Contents

Preface XIII
A Personal Foreword XV

1 Origin and Historical Perspective on Reactive Metabolites 1
Abbreviations 1
1.1 Mutagenesis and Carcinogenesis 1
1.2 Detection of Reactive Metabolites 3
1.3 Induction and Inhibition: Early Probes for Reactive Metabolites and Hepatotoxicants 4
1.4 Covalent Binding and Oxidative Stress: Possible Mechanisms of Reactive Metabolite Cytotoxicity 5
1.5 Activation and Deactivation: Intoxication and Detoxification 6
1.6 Genetic Influences on Reactive Metabolite Formation 6
1.7 Halothane: the Role of Reactive Metabolites in Immune-Mediated Toxicity 7
1.8 Formation of Reactive Metabolites, Amount Formed, and Removal of Liability 8
1.9 Antibodies: Possible Clues but Inconclusive 8
1.10 Parent Drug and Not Reactive Metabolites, Complications in Immune-Mediated Toxicity 9
1.11 Reversible Pharmacology Should not be Ignored as a Primary Cause of Side Effects 10
1.12 Conclusions: Key Points in the Introduction 10
References 11

2 Role of Reactive Metabolites in Genotoxicity 13
Abbreviations 13
2.1 Introduction 13
2.2 Carcinogenicity of Aromatic and Heteroaromatic Amines 13
2.3 Carcinogenicity of Nitrosamines 17
2.4 Carcinogenicity of Quinones and Related Compounds 19
2.5 Carcinogenicity of Furan 23
2.6 Carcinogenicity of Vinyl Halides 26
3 Bioactivation and Inactivation of Cytochrome P450 and Other Drug-Metabolizing Enzymes

3.1 Introduction
3.2 Pharmacokinetic and Enzyme Kinetic Principles Underlying Mechanism-Based Inactivation and Drug–Drug Interactions
3.2.1 Enzyme Kinetic Principles of Mechanism-Based Inactivation
3.2.2 Pharmacokinetic Principles Underlying DDIs Caused by Mechanism-Based Inactivation
3.3 Mechanisms of Inactivation of Cytochrome P450 Enzymes
3.3.1 Quasi-Irreversible Inactivation
3.3.2 Heme Adducts
3.3.3 Protein Adducts
3.4 Examples of Drugs and Other Compounds that are Mechanism-Based Inactivators of Cytochrome P450 Enzymes
3.4.1 Amines
3.4.2 Methylenedioxyphenyl Compounds
3.4.3 Quinones, Quinone Imines, and Quinone Methides
3.4.4 Thiophenes
3.4.5 Furans
3.4.6 Alkynes
3.4.7 2-Alkylimidazoles
3.4.8 Other Noteworthy Cytochrome P450 Inactivators
3.5 Mechanism-Based Inactivation of Other Drug-Metabolizing Enzymes
3.5.1 Aldehyde Oxidase
3.5.2 Monoamine Oxidases
3.6 Concluding Remarks

4 Role of Reactive Metabolites in Drug-Induced Toxicity – The Tale of Acetaminophen, Halothane, Hydralazine, and Tienilic Acid
7.2 Drugs Activated Nonenzymatically and by Oxidative Metabolism 145
7.2.1 Proton Pump Inhibitors 145
7.2.2 Nitrosoureas 147
7.2.3 Imidazotriazenes 148
7.2.4 Thienotetrahydropyridines 150
7.2.5 Oxazaphosphorines 152
7.2.6 N,N',N,N',N,N'-Hexamethylmelamine 153
7.3 Bioreductive Activation of Drugs 153
7.3.1 Bioreduction to Radical Intermediates 157
7.3.1.1 Tirapazamine 157
7.3.1.2 Anthracyclines 157
7.3.1.3 Enediyynes 158
7.3.1.4 Artemisinin Derivatives 166
7.3.2 Bioreductive Activation to Electrophilic Intermediates 168
7.3.2.1 Mitomycins 168
7.3.2.2 Aziridinylbenzoquinones 170
7.3.2.3 Bioreductive Activation of Anthracyclines to Alkylating Species 173
7.3.2.4 Bioreductive Activation of Nitroaromatic Compounds 174
7.4 Concluding Remarks 175
References 176

8 Retrospective Analysis of Structure–Toxicity Relationships of Drugs 185
8.1 Introduction 185
8.2 Irreversible Secondary Pharmacology 189
8.2.1 Common Structural Features: Carboxylic Acids 189
8.3 Primary Pharmacology and Irreversible Secondary Pharmacology 191
8.4 Primary or Secondary Pharmacology and Reactive Metabolites: the Possibility for False Structure–Toxicity Relationships 192
8.5 Multifactorial Mechanisms as Causes of Toxicity 196
8.6 Clear Correlation between Protein Target and Reactive Metabolites 197
8.7 Conclusion – Validation of Reactive Metabolites as Causes of Toxicity 198
References 200

9 Bioactivation and Natural Products 203
9.1 Introduction 203
9.2 Well-Known Examples of Bioactivation of Compounds Present in Herbal Remedies 205
9.2.1 Germander and Teucrin A 205
9.2.2 Pennyroyal Oil and Menthofuran 207
14.4 Should Reactive Metabolite–Positive Compounds be Nominated as Drug Candidates? 340
14.4.1 Impact of Competing, Detoxification Pathways 341
14.4.2 The Impact of Dose Size 342
14.4.3 Consideration of the Medical Need/Urgency 345
14.4.4 Consideration of the Duration of Treatment 345
14.4.5 Consideration of Novel Pharmacological Targets 346
14.5 The Multifactorial Nature of IADRs 348
14.6 Concluding Remarks 350
References 351

15 Managing IADRs – a Risk–Benefit Analysis 357
15.1 Risk–Benefit Analysis 357
15.2 How Common is Clinical Drug Toxicity? 359
15.3 Rules and Laws of Drug Toxicity 363
15.4 Difficulties in Defining Cause and Black Box Warnings 365
15.5 Labeling Changes, Contraindications, and Warnings: the Effectiveness of Side Effect Monitoring 367
15.6 Allele Association with Hypersensitivity Induced by Abacavir: Toward a Biomarker for Toxicity 369
15.7 More Questions than Answers: Benefit Risk for ADRs 373
References 374

Index 377