Table of Contents

Preface IX

List of Contributors XI

1 * Artificial (Pseudo)peptides for Molecular Recognition and Catalysis 1
 L. J. Prins, P. Scrimin
 1.1 Introduction 1
 1.2 Recognition of Biological Targets by Pseudo-peptides 2
 1.2.1 Introduction 2
 1.2.2 Polyamides as Sequence-specific DNA-minor-groove Binders 2
 1.2.3 Peptide Nucleic Acids 12
 1.2.4 Protein Recognition by (Pseudo)peptides 17
 1.3 Synthetic (Pseudo)peptide-based Supermolecules: From Structure to Function 20
 1.3.1 Catalytic (Pseudo)peptides 21
 1.3.2 (Pseudo)peptides Altering Membrane Permeability 27
 1.3.3 Nanoparticle- and Dendrimer-based Functional (Pseudo)peptides 30
 1.4 Combinatorial Selection of Functional (Pseudo)peptides 35
 1.5 Conclusions 38
 References 39

2 * Carbohydrate Receptors 45
 A. P. Davis, T. D. James
 2.1 Introduction 45
 2.2 Carbohydrate Receptors Employing Noncovalent Interactions 47
 2.2.1 Recognition in Organic Solvents 48
 2.2.2 Recognition in Two-phase Systems 62
 2.2.3 Carbohydrate Recognition in Water 69
 2.3 Receptors Employing B–O Bond Formation 79
 2.3.1 Carbohydrate Recognition in Water 80
 2.3.2 Carbohydrate Recognition in Water 84
 References 104

Functional Synthetic Receptors. Edited by T. Schrader, A. D. Hamilton
Copyright © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30655-2
Table of Contents

3 Ammonium, Amidinium, Guanidinium, and Pyridinium Cations 111

T. Schrader, M. Maue

3.1 Introduction 111

3.2 Ammonium Cations 112

3.2.1 New Receptor Structures 112

3.2.2 Theoretical Investigations 119

3.2.3 New Functions 122

3.2.4 Peptide and Protein Recognition 125

3.2.5 Conclusion and Outlook 131

3.3 Amidinium Cations 132

3.3.1 Introduction 132

3.3.2 Artificial Receptors 133

3.3.3 Conclusion 138

3.4 Guanidinium Cations 138

3.4.1 Introduction 138

3.4.2 Artificial Receptors 139

3.4.3 Conclusion 148

3.5 Pyridinium Cations 149

3.5.1 Introduction 149

3.5.2 Artificial Receptors 149

3.5.3 Conclusion 157

3.6 Conclusions and Outlook 157

References 159

4 Artificial Pyrrole-based Anion Receptors 165

W.-S. Cho, J. L. Sessler

4.1 Introduction 165

4.2 Anions in Biological Systems 166

4.3 Cationic Pyrrole-based Receptors 170

4.3.1 Cyclic Receptors 170

4.3.2 Linear Receptors 180

4.4 Neutral Pyrrole-based Anion Receptors 183

4.4.1 Cyclic Receptors 183

4.4.2 Linear Receptors 200

4.5 Anion Carriers in Transport Applications 203

4.6 Anion Sensing 212

4.7 Guanidinium-based Anion Receptors 228

4.8 Amide-based Anion Receptors 234

4.9 Urea-based Anion Receptors 245

4.10 Conclusions 249

Acknowledgment 250

References 250
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Molecular Containers in Action</td>
<td>257</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>257</td>
</tr>
<tr>
<td>5.2</td>
<td>Variety of Molecular Containers</td>
<td>258</td>
</tr>
<tr>
<td>5.3</td>
<td>Chemistry Inside Capsules</td>
<td>272</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Observing Unusual Species Through Encapsulation</td>
<td>272</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Changing Reaction Rates by Encapsulation</td>
<td>275</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Encapsulated Reagents</td>
<td>277</td>
</tr>
<tr>
<td>5.4</td>
<td>Storage of Information Inside Capsules</td>
<td>280</td>
</tr>
<tr>
<td>5.5</td>
<td>Materials and Sensors by Encapsulation</td>
<td>283</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Molecular Containers as Sensors and Sensing Materials</td>
<td>283</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Supramolecular Polymers</td>
<td>286</td>
</tr>
<tr>
<td>5.6</td>
<td>Biologically Relevant Encapsulation</td>
<td>290</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Entrapment of Biologically Active Guests</td>
<td>290</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Encapsulation of Gases</td>
<td>292</td>
</tr>
<tr>
<td>5.7</td>
<td>Concluding Remarks</td>
<td>294</td>
</tr>
<tr>
<td>5.7</td>
<td>Acknowledgment</td>
<td>294</td>
</tr>
<tr>
<td>5.7</td>
<td>References</td>
<td>295</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Formation and Recognition Properties of Dynamic Combinatorial Libraries</td>
<td>299</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>299</td>
</tr>
<tr>
<td>6.2</td>
<td>Covalent Interactions Used in DCC Design</td>
<td>302</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Acyl Hydrazone and Imine Exchange</td>
<td>302</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Transesterification</td>
<td>310</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Disulfides</td>
<td>311</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Olefin Metathesis</td>
<td>313</td>
</tr>
<tr>
<td>6.3</td>
<td>Noncovalent Interactions Used in DCC Design</td>
<td>315</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Metal Ligand Coordination</td>
<td>315</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Hydrogen Bonding</td>
<td>321</td>
</tr>
<tr>
<td>6.4</td>
<td>Conformational/Configurational Isomerization</td>
<td>326</td>
</tr>
<tr>
<td>6.5</td>
<td>Receptor-based Screening, Selection, and Amplification</td>
<td>328</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusions</td>
<td>331</td>
</tr>
<tr>
<td>6.6</td>
<td>Acknowledgment</td>
<td>331</td>
</tr>
<tr>
<td>6.6</td>
<td>References</td>
<td>331</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Synthetic Molecular Machines</td>
<td>333</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Molecular-level Machines and the Language Used to Describe Them</td>
<td>334</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Principles of Motion at the Molecular Level – the Effects of Scale</td>
<td>335</td>
</tr>
<tr>
<td>7.2</td>
<td>Controlling Conformational Changes</td>
<td>336</td>
</tr>
<tr>
<td>7.3</td>
<td>Controlling Configurational Changes</td>
<td>340</td>
</tr>
</tbody>
</table>
7.4 Controlling Motion in Supramolecular Systems 346
 7.4.1 Switchable Host–Guest Systems 347
 7.4.2 Intramolecular Ion Translocation 348
7.5 Controlling Motion in Interlocked Systems 350
 7.5.1 Basic Features 350
 7.5.2 Inherent Dynamics: Ring Pirouetting in Rotaxanes 351
 7.5.3 Inherent Dynamics: Ring Pirouetting in Catenanes 353
 7.5.4 Inherent Dynamics: Shuttling in Rotaxanes 358
 7.5.5 Controlling Translational Motion: Molecular Shuttles 361
 7.5.6 Controlling the Motion: Ring Pirouetting in Rotaxanes 376
 7.5.7 Controlling the Motion: Switchable Catenanes – the Issue of Directionality 377
7.6 From Laboratory to Technology: Toward Useful Molecular Machines 383
 7.6.1 Current Challenges 383
 7.6.2 Reporting Motion: Switches and Memories 383
 7.6.3 The Interface with Real-world Technology 393
7.7 Summary and Outlook 395

References 397

8 Replicable Nanoscaffolded Multifunctionality – A Chemical Perspective 407

Abstract 407

8.1 Introduction 407
8.2 A Manifesto for Nanorobot Implementation 408
 8.2.1 Noncovalent Informational Nanoscaffolding 409
 8.2.2 Self-assembly From Synthetic Three-arm Junctions 409
 8.2.3 Tensegrity and Maximum Instruction as the Keys for Nanoarchitecture Control 411
 8.2.4 Chemical Copying of Connectivity Information (CCC) as the Key for Nanomachine Replication 412
 8.2.5 Cloning and Copying on Surfaces Using eSPREAD 413
 8.2.6 Linear Conjugates as Building Blocks for Junction eSPREADing and Nanoscaffolded Multifunctionality 414
 8.2.7 Directed Evolution of Replicable Nanomachines 416
 8.2.8 Probing the Existence of Nanoepitopes on the Surface of Biological Cells 417
 8.2.9 External Control of the Operation of Such Nanomachines by GHz Radio-frequency Magnetic Field Inductive Heating of Metal Clusters Attached to Such Constructs 417
8.3 Conclusion 419

Acknowledgment 419

References 420

Index 421