Contents

Preface xi
List of Contributors xiii

I Fundamentals

1 The Impact of Electrocrystallization on Nanotechnology 3
Georgi Staikov and Alexander Milchev
1.1 Introduction 3
1.2 Thermodynamic Properties of Large and Small Phases 4
1.2.1 The State of Thermodynamic Equilibrium 4
1.2.2 Electrochemical Supersaturation and Undersaturation 6
1.2.3 The Thermodynamic Work for Nucleus Formation 7
1.2.3.1 Classical Nucleation Theory 8
1.2.3.2 Atomistic Nucleation Theory 9
1.3 Kinetics of Nucleus Formation in Electrocrystallization 10
1.4 Energy State of the Electrode Surface and Spatial Distribution of Nanoclusters 11
1.5 Electrochemical Growth of Nanoparticles and Ultrathin Films 14
1.5.1 Growth of 3D Nanoclusters 15
1.5.2 Growth of 2D Nanoclusters and Formation of UPD Monolayers 17
1.6 Localization of Electrocrystallization Processes and Nanostructuring 20
1.7 Conclusion 24
Acknowledgments 25
References 25

2 Computer Simulations of Electrochemical Low-dimensional Metal Phase Formation 30
Marcelo M. Mariscal and Ezequiel P. M. Leiva
2.1 Introduction 30
2.2 Molecular Dynamics Simulations 32
2.2.1 Generalities 32
2.2.2 Nanostructuring of Metallic Surfaces 33
2.3 Monte Carlo Method 37
 2.3.1 Generalities 37
 2.3.2 Off-lattice Models 40
 2.3.2.1 Stability of Metallic Nanostructures 40
 2.3.3 Lattice Models 44
 2.3.3.1 Introduction 44
 2.3.3.2 Electrocrysallization 46
 2.3.3.3 Dynamics of Crystal Growth 51
 2.3.3.4 Simulation of a Complex Underpotential Deposition System 53
2.4 Brownian and Langevin Dynamics Simulations 54
 2.4.1 Generalities 54
 2.4.2 Applications in Electrochemical Nanostructuring and Crystal Growth 55
2.5 Conclusions and Outlook 58
Acknowledgments 59
References 59

3 Electrodeposition of Metals in Templates and STM Tip-generated 0D Nanocavities 61
 Wolfgang Kautek
3.1 Introduction 61
3.2 Bottom-up Template Approach 61
3.3 Top-down SPM Approach 66
3.4 Thermodynamics of Low-dimensional Phases 68
3.5 Experiments on the Electrodeposition in STM-tip-generated Nanocavities 69
3.6 Underpotential Behavior of Bismuth on Gold 70
3.7 Zero-dimensional Bi Deposition 72
3.8 Conclusions 74
Acknowledgment 75
References 75

4 Nanoscale Electrocrytallization of Metals and Semiconductors from Ionic Liquids 79
 Walter Freyland, Chitradurga L. Aravinda, and Ditimar Borissov
4.1 Introduction 79
4.2 Some Electrochemical and Interfacial Characteristics of Ionic Liquids (ILs) 80
4.3 Variable Temperature Electrochemical SPM Technique for Studies with Ionic Liquids 81
4.4 Underpotential Deposition of Metals: Phase Formation and Transitions 82
4.4.1 Ag on Au(111): Aqueous versus Ionic Liquid Electrolytes 83
4.4.2 Zn on Au(111): Spinodal Decomposition and Surface Alloying 86
4.5 Overpotential Deposition of Metals, Alloys and Semiconductors 89
5 Superconformal Film Growth 96
Thomas P. Moffat, Daniel Wheeler, and Daniel Josell

5.1 Introduction 96
5.2 Competitive Adsorption: Inhibition versus Acceleration 98
5.3 Quantifying the Impact of Competitive Adsorption on Metal Deposition Kinetics 101
5.4 Feature Filling 104
5.5 Shape Change Simulations 107
5.6 Stability Analysis 110
5.7 Conclusions and Outlook 112
References 113

II Preparation and Properties of Nanostructures

6 Localized Electrocrystallization of Metals by STM Tip Nanoelectrodes 117
Werner Schindler and Philipp Hugelmann

6.1 Electrochemistry in Nanoscale Dimensions 117
6.2 Jump-to-Contact Metal Deposition 118
6.3 Scanning Electrochemical Microscope 120
6.4 STM Tip Electrochemical Nanoelectrodes 120
6.5 Metal Deposition by STM Tip Electrochemical Nanoelectrodes 122
6.6 Metal Dissolution by STM Tip Electrochemical Nanoelectrodes 124
6.7 The Importance of Nanoelectrode Tip Shape and Surface Quality 127
6.8 Localized Electrodeposition of Single Metal Nanostructures 129
6.9 Summary and Outlook 134
Acknowledgments 136
References 136

7 Fabrication of Ordered Anodic Nanoporous Alumina Layers and their Application to Nanotechnology 138
Hidetaka Asoh and Sachiko Ono

7.1 Introduction 138
7.2 Self-ordered Anodic Porous Alumina 139
7.2.1 Introduction 139
7.2.2 Controlling Factor of Self-ordering of Pore Arrangement in Anodic Porous Alumina 140
7.2.3 Typical Current–Time Transients at Constant Voltages 141
7.2.4 Change in the Porosity of Anodic Alumina with Increasing Formation Voltage 142

References 142
7.2.5 Typical Self-ordering Behavior 144
7.2.6 High-current-density/High-electric-field Anodization 145
7.2.7 New Self-ordering Conditions 147
7.3 Ideally Ordered Anodic Porous Alumina 148
7.3.1 Two-step Anodization 148
7.3.2 Fabrication of Ideally Ordered Anodic Porous Alumina 150
7.3.3 Square Cell Arrangement 150
7.3.4 Detailed Observation of Square Cells 152
7.4 Anodic Porous Alumina with 3D Periodicity 154
7.4.1 Modulation of Channel Structure 154
7.4.2 2D/3D Composite Porous Alumina 154
7.5 Application of Nanoporous Alumina to a Mask for Fabrication of Nanostructures 156
7.5.1 Nanopatterning: Conventional Lithography vs. Natural Lithography 156
7.5.2 Anodization of Al on a Si Substrate 157
7.5.3 Natural Lithography of Si Surfaces Using Anodic Porous Alumina as a Mask 160
7.6 Summary 161
Acknowledgments 162
References 162

8 Electrochemical Fabrication of Metal Nanocontacts and Nanogaps 167
Fang Chen and N. J. Tao
8.1 Introduction 167
8.2 Electrochemical Fabrication of Metal Nanocontacts 168
8.2.1 STM/AFM Assisted Method 169
8.2.2 Electrodeposition on Surface-supported Electrodes 170
8.2.3 Self-terminated Method 172
8.2.4 Electrochemical Etching 173
8.2.5 Nanocontacts Prepared Using Nanopores 174
8.2.6 Solid State Electrochemical Reaction 174
8.2.7 Properties of Metal Nanocontacts 175
8.2.7.1 Mechanical Properties 175
8.2.7.2 Electron Transport 177
8.2.7.3 Electrochemical Properties 178
8.2.7.4 Device Properties 180
8.2.7.5 Magnetic Properties 181
8.2.7.6 Sensing Properties 182
8.3 Electrochemical Fabrication of Metal Nanogaps 183
8.3.1 AC-loop Monitoring System 185
8.3.2 DC-loop Monitoring System 186
8.3.3 Electric Double Layer as Feedback 187
8.3.4 High-frequency Impedance as Feedback 188
8.3.5 Application of Nanogaps 188
8.4 Summary 190
Acknowledged 191
References 191

9 Nanowires by Electrochemical Step Edge Decoration (ESED) 195
Reginald M. Penner
9.1 Introduction 195
9.2 General Considerations 196
9.3 Direct Nanowire Electrodeposition 198
9.4 Compound Nanowires by Cyclic Electrodeposition/Stripping 200
9.5 Electrochemical/Chemical Synthesis of Nanowires 202
9.6 Nanowire “Thinning” by Electrooxidation 204
9.7 Summary 206
Acknowledgments 206
References 206

10 Electrochemical Fabrication of Arrayed Nanostructures 208
Takayuki Homma
10.1 Introduction 208
10.2 Formation of Metal Nanodots Along the Step Edge of the Si(111) Surface 208
10.3 Maskless Fabrication of Metal Nanodot Arrays using Electroless Deposition Induced by Controlled Local Surface Activities 210
10.4 Conclusion 215
References 216

11 Electrodeposition of Two-dimensional Magnetic Nanostructures on Single Crystal Electrode Surfaces 217
Philippe Allongue and Fouad Maroun
11.1 Introduction 217
11.2 Ultrathin Magnetic Films 219
11.2.1 Magnetic Moment of Ultrathin Films 220
11.2.2 In Situ Magnetic Characterizations 223
11.2.2.1 Alternating Gradient Field Magnetometry (AGFM) 224
11.2.2.2 Magneto Optical Kerr Effect (MOKE) 225
11.2.3 Description and Exploitation of in Situ Magnetic Measurements 225
11.3 Electrochemical Growth and Magnetic Properties of Iron Group Films on Au(111) 227
11.3.1 Electrochemistry of Au(111) in Iron Group Metal Solutions 227
11.3.2 Ni/Au(111) 228
11.3.2.1 Morphology and Structure 228
11.3.2.2 Magnetic Properties 229
11.3.3 Co/Au(111) 230
11.3.3.1 Morphology and Structure 230
11.3.3.2 Magnetic Properties 232
11.3.4 Fe/Au(111) 235
11.3.4.1 Morphology and Structure 235
11.3.4.2 Magnetic Properties 237
11.4 Concluding Remarks 238
Acknowledgments 239
References 239

12 Electrodeposition and Properties of Nanoscale Magnetic/Non-magnetic Metallic Multilayer Films 242
László Péter and Imre Bakonyi
12.1 Introduction 242
12.2 Electrodeposition 243
12.2.1 Electrolyte Composition 243
12.2.2 Deposition Conditions of the More Noble Layer 246
12.2.3 Deposition of the Less Noble Layer 247
12.2.4 Various Multilayer Deposition Modes 249
12.2.5 Nucleation of the Layers on Each Other 249
12.3 Properties 250
12.3.1 Structure 250
12.3.2 Magnetic Properties 253
12.3.3 Magnetoresistance 256
12.4 Summary 258
Acknowledgments 259
References 259

Index 261