2, 453
– examples of cognitive conflict situations 449–51
– logic processes 459–61
– misconceptions 451–2
– origins 451–3
– pitfalls 459
– predict–observe–explain (POE) technique 456, 462–3
– research literature 461–5
cognitive cycle, gifted learners 477–8
cognitive dissonance, cognitive conflict strategy 451–5
cognitive load theory (CLT)
– blended learning 654–5
– transient information effect 657
cognitive sequence, gifted learners 477–8
cognitive skills
– constructivism 304–5
– inquiry-based student-centered instruction 304–5
– learning cycle 304–5
collaboration
– future trends 117
– learning communities 116
– teacher learning 116, 117
– Wikis 681
collaborative identification, team-based learning 223–4
collective writing
– laboratory learning 682–4
– Wikis 682–4
color, understanding, context-based learning (CBL) 273–5
combustion, carbon dioxide connection 32–3
comics, lifelong learning 136–7
command words, problems with language 435–6
community-based learning (CBL) 345–67
– see also service-learning
– authentic learning 363
– barriers 360–4
– benefits 353–60
– chemistry education 349–53
– clarity of purpose 360
– community partnerships 361
– current trends 364–6
– curriculum 353
– defining 346
– developments 366
– e-learning 365–6
– economic uncertainty 364–5
– ethical issues 360
– future trends 364–6
– geographic spread 364
– graduate attributes 354
– guidelines 352–3
– high-impact educational practices 354–6
– institutional commitment 363
– online learning 365–6
– PARE (preparation, action, reflection, and evaluation) model 353
– peer-reviewed accounts 349–51
– personal development 354
– reciprocity 359
– reflection 363–4
– regulatory issues 360
– resources 352–3
– scholarship 365
– sustainability 362
Index

– vocabulary 345–9
community-based research (CBR) 345–67
– authentic learning 363
– barriers 360–4
– benefits 353–60
– chemistry education 349–53
– clarity of purpose 360
– community partnerships 361
– current trends 364–6
– curriculum 353
– developments 366
– e-learning 365–6
– economic uncertainty 364–5
– ethical issues 360
– future trends 364–6
– geographic spread 364
– guidelines 352–3
– high-impact educational practices 354–6
– institutional commitment 363
– online learning 365–6
– PARE (preparation, action, reflection, and evaluation) model 353
– peer-reviewed accounts 349–51
– reciprocity 359
– reflection 363–4
– regulatory issues 360
– resources 352–3
– scholarship 365
– sustainability 362
– vocabulary 345–9
competency, defining 82
competency-based teaching 81–3
– activity system 82–3
– characteristics 83
competency-based undergraduate curriculum 83–92, 93
– 4C/ID (four-component instructional design) approach 91
– competency area analysis 86–7, 92
– competency area modeling 89–90, 92
– competency area synthesis 88–9, 92
– Entrepreneurship Education and Training (EET) 91
– structure 84–6
computer-based technologies
– see also chemistry apps; information and communication technology (ICT); Internet; simulations; visualization
– learning communities 116
– lifelong learning 141–3
– teacher learning 111–13, 116
concept development, inquiry-based student-centered instruction 308–10

concept inventories, chemistry education research 158–9
ConceTests, Peer Instruction 330–9
conceptual integration 375–92
– compartmentalization of learning 387–8
– concepts as public knowledge systems 377–8
– concepts, nature of 375–7
– conceptual coherence 381–3, 386–7
– conceptual inductive effect 380–1
– conceptual structure 379–80, 389
– expertise 389–90
– impeding learning 388–9
– implications 390–2
– in learning 385–6
– models/modeling 383–5
– multiple models 383–5
– Personal Construct Theory (PCT) 378–9
– research directions 391–2
conceptual understanding
– macroscopic level 596–7
– mental models 596–8
– submicroscopic level 597
– symbolic level 597
conductivity/conductance meters, microscale experimentation 551–2
connecting research to practice, chemistry education research 154–65, 171–2
connections
– connecting the dots 46–8
– responsibilities 27–48
– stories 27–48
– transforming thinking 27–48
connectivism, lifelong learning 141–3
constructivism
– cognitive conflict strategy 452, 462
– cognitive skills 304–5
– curriculum 74–6
– inquiry-based student-centered instruction 304–6
– learning cycle 304–5
content-based teaching 47–8
content of ideas, lifelong learning 129–30
context-based learning (CBL) 259–76
– applying chemical knowledge 267–8
– approaches 269–75
– carbon dioxide example 272–3
– chemical switches example 273–5
– chemical tetrahedron 270–1
– ‘Chemie im Kontext’ 261–3
– color, understanding 273–5
– design 263–9
– design of tasks 269, 271–2
– differentiated tasks 271–2
context-based learning (CBL) (contd.)
– effects of learning 263–9
– empirical background 260–1
– empirical study 263–9
– feedback 275
– future studies 276
– goals 269–75
– human activity 20–3
– implications 275
– magnetism, understanding 273–5
– meaningful learning 260–1
– motivation 260–1
– need for further insights 263–9
– school level 261–3
– strategies, context-based tasks 265–7
– theoretical background 260–1
– university level 269–75
context-based tasks
– strategies to approach 265–7
– transferring knowledge 265–7
– context-based teaching 47–8
– future trends 117
– teacher learning 107–9, 117
– convergent assignments
– Real Work 209–18
– team learning 215–16
Course-Based Undergraduate Research Experiences (CURE), Real Work 230–1, 243
CPR see calibrated peer review
craft model, teacher learning 100
creativity
– divergent explanations 240
– gifted learners 479–80
– promoting 479–80
crowdsourcing, Semantic Web 702
cultural context, gifted learners 485
CURE see Course-Based Undergraduate Research Experiences
curriculum
– see also teacher learning
– blended learning 652–3, 661, 662, 665–6
– community-based learning (CBL) 353
– community-based research (CBR) 353
– competency-based undergraduate curriculum 83–92, 93
– constructivism 74–6
– employers’ influences 78
– globalization influences 78
– innovation 74–8
– new teaching methods 78–83
– research on student learning 74–6
– school level formal chemistry education 123–5
– SENCER (Science Education for New Civic Engagements and Responsibilities) 27–8, 37–9, 47–8
– traditional undergraduate 73–4
curriculum development, gifted learners 477–84
curriculum integration, blended learning 665–6
curriculum reform
– experimental experience 498–502
– problem-based group-organized project work 498–9
– second semester project work 499–502
cycle of pedagogical research 172–4
d
Dale pyramid, learning approaches 75–6
data enhancing the RSC Archive (DERA) 697
demonstration and teaching apps 641–2
demonstrations, interactive, chemistry education research 166–7
dera see Data Enhancing the RSC Archive
development of chemistry see history and development of chemical language; history and development of chemistry
developments in teaching
– experimental experience 494–7
– lessons learned 497
– tertiary level 495–6
– upper secondary level 494–5
diaries, Reflective Diaries,
guided-inquiry-based laboratories 315–16
dictionary/reference apps 636–7
digital environments, lifelong learning 141–3
digital multimeters, microscale experimentation 548–53
discourse, student, chemistry education research 159–60
discrepant events, cognitive conflict strategy 448, 453–9, 461–5
discussion boards, blended learning 653, 663–4
disequilibrium, cognitive conflict strategy 451–2, 453
disruptive innovation, flipped classrooms 319, 341
distributed cognition 722, 724
distributed Drug Discovery (D3) project, Real Work 231–2
divergent assignments
– Real Work 209–18
Index

– team learning 216–18
divergent tasks, for training organic
chemistry peer facilitators 217–18
diversity of students
– language issues 437–41
– second language learners (SLLs) 437–40
domain-specificity of giftedness 472–4
Dora/Flora story 203–6
dynamic visualization 611–15
– see also simulations
– mental models 603–6

E

e-learning
– see also blended learning
– community-based learning (CBL) 365–6
– community-based research (CBR) 365–6
– defining 651–2
Educational Quality Improvement Program (EQUIP 1), active learning pedagogies 296
EET see Entrepreneurship Education and Training
Ehime University Science Innovation Program 482–4
eight-balls problem, problem solving research 182–4
electrical conductivity, microscale experimentation 551–2
electron transfer, misconceptions 414–16
electronic homework systems 225, 235–6, 237
electronic lab notebooks (ELNs) 708, 720–1
electrowinning of copper, microscale experimentation 546–8
ELLs see English language learners
ELNs see electronic lab notebooks
employers’ influences
– curriculum 78
– skills 78
energy, TKRS searches 58–9, 65–7
engagement/involvement
– evaluating 684–8
– flipped classrooms 322
– Wikis 684–8
English language learners (ELLs), problems with language 437–40
enrichment program, gifted learners 477
Entrepreneurship Education and Training (EET), competency-based undergraduate curriculum 91
environmental/analytical chemistry projects, service-learning 291–2

Epohrus plagiarism-detection tool 577
epistemic practice
– argumentation 527–8
– high-order learning skills 527–8
equations, chemical see chemical equations
EQUIP 1: see Educational Quality Improvement Program
evolved nature of chemistry, influences on teaching 77
experimental experience 489–514
– analysis of project reports 502–3
– analysis, project reports 502–3
– benefits 497
– chemistry point of view 511–12
– curriculum reform 498–502
– design, project reports 509
– developments in teaching 494–7
– elements of experimental work 503–11
– experimental, project reports 509–10
– freshman students 497, 502, 510–11
– inquiry emphasis 493–4
– instruction styles 492–4
– interpretation, project reports 510–11
– objectives, project reports 508–9
– practical work 489–92
– problem-based group-organized project work 498–9
– problem orientation 498
– project-based learning 512–14
– project-organization 499–502
– project reports 502–11
– results, project reports 510
– second semester project work 499–503
– teaching 489–92
experimental observations, Wikis 679
experimental optimization, team-based learning 224
expert model, teacher learning 100
expert style, gifted learners 473–4
explanatory knowledge, Real Work 219–20
extension of formal education opportunities 125–9
extraneous load, cognitive load theory (CLT) 654–5

F

face-to-face teams, team-based learning 222–3
Facebook, blended learning 664–5
filtering information
 − inquiry-based student-centered instruction 305
 − learning cycle 305
flaschcard apps 635–6
flipped classrooms 319–41
 − see also Peer Instruction
 − agile approach 327–8
 − big ideas 321–2
 − blended learning 322, 653, 658
 − criticism 339–40
 − defining 320–1
 − disruptive innovation 319, 341
 − engagement/involvement 322
 − examples 325–8
 − future of education 341
 − history 323
 − Just-in-Time Teaching (JiTT) 326
 − Khan Academy 324
 − Learning Platforms 577–8
 − lectures 326–7
 − methods 325–9
 − myths 326–9
 − Peer Instruction 329–39
 − pitfalls 336–8
 − preparedness 327
 − principles 328–9
 − prior knowledge 321–2
 − protocol 328–9
 − self-regulation 322
 − student attitudes 329
 − student-centered pedagogy 320, 322
 − technology dependency 324–5
 − vs traditional classrooms 323–4
 − videos 323–4, 326
 − YouTube 321
Flora/Dora story 203–6
formal education, lifelong learning 125–6
future of education
 − chemical education 726–8
 − flipped classrooms 341
 − Peer Instruction 341
future perspectives, chemistry apps 647–9
future studies, context-based learning (CBL) 276
future trends
 − collaboration 117
 − community-based learning (CBL) 364–6
 − context-based teaching 117
 − research-based teaching 117
 − teacher learning 116–18

G
GALT (Group Assessment of Logical Thinking), chemistry education research 164
game play
 − augmented reality (AR) 581–2
 − informal education 581–2
gamification, blended learning 661
gaming apps 642–4
gas laws/airbag, dynamic visualization 603–6
general chemistry 6, 7, 9, 40–1, 46–7
 − problem solving research 184–6
generating questions, Real Work 230
germaine load, cognitive load theory (CLT) 654–5
gifted learners 469–86
 − acceleration program 477
 − cognition levels 477–8
 − cognitive cycle 477–8
 − cognitive sequence 477–8
 − creativity 479–80
 − cultural context 485
 − curriculum development 477–84
 − domain-specificity of giftedness 472–4
 − education programs 477
 − effects of gifted education on students 480, 482–4
 − Ehime University Science Innovation Program 482–4
 − enrichment program 477
 − expert style 473–4
 − gifted behavioral checklist in science 474–5
 − gifted styles in science 473–4
 − identifying 472–7
 − implementation of chemistry education 477–84
 − innovation 479–80, 482–4
 − IQ Intelligence Quotient tests 472
 − meeting needs 482–4
 − natural selection model 474–7
 − Nobel Prize in chemistry from 1901 to 2012: 470–2
 − opportunities 485
 − science contests 480–2
 − solid style 473–4
 − spontaneous style 473–4
 − studying beyond the classrooms 480–2
Index

glassware and equipment
– information overload 306–7
– inquiry-based student-centered instruction 306–7

global warming, TKRS searches 57, 65–7
Global Water Experiment (GWE), UNESCO-IUPAC/CCE Global Microscience Program 556–7

globalization, curriculum influences 78
glocalization 51–70
goals, learning see learning goals

Google Books 719
Google Glass 566–7, 727–8
Google Patents 719
Google Scholar 719

graduate attributes, community-based learning (CBL) 354

graphic novels, lifelong learning 137–40

gravimetric measurements, microscale experimentation 546–8

green chemistry 39–41
Grignard’s lab notebook record, laboratory learning 674–5

Group Assessment of Logical Thinking (GALT), chemistry education research 164

group discussions, Wikis 687–8

guided-inquiry-based laboratories 310–16
– see also inquiry-based student-centered instruction
– assessment 314–16
– metals/acids experiments 311–14
– Reflective Diaries 315–16

GWE see Global Water Experiment

h

hard copy texts vs online texts 575–6

heterogeneity, problems with language 422, 437–9

high-impact educational practices
– community-based learning (CBL) 354–6
– community-based research (CBR) 354–6

high-order learning skills 517–36
– see also laboratory projects
– America’s Lab Report 519
– argumentation 526–31
– asking questions 531–2
– development 519–22
– epistemic practice 527–8
– goals, laboratory studies 522–3
– high school chemistry laboratory 517–36
– inquiry-based teaching 521–2
– inquiry-type chemistry laboratories 523–6, 529–31, 533–6
– metacognition 523–6, 527
– National Science Education Standards 521
– Nuffield Curriculum Projects 517, 518
– questioning skills 531–2
– using laboratories 522–3

higher order cognitive skills (HOCS) 80

history and development of chemical language 423–8
– chemical symbols 423–5
– systematic nomenclature 425–8

history and development of chemistry 469–70
– branches of chemistry 469–70
– Nobel Prize in chemistry from 1901 to 2012: 470–2

HOCS see higher order cognitive skills

human activity 5–17
– acid-base chemistry 16, 18–20
– Anthropocene Epoch 14–17
– atoms first 6–7
– carrying out chemistry 11–14
– climate change 9–10, 16–18, 32–3
– context-based learning (CBL) 21–3
– learning and teaching chemistry 5–9
– ocean acidification 16, 18–20
– rich contexts 18–19, 20–23
– sustainability 8, 14, 17, 27–8, 37–41
– visualization 9–10

i

ICT see information and communication technology

imagination, powers of 11–12, 30, 34–5

InChI compound identifier 698

informal education
– augmented reality (AR) 579–90
– game play 581–2
– lifelong learning 126–7
– Massive Open Online Courses (MOOCs) 126–7
– Might^3/Mach^4 580–90
– Science LinX 580

information and communication technology (ICT)
– see also blended learning; computer-based technologies
– influences on teaching 76–7

information overload, glassware and equipment 306–7
information processing model 654–5
– blended learning 654–5
– inquiry-based student-centered instruction 308
– long-term memory 305–6, 308
innovation
– curriculum 74–8
– disruptive innovation 341
– Ehime University Science Innovation Program 482–4
– flipped classrooms 341
– gifted learners 479–80, 482–4
– promoting 479–80
inquiry-based learning, laboratory learning 674, 678–81
inquiry-based student-centered instruction 301–17
– see also guided-inquiry-based laboratories
– cognitive skills 304–5
– concept development 308–10
– constructivism 304–6
– filtering information 305
– glassware and equipment 306–7
– guided-inquiry-based laboratories 310–16
– inductive approach 303–4
– information overload 306–7
– information processing model 308
– inquiry-based instruction 303–4
– laboratory projects 310–16
– learning cycle 304–7
– lecturing/lecture notes 301–2
– long-term memory 305–6, 308
– ‘scientists’ vs ‘technicians’ 303–4
inquiry-based teaching 80
– National Science Education Standards 521–2
inquiry emphasis
– experimental experience 493–4
– instruction style 493–4
inquiry-type chemistry laboratories
– high-order learning skills 523–6, 529–31, 533–6
– metacognition 523–6, 527
instruction styles
– experimental experience 492–4
– inquiry emphasis 493–4
– practical work 492–3
instructional design, Peer Instruction 334–6
instructional materials, student-generated 225–8, 232, 244–5
instructional practice, chemistry education research 155–6, 171–4
instructional technologies 224–8, 242
– electronic homework systems 225
– learning by design 224–5
– student-generated animations 225–6
– student-generated metaphors 227–8
– student-generated video-blogs 226–7
– student-generated videos 225
– Wiki environment 227
– Wikipedia editing 227
instrumental apps 640
instruments, chemistry education research 163–5
interaction
– learning communities 116
– teacher learning 116
interactive applets 571–2
– Jablonski diagram 571–2
– periodic videos 572, 656
interactive demonstrations, chemistry education research 166–7
interactive lectures 79
interactive model
– Interconnected Model of Teacher Professional Growth 101–2
– teacher learning 101–2
interactive simulations 611–14
interactivity, Internet 567–72
Interconnected Model of Teacher Professional Growth, teacher learning 101–2
interdisciplinary research-based projects, Real Work 231–2
Internet 565–93
– see also augmented reality (AR); chemistry apps; online learning; Semantic Web
– augmented reality (AR) 566–7, 579–90
– Blackboard 574
– Ephorus plagiarism-detection tool 577
– interactive applets 571–2
– interactivity 567–72
– iTunes university 575
– Khan Academy 324, 574
– layar 566–7, 579, 582
– Learning Platforms 574–5, 577–9
– lifelong learning 141–3
– Molecular City app 587–92
– Moodle 574
– online texts vs hard copy texts 575–6
– Science LinX 580–90
– Semantic Web 694–702
– Technological Pedagogical Content Knowledge (TPACK) 568–71
– Virtual Learning Environment (VLE) 574–5, 577–9
Index

– Web 2.0: 565–6, 694–5
– YouTube 574
intrinsic load, cognitive load theory (CLT) 654–5
inverted classrooms see flipped classrooms
invisible, ‘seeing’ the 28–34
involvement/engagement, flipped classrooms 322
ionic bonding, misconceptions 397–401
IQ Intelligence Quotients tests, gifted learners 472
iTunes university 575
iTunesU, blended learning 656–7

j
Jablonski diagram, interactive applet 571
JiTT see Just-in-Time Teaching
Jmol visualization tool 601–2
Just-in-Time Teaching (JiTT), flipped classrooms 326

k
Khan Academy 574
– flipped classrooms 324
knowledge base
– pedagogical content knowledge (PCK) 102–6
– subject matter knowledge (SMK) 102–6
– teacher learning 102–6

l
lab utility apps 634–40
laboratory classes, blended learning 657–9
laboratory learning
– see also practical work
– active-learning inquiry 674, 678–81
– assessment 672–5
– collaboration 681
– collective writing 682–4
– experimental observations 679
– Grignard’s lab notebook record 674–5
– inquiry-based learning 674, 678–81
– objectives 672–3
– scaffolding collaborative laboratory report
 writing 682–4
– Science Writing Heuristic (SWH) 674
– virtual laboratory notebook 682
– Wikis 675–89
laboratory notebooks, Wikis 672–6, 678, 682–3, 687
laboratory practical work 489–91
– see also microscale experimentation
laboratory projects
– see also high-order learning skills
– guided-inquiry-based laboratories 310–16
– inquiry-based student-centered instruction 310–16
– metals/acid experiments 311–14
– safety teams 239
– team-based learning 223
LabQuest 2 app, augmented reality (AR) 713–14
language 421–42
– see also scientific literacy
– argumentation and discourse 436
– chemical symbols 423–5
– command words 435–6
– dimensions 429–30
– diversity of students 437–41
– English language learners (ELLs) 437–40
– heterogeneity 422, 437–9
– history and development of chemical language 423–8
– literacy reduction factors 422
– logical connectives 434–5
– non-native speakers 437–40
– nontechnical words 433–4
– problems 430–7
– readability of text 436–7
– role in science education 428–30
– second language learners (SLLs) 437–40
– special-needs students 440–1
– systematic nomenclature 425–8
– technical words/terms 430–3, 434
layar, augmented reality (AR) 566–7, 579, 582
learning about science
– vs learning science 203–9
– vs learning to be a scientist 203–9
learning and teaching chemistry, human activity 5–9
learning approaches, Dale pyramid 75–6
learning by design, instructional technologies 224–5
learning communities
– collaboration 116
– computer-based technologies 116
– interaction 116
– professional knowledge/development 114–16
– teacher learning 114–16
learning cycle
– cognitive skills 304–5
– constructivism 304–5
– filtering information 305
learning cycle (contd.)
 – inquiry-based student-centered instruction 304–7
learning goals 21, 40, 41
 – superpowers 33–7
Learning Platforms
 – flipped classrooms 577–8
 – Internet 574–5, 577–9
learning research see chemistry education research
learning science
 – vs learning about science 203–9
 – vs learning to be a scientist 203–9
learning to be a scientist
 – vs learning about science 203–9
 – vs learning science 203–9
lectures
 – blended learning 657–9
 – flipped classrooms 326–7
 – pre-lecture activities 657–8
 – lecturing/lecture notes 301–2
lifelong learning 123–46
 – books, popular 135–6
 – broadcast media 140–1
 – cartoons 136–7
 – citizen science 143–4
 – comics 136–7
 – computer-based technologies 141–3
 – connectivism 141–3
 – content of ideas 129–30
 – digital environments 141–3
 – emphases 127–9
 – extension of formal education opportunities 125–9
 – formal education 125–6
 – four-stage model 127–9
 – graphic novels 137–40
 – informal education 126–7
 – Internet 141–3
 – key aspects 125
 – magazines 134–5
 – Massive Open Online Courses (MOOCs) 142
 – media 133–46
 – media selection criteria 133, 145–6
 – newspapers 134–5
 – novels, graphic 137–40
 – opportunities 123–9, 144–6
 – pedagogy 131–2
 – ‘popular’ books 135–6
 – presentation of ideas 130–1
 – printed media 134–40
 – radio 140–1
 – school-level formal chemistry education 123–5
 – science centers 134
 – science museums 133–4
 – social circumstances 131–2
 – structure 127–9
 – television 140–1
lifelong research-oriented teachers 113–14
light absorption, microscale experimentation 552–3
literacy reduction factors, scientific literacy 422
literacy, scientific see scientific literacy
literature research apps 633–4
literature seminars, Real Work 229–30
literature summaries, Real Work 228–9
logic processes
 – cognitive conflict recognition 459–61
 – cognitive conflict resolution 459–61
logical connectives, problems with language 434–5
logical thinking tests, chemistry education research 164
long-term memory
 – information processing model 305–6, 308
 – inquiry-based student-centered instruction 305–6, 308
looking up 44–6
m
macro level (reality) misconceptions 417
macro vs micro, microscale experimentation 542–3
macroscopic level
 – conceptual understanding 596–7
 – mental models 596–7
magazines, lifelong learning 134–5
magnetism, understanding, context-based learning (CBL) 273–5
Marker-based AR and Markerless AR, augmented reality 711–12
Massive Open Online Courses (MOOCs) 79, 572–4, 710
 – informal education 126–7
 – lifelong learning 142
meaningful learning 224–5
 – context-based learning (CBL) 260–1
 – vs rote learning 203–4
media, lifelong learning 133–46
 – broadcast media 140–1
 – citizen science 143–4
 – digital environments 141–3
 – printed media 134–40
magnetism, understanding, context-based learning (CBL) 273–5
Marker-based AR and Markerless AR, augmented reality 711–12
Massive Open Online Courses (MOOCs) 79, 572–4, 710
 – informal education 126–7
 – lifelong learning 142
meaningful learning 224–5
 – context-based learning (CBL) 260–1
 – vs rote learning 203–4
media, lifelong learning 133–46
 – broadcast media 140–1
 – citizen science 143–4
 – digital environments 141–3
 – printed media 134–40
– science centers 134
– science museums 133–4
– selection criteria 133, 145–6
media literacy, scientific literacy 53–4
melamine, TKRS searches 63–4, 65–7
mental models
– conceptual understanding 596–8
– dynamic visualization 603–6
– macroscopic level 596–7
– microscopic level 597
– symbolic level 597
– visualization 596–606, 609–15
metacognition
– high-order learning skills 523–6, 527
– inquiry-type chemistry laboratories 523–6, 527
– student-generated instructional materials 244–5
metals/acidsexperiments,
guided-inquiry-based laboratories 311–14
metals, descriptive chemistry,
problem-based learning (PBL) 285–6
microscale experimentation 539–59
– advantages 542–3
– aims of practical work 540–3, 555–7, 559
– benefits 542–4
– case study 542–58
– cell potential measurements 549–51
– conductivity/conductance meters 551–2
– digital multimeters 548–53
– electrical conductivity 551–2
– electrowinning of copper 546–8
– Global Water Experiment (GWE) 556–7
– gravimetric measurements 546–8
– light absorption 552–3
– macro vs micro 542–3
– microtitration 544–6
– pH measurements 549–51
– probes 548–53
– quantitative 548–53
– roots 541
– scale 542–3
– scientific approach, learning the 554–5
– sensors 548–53
– temperature measurements 552–3
– UNESCO-IUPAC/CCE Global
 Microscience Program 541, 555–7
– volumetric analysis 544–6
microtitration, microscale experimentation 544–6
Mighty/Mach
– augmented reality (AR) 580–90
– informal education 580–90
misconceptions 395–419
– acid–base reactions 405–12
– best practice to challenge 416–17
– chemical equilibrium 401–5
– cognitive conflict strategy 451–2
– electron transfer 414–16
– integrating into instruction 418–19
– ionic bonding 397–401
– macro level (reality) 417
– oxygen transfer 413–14
– preconcepts 395–6
– proton transfer 405–12
– redox reactions 411–16
– representational level (symbolic level) 417
– school-made misconceptions 395–7
– submicro level (mental and concrete models) 417
misconceptions, students, chemistry education research 154–7
mobile devices 702–5
– see also chemistry apps
models/modeling
– conceptual integration 383–5
– modeling apps 626–9, 714–15
– multiple models 383–5
– teaching about 109–11
molecular animations, visualization 607–8
Molecular City app 587–92
molecular drawing apps 629–31
molecular viewers, chemistry apps 626–9, 714–15
MOOCs see Massive Open Online Courses
Moodle, Virtual Learning Environment (VLE) 574
Motivated Strategies for Learning Questionnaire (MSLQ) 243–4
MSLQ see Motivated Strategies for Learning Questionnaire
n
nano, TKRS searches 64–7
National Science Education Standards
– high-order learning skills 521
– inquiry-based teaching 521–2
natural selection model, gifted learners 474–7
new teaching methods
– see also chemistry education research
– activity system 82–3
– competency-based teaching 81–3
– curriculum influences 78–83
– higher order cognitive skills (HOCS) 80
new teaching methods (contd.)
– inquiry-based teaching 80
– interactive lectures 79
– Massive Open Online Courses (MOOCs) 79, 126–7, 142, 572–4
– problem-based teaching 80
– process-oriented guided inquiry learning (POGIL) 80, 160
– research-based teaching 80–1
– newspapers, lifelong learning 134–5
Nobel Prize in chemistry from 1901 to 2012: 470–2
– non-majors, chemistry for 34, 37, 39
– non-native speakers, problems with language 437–40
– nontechnical words, problems with language 433–4
– notebooks
 – electronic lab notebooks (ELNs) 708, 720–1
 – Grignard’s lab notebook record 674–5
 – laboratory notebooks, Wikis 672–6, 678, 682–3, 687
– novels, graphic, lifelong learning 137–40
– Nuffield Curriculum Projects, high-order learning skills 517, 518

o
– ocean acidification, human activity 16, 18–20
– odors, industrial 41–4
– online communities, blended learning 663–5
– online learning
 – also Internet
 – community-based learning (CBL) 365–6
 – community-based research (CBR) 365–6
 – online texts vs hard copy texts 575–6
– online quizzes, blended learning 659–62
– open data 698, 701–2, 717, 720–1
– Open Notebook Science 720
– Open Pharmacological Concept Triple Store (Open PHACTS) 701–2
– opportunities
 – chemistry apps 646–7
 – extension of formal education opportunities 125–9
 – gifted learners 485
 – lifelong learning 125–9, 144–6
 – teacher learning 113–16
– organic chemistry
 – divergent tasks for training organic chemistry peer facilitators 217–18
 – problem-based learning (PBL) 287–8
 – problem solving research 186–92
 – simulations 613–15
 – virtual problem-based learning (VPBL) 287–8
– organizing information, problem solving research 195–9
– oxygen transfer, misconceptions 413–14

P
– PARE (preparation, action, reflection, and evaluation) model 353
– PeerInstruction
 – see also flipped classrooms
 – classroom response systems 333–5, 338
 – ConcepTests 330–9
 – discussion 337
 – flipped classrooms 329–39
 – future of education 341
 – goals 330
 – instructional design 334–6
 – pitfalls 336–8
 – research 336
 – workflow 332–4
– peer presentation, review and critique 218–22
– peer review and critique, conceptual weaknesses 240–1
– peer-to-peer instruction, Real Work 220
– PeerWise, blended learning 235, 661
– Periodic Table apps 631–3
– periodic videos, interactive applet 572, 656
– Personal Construct Theory (PCT), conceptual integration 378–9
– personal development, community-based learning (CBL) 354
– personal response systems, blended learning 662–3, 664
– pH measurements, microscale experimentation 549–51
– PhET interactive simulations 598–9
physical chemistry, problem solving research 197–9

Physical Chemistry Online (PCOL) 710

plagiarism, Ephorus plagiarism-detection tool 577

planetary boundaries, chemistry concepts 16–17

podcasts 236–8, 239, 705
 – blended learning 656–7

POE technique see predict–observe–explain technique

POGIL see process-oriented guided inquiry learning

Polya’s model, problem solving research 195

‘popular’ books, lifelong learning 135–6

practical work
 – see also laboratory learning; microscale experimentation
 – aims 540–3, 555–7, 559
 – benefits 497
 – chemistry education 489–91
 – experimental experience 489–92
 – goals 492–3
 – instruction styles 492–3
 – laboratory 489–91
 – reasons for 490–1

pre-laboratory activities, blended learning 658–9

predict–observe–explain (POE) technique
 – cognitive conflict strategy 456, 462–3
 – pedagogic simulation 612

preparedness, flipped classrooms 327

presentation of ideas, lifelong learning 130–1

print textbooks 233–5

printed media, lifelong learning 134–40

prior knowledge, flipped classrooms 321–2

probes, microscale experimentation 548–53

problem-based group-organized project work
 – curriculum reform 498–9
 – experimental experience 498–9

problem-based learning (PBL) 280–90
 – bioinorganic chemistry course 288–9
 – content 289–90
 – history 281
 – metals, descriptive chemistry 285–6
 – options 282–3
 – organic chemistry 287–8
 – problems 285–9
 – process 281–3
 – research preparation 282
 – tasks 281–3
 – thermochemistry 286–7
 – virtual PBL 283–5, 287–8

problem-based teaching 80

problem orientation, experimental experience 498

problem solving, chemistry education research 161

problem solving research 181–200
 – anarchistic model of problem solving 193–9
 – eight-balls problem 182–4
 – four-card problem 182
 – general chemistry 184–6
 – organic chemistry 186–92
 – organizing information 195–9
 – physical chemistry 197–9
 – Polya’s model 195
 – problem-solving mindset 193
 – Purdue Visualization of Rotation (ROT) Test 184–6
 – reasons for 181–4
 – spatial ability tests 184–7
 – successful problem solvers’ characteristics 199–200
 – synthesis problems 187–93
 – trial and error strategy 182–3, 184, 195–6, 198

Process-Oriented Guided Inquiry Learning in Analytical Chemistry (ANAPOGIL), chemistry education research 167–9

process-oriented guided inquiry learning (POGIL) 80

 – chemistry education research 160
 – professional knowledge/development 22–3
 – chemistry education research 171–4
 – Interconnected Model of Teacher Professional Growth 101–2
 – learning communities 114–16
 – teacher learning 99–108
 – project-based learning 512–14
 – see also experimental experience
 – project-organization, experimental experience 499–502

project reports 502–11

 – analysis 502–3
 – design 509
 – experimental 509–10
 – experimental experience 502–11
 – interpretation 510–11
 – objectives 508–9
 – results 510

proton transfer

 – acid–base reactions 405–12
proton transfer (contd.)
– misconceptions 405–12
public health 37–9
public science courses, Real Work 230
PubMed 719
Purdue Visualization of Rotation (ROT) Test, problem solving research 184–6

q
QR (quick response) codes 711–14
quantitative microscale experimentation 548–53
questioning skills, high-order learning skills 531–2
quizzes, online, blended learning 659–62

r
radio, lifelong learning 140–1
RDF see Resource Description Framework
readability of text, problems with language 436–7
Real Work
– active-learning assignments, classroom 238
– argumentation and evidence 222
– authentic learning 206–9
– authentic learning experiences 203–6
– authentic materials 243–4
– authentic tasks 206–9
– authentic texts and evidence 228–32
– calibrated peer review (CPR) 221, 240–1
– convergent assignments 209–18
– Course-Based Undergraduate Research Experiences (CURE) 230–1, 243
– creativity, divergent explanations 240
– defining 203–6
– Distributed Drug Discovery (D³) project 231–2
– divergent assignments 209–18
– electronic homework systems 225, 235–6, 237
– explanatory knowledge 219–20
– generating questions 230
– guided peer review and revision 221–2
– vs home work 203–6
– instructional technologies 242
– interdisciplinary research-based projects 231–2
– learning from 239–45
– literature seminars 229–30
– literature summaries 228–9
– peer presentation, review and critique 218–22
– peer review and critique, conceptual weaknesses 240–1
– peer-to-peer instruction 220
– podcasts 236–8, 239
– print textbooks 233–5
– public science courses 230
– safety teams, laboratory 239
– situated cognition 20, 203, 207
– situated learning 206–9
– student-generated instructional materials 225–8, 232, 244–5
– team-based learning 222–4
– team learning, achievement gains 241–2
– tutor learning 220
– web-based textbooks 233–5
– Wiki textbooks 232–3
real-world chemistry 17, 37–9, 41–4, 279–80
– see also problem-based learning (PBL)
– American Association for the Advancement of Science (AAAS) 280
redox reactions, misconceptions 412–16
Reflective Diaries, guided-inquiry-based laboratories 315–16
representational level (symbolic level) misconceptions 417
representations, chemistry education research 161–3
research
– see also chemistry education research; problem solving research
– conceptual integration 391–2
– student learning 153–4
research-based teaching 80–1
– see also chemistry education research
– future trends 117
– lifelong research-oriented teachers 113–14
– research-based teaching practice 165–70
– teacher learning 117
research on student learning, curriculum 74–6
research preparation, problem-based learning (PBL) 282
Resource Description Framework (RDF) 698–9
responsibilities
– connections 27–48
– SENCER (Science Education for New Civic Engagements and Responsibilities) 27–8, 37–9, 47–8
– stories 27–48
– transforming thinking 27–48
retrosynthetic analysis 213
rich contexts, human activity 13–14, 17–23
ROT test, Purdue Visualization of Rotation (ROT) Test 184–6
rote learning, vs meaningful learning 203–4
RSC databases 719
RSS feeds 699
safety teams, laboratory 239
scaffolding collaborative laboratory report writing, Wikis 682–4
school-level
 – ‘Chemie im Kontext’ 261–3
 – context-based learning (CBL) 261–3
 – formal chemistry education 123–5
science centers, lifelong learning 134
science contests, gifted learners 480–2
Science LinX, informal education 580–90
science museums, lifelong learning 133–4
Science Writing Heuristic, chemistry education research 160
Science Writing Heuristic (SWH), laboratory learning 674
scientific approach, learning the 554–5
scientific literacy 52–5
 – see also language
 – defining 52
 – elements 53
 – literacy reduction factors 422
 – media literacy 53–4
 – teaching keywords-based recommendation system (TKRS) searches 55–70
scientific terms, teaching keywords-based recommendation system (TKRS) searches 55–70
’scientists’ vs ‘technicians’, inquiry-based student-centered instruction 303–4
screencasts, blended learning 656–7
search engine apps 637–8
search systems shortcomings, Semantic Web 700–1
second language learners (SLLs), problems with language 437–40
second-level digital divide 693, 721–3, 725–7
Second Life, augmented reality (AR) 709–10
see blended learning, screencasts 656–7
‘seeing’ the invisible 28–34
self-explanations, visualization 609–10
self-regulation
 – flipped classrooms 322
 – student-generated instructional materials 244–5
Semantic Web 694–702
 – Berners-Lee, Tim 694–5, 697
 – ChemEd DL (digital library) 697
 – chemical markup language (CML) 699–700
 – crowdsourcing 702
 – Data Enhancing the RSC Archive (DERA) 697
 – Freebase 695
 – goal 698
 – InChI compound identifier 698
 – Open Pharmacological Concept Triple Store (Open PHACTS) 701–2
 – Resource Description Framework (RDF) 698–9
 – RSS feeds 699
 – search systems shortcomings 700–1
 – Semantically-Interlinked Online Communities Initiative 701
 – Social Semantic Web 701
 – WikiHyperGlossary 697
SENCER (Science Education for New Civic Engagements and Responsibilities), national curriculum reform project 27–8, 37–9, 47–8
sensors, microscale experimentation 548–53
service-learning 290–5
 – see also community-based learning (CBL)
 – analytical/environmental chemistry projects 291–2
 – benefits 294
 – bioinorganic chemistry course 293–4, 295
 – chemistry education projects 292–3
 – defining 346
 – scope 290–1
 – Wikipedia editing 292–3
simulations
 – chemistry education research 161–3
 – interactive 611–14
 – organic chemistry 613–15
 – pedagogic simulation 611–13
 – PhET interactive simulations 598–9
 – visualization 598–9, 611–15
situated cognition, Real Work 20, 203, 207
situated learning, Real Work 206–9
skills, required, employers’ influences 78
SLLs see second language learners
smartphone devices 702–5
– see also chemistry apps
SMK see subject matter knowledge
social circumstances, lifelong learning 131–2
social networking, blended learning 664–5
Social Semantic Web 701
– role 717–21
solid style, gifted learners 473–4
spatial ability, visualization 609–10
spatial ability tests, problem solving research 184–7
special-needs students, problems with language 440–1
spontaneous style, gifted learners 473–4
SRSs see student response systems
stoichiometry, chemistry education research 155–6
stories 27–48
– connections 27–48
– responsibilities 27–48
– transforming thinking 27–48
strategies, context-based tasks 265–7
strategies, teaching see teaching strategies
student argumentation, chemistry education research 159–60
student-centered learning see inquiry-based
student-centered instruction
student-centered pedagogy, flipped classrooms 320, 322
student communication, Wikis 678–81
student discourse, chemistry education research 159–60
student-generated animations 225–6
student-generated instructional materials 225–8, 232, 244–5
student-generated metaphors 227–8
student-generated video-blogs 226–7
student-generated videos 225
student learning research 153–4
– see also chemistry education research
student numbers, influences on teaching 77–8
student response systems (SRSs), chemistry education research 157–8
student understanding, Wikis 686–8
students’ misconceptions, chemistry education research 154–7
subject matter knowledge (SMK)
– models/modeling, teaching about 109–11
– teacher learning 102–6, 109–11
submicro level (mental and concrete models)
– misconceptions 417

submicroscopic level
– conceptual understanding 597
– mental models 597
successful problem solvers’ characteristics 199–200
super-learning environments 34–7
superpowers, learning goals 33–7
sustainability
– human activity 8, 14, 17, 27–8, 37–41
– TKRS searches 57–8, 65–7
SWH see Science Writing Heuristic
symbolic level
– conceptual understanding 597
– mental models 597
synthesis problems, problem solving research 187–93
systematic nomenclature, history and development of chemical language 425–8

tablet devices 702–5
– see also chemistry apps
teacher learning 99–108
– see also curriculum
– challenges 113–16
– challenging issues, teaching 107–13
– collaboration 116, 117
– complex/reciprocal processes 100–2
– computer-based technologies 111–13, 116
– context-based teaching 107–9, 117
– craft model 100
– elements 99–100
– empowering teachers 107–13
– expert model 100
– future trends 116–18
– interaction 116
– interactive model 101–2
– Interconnected Model of Teacher Professional Growth 101–2
– knowledge base 102–6
– learning communities 114–16
– lifelong research-oriented teachers 113–14
– models/modeling, teaching about 109–11
– opportunities 113–16
– pedagogical content knowledge (PCK) 102–6, 109–13
– professional knowledge/development 99–108
– research-based teaching 117
Index

– subject matter knowledge (SMK) 102–6, 109–11
– Technological Pedagogical Content Knowledge (TPACK) 111–13
teaching and demonstration apps 641–2
teaching challenging issues, teacher learning 107–13
teaching developments
 – experimental experience 494–7
 – lessons learned 497
 – tertiary level 495–6
 – upper secondary level 494–5
 teaching keywords-based recommendation system (TKRS) searches 55–70
 – implications for chemistry education 68–70
teaching strategies 151–74
 – approaches 151–2
 – focuses 151–2
 – phases 151–2, 154, 156–7
team-based learning
 – collaborative identification 223–4
 – experimental optimization 224
 – face-to-face teams 222–3
 – laboratory projects 223
 – Real Work 222–4
 – virtual teams 223
team learning
 – achievement gains 241–2
 – convergent assignments 215–16
 – divergent assignments 216–18
technical words/terms, problems with language 430–3, 434
Technological Pedagogical Content Knowledge (TPACK) 568–71
 – Jablonski diagram 571
 – teacher learning 111–13
technology dependency, flipped classrooms 324–5
technology-enhanced learning
 – see also blended learning; chemistry apps
 – theoretical perspectives 675–8
television, lifelong learning 140–1
temperature measurements, microscale experimentation 552–3
Test of Logical Thinking (TOLT), chemistry education research 164
test-prep apps 644–5
tetrahedral chemistry education, visual metaphor 4
textbooks
 – print textbooks 233–5
 – web-based textbooks 233–5
 – Wiki textbooks 232–3
theoretical perspectives,
technology-enhanced learning 675–8
 thermochemistry, problem-based learning (PBL) 286–7
TKRS searches see teaching keywords-based recommendation system searches
Toulmin’s model of argumentation 528–9
TPACK/TPCK see Technological Pedagogical Content Knowledge
traditional classrooms, vs flipped classrooms 323–4
traditional undergraduate curriculum 73–4
transferring knowledge, context-based tasks 265–7
transforming thinking
 – connections 27–48
 – responsibilities 27–48
 – stories 27–48
transient information effect, cognitive load theory (CLT) 657
trial and error strategy, problem solving research 182–3, 184, 195–6, 198
tutor learning, Real Work 220
 tutors’ role, Wikis 679–81
Twitter, blended learning 664–5
u
undergraduate research 40–1, 81
 – Course-Based Undergraduate Research Experiences (CURE) 230–1, 243
UNESCO-IUPAC/CCE Global Microscience Program
 – Global Water Experiment (GWE) 556–7
 – microscale experimentation 541, 555–7
United States Agency for International Development (USAID), active learning pedagogies 296
v
videos
 – see also YouTube
 – flipped classrooms 324–5, 326
 – iTunesU 656–7
 – periodic videos, interactive applet 572
 – student-generated video-blogs 226–7
 – student-generated videos 225
 – transient information effect 657
virtual laboratory notebook, Wikis 682
Virtual Learning Environment (VLE) 574–5, 577–9, 708–17
 – see also blended learning
virtual problem-based learning (VPBL) 283–5
 – organic chemistry 287–8
virtual teams, team-based learning 223
virtual worlds
 – ChemCollective virtual laboratory 600
 – visualization 600–1
visualization 595–616
 – see also animations
 – 3D representations 601–3
 – animations 607–9
 – ChemCollective virtual laboratory 600
 – conceptual understanding 596–8
 – design 595–6
 – dynamic visualization 603–6, 611–15
 – gas laws/air bag 603–6
 – human activity 8–9
 – individual differences 609, 610–11
 – Jmol visualization tool 601–2
 – mental models 596–606, 609–15
 – molecular animations 607–8
 – PhET interactive simulations 598–9
 – self-explanations 609–10
 – simulations 598–9, 611–15
 – spatial ability 609–10
 – technology 598–603
 – virtual worlds 600–1
Visualization of Rotation (ROT) Test, problem solving research 184–6
VLE see Virtual Learning Environment
volumetric analysis, microscale experimentation 544–6
VPBL see virtual problem-based learning

w
wearable devices, augmented reality (AR) 715–16

Web, 2.0: 565–6
 – see also Internet; Semantic Web
web-based textbooks 233–5
Wiki environment 227
Wiki textbooks 232–3
WikiHyperGlossary 697
Wikipedia 572, 573, 717–18
 – editing 227, 292–3
 – service-learning 292–3
Wikis 671–89
 – collaboration 681
 – collective writing 682–4
 – emerging uses 684–8
 – engagement/involvement, evaluating 684–8
 – examples 681–4
 – experimental observations 679
 – group discussions 687–8
 – laboratory learning 675–89
 – laboratory notebooks 672–6, 678, 682–3, 687
 – PBWorks Wiki platform 682–3
 – scaffolding collaborative laboratory report writing 682–4
 – shared understanding 679
 – student communication 678–81
 – student participation, evaluating 684–8
 – student understanding 686–8
 – tools 682–4
 – tutors’ role 679–81
 – virtual laboratory notebook 682
workflow, Peer Instruction 332–4

y
YouTube 113, 574, 642, 714–15
 – blended learning 656–7
 – flipped classrooms 321