CONTENTS

Preface xix

Contributors xxii

1 Introduction to Pharmacokinetics and Pharmacodynamics 1

Sara E. Rosenbaum

1.1 Introduction: Drugs and Doses 2
1.2 Introduction to Pharmacodynamics 3
  1.2.1 Drug Effects at the Site of Action 3
  1.2.2 Agonists, Antagonists, and Concentration–Response Relationships 6
1.3 Introduction to Pharmacokinetics 9
  1.3.1 Plasma Concentration of Drugs 9
  1.3.2 Processes in Pharmacokinetics 11
1.4 Dose–Response Relationships 12
1.5 Therapeutic Range 14
  1.5.1 Determination of the Therapeutic Range 15
1.6 Summary 18
Reference 18

2 Passage of Drugs Through Membranes 19

Sara E. Rosenbaum

2.1 Introduction 20
2.2 Structure and Properties of Membranes 20
2.3 Passive Diffusion 21
  2.3.1 Transcellular Passive Diffusion 23
  2.3.2 Paracellular Passive Diffusion 25
2.4 Carrier-Mediated Processes: Transport Proteins 26
  2.4.1 Uptake Transporters: SLC Superfamily 27
CONTENTS

2.4.2  Efflux Transporters: ABC Superfamily, 29
2.4.3  Characteristics of Transporter Systems, 31
2.4.4  Simulation Exercise, 32
2.4.5  Clinical Examples of Transporter Involvement in Drug
       Response, 32
References, 33

3  Drug Administration and Drug Absorption 35
   Steven C. Sutton
3.1  Introduction: Local and Systemic Drug Administration, 36
3.2  Routes of Drug Administration, 37
3.2.1  Common Routes of Local Drug Administration, 37
3.2.2  Common Routes of Systemic Drug Administration, 38
3.3  Overview of Oral Absorption, 41
3.3.1  Anatomy and Physiology of the Oral-Gastric-Intestinal Tract
       and Transit Time, 41
3.4  Extent of Drug Absorption, 44
3.4.1  Bioavailability Factor, 44
3.4.2  Individual Bioavailability Factors, 45
3.5  Determinants of the Fraction of the Dose Absorbed ($F$), 46
3.5.1  Disintegration, 46
3.5.2  Dissolution, 46
3.5.3  Formulation Excipients, 50
3.5.4  Adverse Events within the Gastrointestinal Lumen, 50
3.5.5  Transcellular Passive Diffusion, 53
3.5.6  Particulate Uptake, 53
3.5.7  Paracellular Passive Diffusion, 53
3.5.8  Uptake and Efflux Transporters, 54
3.5.9  Presystemic Intestinal Metabolism or Extraction, 58
3.5.10  Presystemic Hepatic Metabolism or Extraction, 60
3.6  Factors Controlling the Rate of Drug Absorption, 61
3.6.1  Dissolution-Controlled Absorption, 63
3.6.2  Membrane Penetration-Controlled Absorption, 63
3.6.3  Overall Rate of Drug Absorption, 63
3.7  Biopharmaceutics Classification System, 64
3.7.1  Intestinal Reserve Length, 64
3.7.2  Biopharmaceutics Classification System (BCS), 64
3.7.3  Biopharmaceutics Drug Disposition Classification System
       (BDDCS), 65
3.8  Food Effects, 65
   Problems, 66
   References, 67

4  Drug Distribution 71
   Sara E. Rosenbaum
4.1  Introduction, 72
4.2  Extent of Drug Distribution, 72
4.2.1  Distribution Volumes, 74
CONTENTS

4.2.2 Tissue Binding, Plasma Protein Binding, and Partitioning: Concentrating Effects, 75
4.2.3 Assessment of the Extent of Drug Distribution: Apparent Volume of Distribution, 76
4.2.4 Plasma Protein Binding, 82

4.3 Rate of Drug Distribution, 89
4.3.1 Perfusion-Controlled Drug Distribution, 90
4.3.2 Diffusion or Permeability-Controlled Drug Distribution, 93

4.4 Distribution of Drugs to the Central Nervous System, 93

Problems, 96

References, 98

5 Drug Elimination and Clearance

Sara E. Rosenbaum

5.1 Introduction, 100
5.1.1 First-Order Elimination, 101
5.1.2 Determinants of the Elimination Rate Constant and the Half-Life, 102

5.2 Clearance, 102
5.2.1 Definition and Determinants of Clearance, 102
5.2.2 Total Clearance, Renal Clearance, and Hepatic Clearance, 104
5.2.3 Relationships among Clearance, Volume of Distribution, Elimination Rate Constant, and Half-Life, 105
5.2.4 Primary and Secondary Parameters, 106
5.2.5 Measurement of Total Body Clearance, 106

5.3 Renal Clearance, 108
5.3.1 Glomerular Filtration, 109
5.3.2 Tubular Secretion, 110
5.3.3 Tubular Reabsorption, 113
5.3.4 Putting Meaning into the Value of Renal Clearance, 114
5.3.5 Measurement of Renal Clearance, 115
5.3.6 Fraction of the Dose Excreted Unchanged, 118

5.4 Hepatic Elimination and Clearance, 119
5.4.1 Phase I and Phase II Metabolism, 120
5.4.2 The Cytochrome P450 Enzyme System, 121
5.4.3 Glucuronidation, 122
5.4.4 Metabolism-Based Drug–Drug Interactions, 122
5.4.5 Hepatic Drug Transporters and Drug–Drug Interactions, 125
5.4.6 Kinetics of Drug Metabolism, 127
5.4.7 Hepatic Clearance and Related Parameters, 128

Problems, 139

References, 142

6 Compartmental Models in Pharmacokinetics

Sara E. Rosenbaum

6.1 Introduction, 146
CONTENTS

6.2 Expressions for Component Parts of the Dose–Plasma Concentration Relationship, 146
  6.2.1 Effective Dose, 146
  6.2.2 Rate of Drug Absorption, 147
  6.2.3 Rate of Drug Elimination, 148
  6.2.4 Rate of Drug Distribution, 148

6.3 Putting Everything Together: Compartments and Models, 149
  6.3.1 One-Compartment Model, 149
  6.3.2 Two-Compartment Model, 150
  6.3.3 Three-Compartment Model, 150

6.4 Examples of Complete Compartment Models, 152
  6.4.1 Intravenous Bolus Injection in a One-Compartment Model with First-Order Elimination, 152
  6.4.2 Intravenous Bolus Injection in a Two-Compartment Model with First-Order Elimination, 153
  6.4.3 First-Order Absorption in a Two-Compartment Model with First-Order Elimination, 154

6.5 Use of Compartmental Models to Study Metabolite Pharmacokinetics, 155

6.6 Selecting and Applying Models, 156

Problems, 157
Suggested Readings, 157

7 Pharmacokinetics of an Intravenous Bolus Injection in a One-Compartment Model 159

Sara E. Rosenbaum

7.1 Introduction, 160
7.2 One-Compartment Model, 160
7.3 Pharmacokinetic Equations, 162
  7.3.1 Basic Equation, 162
  7.3.2 Half-Life, 163
  7.3.3 Time to Eliminate a Dose, 163
7.4 Simulation Exercise, 163
7.5 Application of the Model, 165
  7.5.1 Predicting Plasma Concentrations, 165
  7.5.2 Duration of Action, 166
  7.5.3 Value of a Dose to Give a Desired Initial Plasma Concentration, 167
  7.5.4 Intravenous Loading Dose, 167
7.6 Determination of Pharmacokinetic Parameters Experimentally, 168
  7.6.1 Study Design for the Determination of Parameters, 168
  7.6.2 Pharmacokinetic Analysis, 169
7.7 Pharmacokinetic Analysis in Clinical Practice, 173
Problems, 174
Suggested Reading, 176

8 Pharmacokinetics of an Intravenous Bolus Injection in a Two-Compartment Model 177

Sara E. Rosenbaum

8.1 Introduction, 178
CONTENTS

8.2 Tissue and Compartmental Distribution of a Drug, 179
  8.2.1 Drug Distribution to the Tissues, 179
  8.2.2 Compartmental Distribution of a Drug, 180
8.3 Basic Equation, 181
  8.3.1 Distribution: $A$, $\alpha$, and the Distribution $t_{1/2}$, 182
  8.3.2 Elimination: $B$, $\beta$, and the $\beta t_{1/2}$, 182
8.4 Relationship Between Macro and Micro Rate Constants, 183
8.5 Primary Pharmacokinetic Parameters, 183
  8.5.1 Clearance, 184
  8.5.2 Distribution Clearance, 184
  8.5.3 Volume of Distribution, 186
8.6 Simulation Exercise, 188
8.7 Determination of the Pharmacokinetic Parameters of the
   Two-Compartment Model, 191
  8.7.1 Determination of Intercepts and Macro Rate Constants, 191
  8.7.2 Determination of the Micro Rate Constants: $k_{12}$, $k_{21}$, and $k_{10}$, 193
  8.7.3 Determination of the Primary Pharmacokinetic Parameters, 193
8.8 Clinical Application of the Two-Compartment Model, 194
  8.8.1 Measurement of the Elimination Half-Life in the
       Postdistribution Phase, 194
  8.8.2 Determination of the Loading Dose, 195
  8.8.3 Evaluation of a Dose: Monitoring Plasma Concentrations and
       Patient Response, 197
Problems, 197
Suggested Readings, 199

9 Pharmacokinetics of Extravascular Drug Administration 201
  Dr. Steven C. Sutton

9.1 Introduction, 202
9.2 First-Order Absorption in a One-Compartment Model, 203
  9.2.1 Model and Equations, 203
  9.2.2 Parameter Determination, 205
  9.2.3 Absorption Lag Time, 210
  9.2.4 Flip-Flop Model and Sustained-Release Preparations, 212
  9.2.5 Determinants of $T_{\text{max}}$ and $C_{\text{max}}$, 212
9.3 Modified Release and Gastric Retention Formulations, 214
  9.3.1 Impact of the Stomach, 214
  9.3.2 Moisture in the Gastrointestinal Tract, 215
9.4 Bioavailability, 215
  9.4.1 Bioavailability Parameters, 215
  9.4.2 Absolute Bioavailability, 217
  9.4.3 Relative Bioavailability, 217
  9.4.4 Bioequivalence, 217
  9.4.5 Single-Dose Crossover Parallel and Steady-State Study
       Designs, 219
  9.4.6 Example Bioavailability Analysis, 219
9.5 In Vitro-In Vivo Correlation, 219
  9.5.1 Definitions, 219
CONTENTS

9.5.2 Assumptions, 220
9.5.3 Utility, 220
9.5.4 Immediate Release IVIVC, 220
9.5.5 Modified Release IVIVC, 221

9.6 Simulation Exercise, 222
Problems, 223
References, 224

10 Introduction to Noncompartmental Analysis
Sara E. Rosenbaum

10.1 Introduction, 225
10.2 Mean Residence Time, 226
10.3 Determination of Other Important Pharmacokinetic Parameters, 229
10.4 Different Routes of Administration, 231
10.5 Application of Noncompartmental Analysis to Clinical Studies, 232
Problems, 234

11 Pharmacokinetics of Intravenous Infusion in a One-Compartment Model
Sara E. Rosenbaum

11.1 Introduction, 238
11.2 Model and Equations, 239
  11.2.1 Basic Equation, 239
  11.2.2 Application of the Basic Equation, 241
  11.2.3 Simulation Exercise: Part 1, 241
11.3 Steady-State Plasma Concentration, 242
  11.3.1 Equation for Steady-State Plasma Concentrations, 242
  11.3.2 Application of the Equation, 242
  11.3.3 Basic Formula Revisited, 243
  11.3.4 Factors Controlling Steady-State Plasma Concentration, 243
  11.3.5 Time to Steady State, 244
  11.3.6 Simulation Exercise: Part 2, 245
11.4 Loading Dose, 246
  11.4.1 Loading-Dose Equation, 246
  11.4.2 Simulation Exercise: Part 3, 248
11.5 Termination of Infusion, 248
  11.5.1 Equations for Termination Before and After Steady State, 248
  11.5.2 Simulation Exercise: Part 4, 249
11.6 Individualization of Dosing Regimens, 249
  11.6.1 Initial Doses, 249
  11.6.2 Monitoring and Individualizing Therapy, 250
Problems, 252

12 Multiple Intravenous Bolus Injections in the One-Compartment Model
Sara E. Rosenbaum

12.1 Introduction, 256
12.2 Terms and Symbols Used in Multiple-Dosing Equations, 257
CONTENTS

12.3 Monoexponential Decay During a Dosing Interval, 259
   12.3.1 Calculation of Dosing Interval to Give Specific Steady-State Peaks and Troughs, 260
12.4 Basic Pharmacokinetic Equations for Multiple Doses, 260
   12.4.1 Principle of Superposition, 260
   12.4.2 Equations that Apply Before Steady State, 261
12.5 Steady State, 262
   12.5.1 Steady-State Equations, 263
   12.5.2 Average Plasma Concentration at Steady State, 264
   12.5.3 Fluctuation, 267
   12.5.4 Accumulation, 267
   12.5.5 Time to Reach Steady State, 269
   12.5.6 Loading Dose, 270
12.6 Basic Formula Revisited, 270
12.7 Pharmacokinetic-Guided Dosing Regimen Design, 270
   12.7.1 General Considerations for Selection of the Dosing Interval, 270
   12.7.2 Protocols for Pharmacokinetic-Guided Dosing Regimens, 272
12.8 Simulation Exercise, 276
Problems, 277
Reference, 278

13 Multiple Intermittent Infusions 279
Sara E. Rosenbaum

13.1 Introduction, 279
13.2 Steady-State Equations for Multiple Intermittent Infusions, 281
13.3 Monoexponential Decay During a Dosing Interval: Determination of Peaks, Troughs, and Elimination Half-Life, 284
   13.3.1 Determination of Half-Life, 284
   13.3.2 Determination of Peaks and Troughs, 286
13.4 Determination of the Volume of Distribution, 286
13.5 Individualization of Dosing Regimens, 289
13.6 Simulation, 289
Problems, 290

14 Multiple Oral Doses 293
Sara E. Rosenbaum

14.1 Introduction, 293
14.2 Steady-State Equations, 294
   14.2.1 Time to Peak Steady-State Plasma Concentration, 295
   14.2.2 Maximum Steady-State Plasma Concentration, 296
   14.2.3 Minimum Steady-State Plasma Concentration, 296
   14.2.4 Average Steady-State Plasma Concentration, 296
   14.2.5 Overall Effect of Absorption Parameters on a Steady-State Dosing Interval, 297
14.3 Equations Used Clinically to Individualize Oral Doses, 298
   14.3.1 Protocol to Select an Appropriate Equation, 298
14.4 Simulation Exercise, 300
References, 301
15 Nonlinear Pharmacokinetics

Sara E. Rosenbaum

15.1 Linear Pharmacokinetics, 304
15.2 Nonlinear Processes in Absorption, Distribution, Metabolism, and Elimination, 306
15.3 Pharmacokinetics of Capacity-Limited Metabolism, 307
   15.3.1 Kinetics of Enzymatic Processes, 307
   15.3.2 Plasma Concentration–Time Profile, 309
15.4 Phenytoin, 310
   15.4.1 Basic Equation for Steady State, 311
   15.4.2 Estimation of Doses and Plasma Concentrations, 313
   15.4.3 Influence of $K_m$ and $V_{max}$ and Factors That Affect These Parameters, 314
   15.4.4 Time to Eliminate the Drug, 316
   15.4.5 Time to Reach Steady State, 317
   15.4.6 Individualization of Doses of Phenytoin, 318
Problems, 321
References, 322

16 Introduction to Pharmacogenetics

Dr. Daniel Brazeau

16.1 Introduction, 324
16.2 Genetics Primer, 324
   16.2.1 Basic Terminology: Genes, Alleles, Loci, and Polymorphism, 324
   16.2.2 Population Genetics: Allele and Genotype Frequencies, 326
   16.2.3 Quantitative Genetics and Complex Traits, 327
16.3 Pharmacogenetics, 328
   16.3.1 Pharmacogenetics of Drug-Metabolizing Enzymes, 330
   16.3.2 Pharmacogenetics of Drug Transporters, 333
16.4 Genetics and Pharmacodynamics, 334
   16.4.1 Drug Target Pharmacogenetics, 334
16.5 Summary, 335
Reference, 335
Suggested Readings, 335

17 Models Used to Predict Drug–Drug Interactions for Orally Administered Drugs

Sara E. Rosenbaum

17.1 Introduction, 338
17.2 Mathematical Models for Inhibitors and Inducers of Drug Metabolism Based on In Vitro Data, 340
   17.2.1 Reversible Inhibition, 340
   17.2.2 Time-Dependent Inhibition, 341
   17.2.3 Induction, 345
17.3 Surrogate In Vivo Values for the Unbound Concentration of the Perpetrator at the Site of Action, 345
   17.3.1 Surrogate Measures of Hepatic Inhibitor and Inducer Concentrations, 346
17.3.2 Surrogate Measures of Intestinal Inhibitor and Inducer Concentrations, 346
17.4 Models Used to Predict DDIs In Vivo, 347
  17.4.1 Introduction, 347
  17.4.2 Basic Predictive Models: R Values, 348
  17.4.3 Predictive Models Incorporating Parallel Pathways of Elimination (fm), 350
  17.4.4 Models Incorporating Intestinal Extraction, 354
  17.4.5 Models Combining Multiple Actions of Perpetrators, 358
17.5 Predictive Models for Transporter-Based DDIs, 359
  17.5.1 Kinetics of Drug Transporters, 359
17.6 Application of Physiologically Based Pharmacokinetic Models to DDI Prediction: The Dynamic Approach, 362
17.7 Conclusion, 362
Problems, 363
References, 364

18 Introduction to Physiologically Based Pharmacokinetic Modeling 367
Sara E. Rosenbaum
  18.1 Introduction, 368
  18.2 Components of PBPK Models, 369
  18.3 Equations for PBPK Models, 369
  18.4 Building a PBPK Model, 373
  18.5 Simulations, 377
  18.6 Estimation of Human Drug-Specific Parameters, 378
    18.6.1 Tissue Plasma Partition Coefficient, 379
    18.6.2 Volume of Distribution, 379
    18.6.3 Clearance, 380
  18.7 More Detailed PBPK Models, 381
    18.7.1 Permeability-Limited Distribution, 381
    18.7.2 Drug Transporters, 383
    18.7.3 Models for Oral Absorption, 386
    18.7.4 Reduced Models, 387
  18.8 Application of PBPK Models, 387
References, 388

19 Introduction to Pharmacodynamic Models and Integrated Pharmacokinetic–Pharmacodynamic Models 391
Drs. Diane Mould and Paul Hutson
  19.1 Introduction, 392
  19.2 Classic Pharmacodynamic Models Based on Receptor Theory, 393
    19.2.1 Receptor Binding, 394
    19.2.2 Concentration-Response Models, 395
  19.3 Direct Effect Pharmacodynamic Models, 402
    19.3.1 $E_{\text{max}}$ and Sigmoidal $E_{\text{max}}$ Models, 402
    19.3.2 Inhibitory $I_{\text{max}}$ and Sigmoidal $I_{\text{max}}$ Models, 404
    19.3.3 Linear Adaptations of the $E_{\text{max}}$ and $I_{\text{max}}$ Model, 404
CONTENTS

19.4.1 Simulation Exercise, 409
19.5 Pharmacodynamic Drug–Drug Interactions, 410
19.5.1 Simulation Exercise, 410
Problems, 411
References, 412

20 Semimechanistic Pharmacokinetic–Pharmacodynamic Models 413

Drs. Diane Mould and Paul Hutson

20.1 Introduction, 414
20.2 Hysteresis and the Effect Compartment, 416
20.2.1 Simulation Exercise, 419
20.3 Physiological Turnover Models and Their Characteristics, 419
20.3.1 Points of Drug Action, 421
20.3.2 System Recovery After Change in Baseline Value, 421
20.4 Indirect Effect Models, 422
20.4.1 Introduction, 422
20.4.2 Characteristics of Indirect Effect Drug Responses, 424
20.4.3 Characteristics of Indirect Effect Models Illustrated Using Model I, 426
20.5 Other Indirect Effect Models, 432
20.5.1 Transit Compartment Models, 435
20.5.2 Model for Hematological Toxicity of Anticancer Drugs, 439
20.5.3 Alternate Parameterizations of Transit Models, 442
20.6 Models of Tolerance, 442
20.6.1 Introduction to Pharmacologic Tolerance, 442
20.6.2 Counter-Regulatory Force Tolerance Model, 444
20.6.3 Precursor Pool Model of Tolerance, 447
20.7 Irreversible Drug Effects, 450
20.7.1 Application of the Turnover Model to Irreversible Drug Action, 450
20.8 Disease Progression Models, 452
20.8.1 Drug Pharmacokinetics, 452
20.8.2 Pharmacodynamics, 452
20.8.3 Disease Activity Models, 453
20.8.4 Disease Progression Models, 453
Problems, 459
References, 465

Appendix A Review of Exponents and Logarithms 469

Sara E. Rosenbaum

A.1 Exponents, 469
A.2 Logarithms: Log and Ln, 470
A.3 Performing Calculations in the Logarithmic Domain, 471
   A.3.1 Multiplication, 471
   A.3.2 Division, 472
CONTENTS

A.3.3 Reciprocals, 472
A.3.4 Exponents, 472
A.4 Calculations Using Exponential Expressions and Logarithms, 472
A.5 Decay Function: $e^{-kt}$, 474
A.6 Growth Function: $1 - e^{-kt}$, 475
A.7 Decay Function in Pharmacokinetics, 475
Problems, 476

Appendix B Rates of Processes 479
Sara E. Rosenbaum
B.1 Introduction, 479
B.2 Order of a Rate Process, 480
B.3 Zero-Order Processes, 480
  B.3.1 Equation for Zero-Order Filling, 480
  B.3.2 Equation for Zero-Order Emptying, 481
  B.3.3 Time for Zero-Order Emptying to Go to 50% Completion, 481
B.4 First-Order Processes, 482
  B.4.1 Equation for a First-Order Process, 482
  B.4.2 Time for 50% Completion: the Half-Life, 483
B.5 Comparison of Zero- and First-Order Processes, 484
B.6 Detailed Example of First-Order Decay in Pharmacokinetics, 484
  B.6.1 Equations and Semilogarithmic Plots, 484
  B.6.2 Half-Life, 485
  B.6.3 Fraction or Percent Completion of a First-Order Process Using First-Order Elimination as an Example, 485
B.7 Examples of the Application of First-Order Kinetics to Pharmacokinetics, 487

Appendix C Creation of Excel Worksheets for Pharmacokinetic Analysis 489
Sara E. Rosenbaum
C.1 Measurement of AUC and Clearance, 489
  C.1.1 Trapezoidal Rule, 490
  C.1.2 Excel Spreadsheet to Determine $\text{AUC}_{0\rightarrow\infty}$ and Clearance, 491
C.2 Analysis of Data from an Intravenous Bolus Injection in a One-Compartment Model, 494
C.3 Analysis of Data from an Intravenous Bolus Injection in a Two-Compartment Model, 496
C.4 Analysis of Oral Data in a One-Compartment Model, 498
C.5 Noncompartmental Analysis of Oral Data, 501

Appendix D Derivation of Equations for Multiple Intravenous Bolus Injections 505
Sara E. Rosenbaum
D.1 Assumptions, 505
CONTENTS

D.2 Basic Equation for Plasma Concentration After Multiple Intravenous Bolus Injections, 505
D.3 Steady-State Equations, 508

Appendix E Enzyme Kinetics: Michaelis–Menten Equation and Models for Inhibitors and Inducers of Drug Metabolism 509

Sara E. Rosenbaum and Roberta S. King

E.1 Kinetics of Drug Metabolism: The Michaelis–Menten Model, 510
  E.1.1 Overview, 510
  E.1.2 Assumptions for Validity of Michaelis–Menten Model, 510
  E.1.3 $K_m$ and $V_{max}$, 511
  E.1.4 Derivation of the Michaelis–Menten Equation, 511
  E.1.5 Summary, Practical Considerations, and Interpretations, 513
  E.1.6 Relationship Between Intrinsic Clearance and the Michaelis–Menten Parameters, 514

E.2 Effect of Perpetrators of DDI on Enzyme Kinetics and Intrinsic Clearance, 515
  E.2.1 Reversible Inhibition, 515
  E.2.2 Time-Dependent Inhibition, 518
  E.2.3 Enzyme Induction, 524

References, 526

Appendix F Summary of the Properties of the Fictitious Drugs Used in the Text 527

Sara E. Rosenbaum

Appendix G Computer Simulation Models 529

Sara E. Rosenbaum

Glossary of Terms 531

Index 537