CONTENTS

Preface xix
Contributors xxi

1 Introduction to Pharmacokinetics and Pharmacodynamics 1

Sara E. Rosenbaum

1.1 Introduction: Drugs and Doses, 2
1.2 Introduction to Pharmacodynamics, 3
 1.2.1 Drug Effects at the Site of Action, 3
 1.2.2 Agonists, Antagonists, and Concentration–Response Relationships, 6
1.3 Introduction to Pharmacokinetics, 9
 1.3.1 Plasma Concentration of Drugs, 9
 1.3.2 Processes in Pharmacokinetics, 11
1.4 Dose–Response Relationships, 12
1.5 Therapeutic Range, 14
 1.5.1 Determination of the Therapeutic Range, 15
1.6 Summary, 18
Reference, 18

2 Passage of Drugs Through Membranes 19

Sara E. Rosenbaum

2.1 Introduction, 20
2.2 Structure and Properties of Membranes, 20
2.3 Passive Diffusion, 21
 2.3.1 Transcellular Passive Diffusion, 23
 2.3.2 Paracellular Passive Diffusion, 25
2.4 Carrier-Mediated Processes: Transport Proteins, 26
 2.4.1 Uptake Transporters: SLC Superfamily, 27
CONTENTS

2.4.2 Efflux Transporters: ABC Superfamily, 29
2.4.3 Characteristics of Transporter Systems, 31
2.4.4 Simulation Exercise, 32
2.4.5 Clinical Examples of Transporter Involvement in Drug Response, 32

References, 33

3 Drug Administration and Drug Absorption 35

Steven C. Sutton

3.1 Introduction: Local and Systemic Drug Administration, 36
3.2 Routes of Drug Administration, 37
 3.2.1 Common Routes of Local Drug Administration, 37
 3.2.2 Common Routes of Systemic Drug Administration, 38
3.3 Overview of Oral Absorption, 41
 3.3.1 Anatomy and Physiology of the Oral-Gastric-Intestinal Tract and Transit Time, 41
3.4 Extent of Drug Absorption, 44
 3.4.1 Bioavailability Factor, 44
 3.4.2 Individual Bioavailability Factors, 45
3.5 Determinants of the Fraction of the Dose Absorbed (F), 46
 3.5.1 Disintegration, 46
 3.5.2 Dissolution, 46
 3.5.3 Formulation Excipients, 50
 3.5.4 Adverse Events within the Gastrointestinal Lumen, 50
 3.5.5 Transcellular Passive Diffusion, 53
 3.5.6 Particulate Uptake, 53
 3.5.7 Paracellular Passive Diffusion, 53
 3.5.8 Uptake and Efflux Transporters, 54
 3.5.9 Presystemic Intestinal Metabolism or Extraction, 58
 3.5.10 Presystemic Hepatic Metabolism or Extraction, 60
3.6 Factors Controlling the Rate of Drug Absorption, 61
 3.6.1 Dissolution-Controlled Absorption, 63
 3.6.2 Membrane Penetration-Controlled Absorption, 63
 3.6.3 Overall Rate of Drug Absorption, 63
3.7 Biopharmaceutics Classification System, 64
 3.7.1 Intestinal Reserve Length, 64
 3.7.2 Biopharmaceutics Classification System (BCS), 64
 3.7.3 Biopharmaceutics Drug Disposition Classification System (BDDCS), 65
3.8 Food Effects, 65

Problems, 66

References, 67

4 Drug Distribution 71

Sara E. Rosenbaum

4.1 Introduction, 72
4.2 Extent of Drug Distribution, 72
 4.2.1 Distribution Volumes, 74
CONTENTS

4.2.2 Tissue Binding, Plasma Protein Binding, and Partitioning: Concentrating Effects, 75
4.2.3 Assessment of the Extent of Drug Distribution: Apparent Volume of Distribution, 76
4.2.4 Plasma Protein Binding, 82
4.3 Rate of Drug Distribution, 89
 4.3.1 Perfusion-Controlled Drug Distribution, 90
 4.3.2 Diffusion or Permeability-Controlled Drug Distribution, 93
4.4 Distribution of Drugs to the Central Nervous System, 93
Problems, 96
References, 98

5 Drug Elimination and Clearance

Sara E. Rosenbaum

5.1 Introduction, 100
 5.1.1 First-Order Elimination, 101
 5.1.2 Determinants of the Elimination Rate Constant and the Half-Life, 102
5.2 Clearance, 102
 5.2.1 Definition and Determinants of Clearance, 102
 5.2.2 Total Clearance, Renal Clearance, and Hepatic Clearance, 104
 5.2.3 Relationships among Clearance, Volume of Distribution, Elimination Rate Constant, and Half-Life, 105
 5.2.4 Primary and Secondary Parameters, 106
 5.2.5 Measurement of Total Body Clearance, 106
5.3 Renal Clearance, 108
 5.3.1 Glomerular Filtration, 109
 5.3.2 Tubular Secretion, 110
 5.3.3 Tubular Reabsorption, 113
 5.3.4 Putting Meaning into the Value of Renal Clearance, 114
 5.3.5 Measurement of Renal Clearance, 115
 5.3.6 Fraction of the Dose Excreted Unchanged, 118
5.4 Hepatic Elimination and Clearance, 119
 5.4.1 Phase I and Phase II Metabolism, 120
 5.4.2 The Cytochrome P450 Enzyme System, 121
 5.4.3 Glucuronidation, 122
 5.4.4 Metabolism-Based Drug–Drug Interactions, 122
 5.4.5 Hepatic Drug Transporters and Drug–Drug Interactions, 125
 5.4.6 Kinetics of Drug Metabolism, 127
 5.4.7 Hepatic Clearance and Related Parameters, 128
Problems, 139
References, 142

6 Compartmental Models in Pharmacokinetics

Sara E. Rosenbaum

6.1 Introduction, 146
CONTENTS

6.2 Expressions for Component Parts of the Dose–Plasma Concentration Relationship, 146
 6.2.1 Effective Dose, 146
 6.2.2 Rate of Drug Absorption, 147
 6.2.3 Rate of Drug Elimination, 148
 6.2.4 Rate of Drug Distribution, 148

6.3 Putting Everything Together: Compartments and Models, 149
 6.3.1 One-Compartment Model, 149
 6.3.2 Two-Compartment Model, 150
 6.3.3 Three-Compartment Model, 150

6.4 Examples of Complete Compartment Models, 152
 6.4.1 Intravenous Bolus Injection in a One-Compartment Model with First-Order Elimination, 152
 6.4.2 Intravenous Bolus Injection in a Two-Compartment Model with First-Order Elimination, 153
 6.4.3 First-Order Absorption in a Two-Compartment Model with First-Order Elimination, 154

6.5 Use of Compartmental Models to Study Metabolite Pharmacokinetics, 155

6.6 Selecting and Applying Models, 156

Problems, 157
Suggested Readings, 157

7 Pharmacokinetics of an Intravenous Bolus Injection in a One-Compartment Model 159
Sara E. Rosenbaum

7.1 Introduction, 160
7.2 One-Compartment Model, 160
7.3 Pharmacokinetic Equations, 162
 7.3.1 Basic Equation, 162
 7.3.2 Half-Life, 163
 7.3.3 Time to Eliminate a Dose, 163
7.4 Simulation Exercise, 163
7.5 Application of the Model, 165
 7.5.1 Predicting Plasma Concentrations, 165
 7.5.2 Duration of Action, 166
 7.5.3 Value of a Dose to Give a Desired Initial Plasma Concentration, 167
 7.5.4 Intravenous Loading Dose, 167
7.6 Determination of Pharmacokinetic Parameters Experimentally, 168
 7.6.1 Study Design for the Determination of Parameters, 168
 7.6.2 Pharmacokinetic Analysis, 169
7.7 Pharmacokinetic Analysis in Clinical Practice, 173
Problems, 174
Suggested Reading, 176

8 Pharmacokinetics of an Intravenous Bolus Injection in a Two-Compartment Model 177
Sara E. Rosenbaum

8.1 Introduction, 178
CONTENTS

8.2 Tissue and Compartmental Distribution of a Drug, 179
 8.2.1 Drug Distribution to the Tissues, 179
 8.2.2 Compartmental Distribution of a Drug, 180
8.3 Basic Equation, 181
 8.3.1 Distribution: A, α, and the Distribution $t_{1/2}$, 182
 8.3.2 Elimination: B, β, and the $β t_{1/2}$, 182
8.4 Relationship Between Macro and Micro Rate Constants, 183
8.5 Primary Pharmacokinetic Parameters, 183
 8.5.1 Clearance, 184
 8.5.2 Distribution Clearance, 184
 8.5.3 Volume of Distribution, 186
8.6 Simulation Exercise, 188
8.7 Determination of the Pharmacokinetic Parameters of the Two-Compartment Model, 191
 8.7.1 Determination of Intercepts and Macro Rate Constants, 191
 8.7.2 Determination of the Micro Rate Constants: k_{12}, k_{21}, and k_{10}, 193
 8.7.3 Determination of the Primary Pharmacokinetic Parameters, 193
8.8 Clinical Application of the Two-Compartment Model, 194
 8.8.1 Measurement of the Elimination Half-Life in the Postdistribution Phase, 194
 8.8.2 Determination of the Loading Dose, 195
 8.8.3 Evaluation of a Dose: Monitoring Plasma Concentrations and Patient Response, 197
Problems, 197
Suggested Readings, 199

9 Pharmacokinetics of Extravascular Drug Administration 201
 Dr. Steven C. Sutton

9.1 Introduction, 202
9.2 First-Order Absorption in a One-Compartment Model, 203
 9.2.1 Model and Equations, 203
 9.2.2 Parameter Determination, 205
 9.2.3 Absorption Lag Time, 210
 9.2.4 Flip-Flop Model and Sustained-Release Preparations, 212
 9.2.5 Determinants of T_{max} and C_{max}, 212
9.3 Modified Release and Gastric Retention Formulations, 214
 9.3.1 Impact of the Stomach, 214
 9.3.2 Moisture in the Gastrointestinal Tract, 215
9.4 Bioavailability, 215
 9.4.1 Bioavailability Parameters, 215
 9.4.2 Absolute Bioavailability, 217
 9.4.3 Relative Bioavailability, 217
 9.4.4 Bioequivalence, 217
 9.4.5 Single-Dose Crossover Parallel and Steady-State Study Designs, 219
 9.4.6 Example Bioavailability Analysis, 219
9.5 In Vitro-In Vivo Correlation, 219
 9.5.1 Definitions, 219
CONTENTS

12.3 Monoexponential Decay During a Dosing Interval, 259
 12.3.1 Calculation of Dosing Interval to Give Specific Steady-State
 Peaks and Troughs, 260
12.4 Basic Pharmacokinetic Equations for Multiple Doses, 260
 12.4.1 Principle of Superposition, 260
 12.4.2 Equations that Apply Before Steady State, 261
12.5 Steady State, 262
 12.5.1 Steady-State Equations, 263
 12.5.2 Average Plasma Concentration at Steady State, 264
 12.5.3 Fluctuation, 267
 12.5.4 Accumulation, 267
 12.5.5 Time to Reach Steady State, 269
 12.5.6 Loading Dose, 270
12.6 Basic Formula Revisited, 270
12.7 Pharmacokinetic-Guided Dosing Regimen Design, 270
 12.7.1 General Considerations for Selection of the Dosing Interval, 270
 12.7.2 Protocols for Pharmacokinetic-Guided Dosing Regimens, 272
12.8 Simulation Exercise, 276
Problems, 277
Reference, 278

13 Multiple Intermittent Infusions 279
 Sara E. Rosenbaum
 13.1 Introduction, 279
 13.2 Steady-State Equations for Multiple Intermittent Infusions, 281
 13.3 Monoexponential Decay During a Dosing Interval: Determination of
 Peaks, Troughs, and Elimination Half-Life, 284
 13.3.1 Determination of Half-Life, 284
 13.3.2 Determination of Peaks and Troughs, 286
 13.4 Determination of the Volume of Distribution, 286
 13.5 Individualization of Dosing Regimens, 289
 13.6 Simulation, 289
Problems, 290

14 Multiple Oral Doses 293
 Sara E. Rosenbaum
 14.1 Introduction, 293
 14.2 Steady-State Equations, 294
 14.2.1 Time to Peak Steady-State Plasma Concentration, 295
 14.2.2 Maximum Steady-State Plasma Concentration, 296
 14.2.3 Minimum Steady-State Plasma Concentration, 296
 14.2.4 Average Steady-State Plasma Concentration, 296
 14.2.5 Overall Effect of Absorption Parameters on a Steady-State
 Dosing Interval, 297
 14.3 Equations Used Clinically to Individualize Oral Doses, 298
 14.3.1 Protocol to Select an Appropriate Equation, 298
 14.4 Simulation Exercise, 300
References, 301
CONTENTS

15 Nonlinear Pharmacokinetics 303
Sara E. Rosenbaum

15.1 Linear Pharmacokinetics, 304
15.2 Nonlinear Processes in Absorption, Distribution, Metabolism, and Elimination, 306
15.3 Pharmacokinetics of Capacity-Limited Metabolism, 307
 15.3.1 Kinetics of Enzymatic Processes, 307
 15.3.2 Plasma Concentration–Time Profile, 309
15.4 Phenytoin, 310
 15.4.1 Basic Equation for Steady State, 311
 15.4.2 Estimation of Doses and Plasma Concentrations, 313
 15.4.3 Influence of K_m and V_{max} and Factors That Affect These Parameters, 314
 15.4.4 Time to Eliminate the Drug, 316
 15.4.5 Time to Reach Steady State, 317
 15.4.6 Individualization of Doses of Phenytoin, 318

Problems, 321
References, 322

16 Introduction to Pharmacogenetics 323
Dr. Daniel Brazeau

16.1 Introduction, 324
16.2 Genetics Primer, 324
 16.2.1 Basic Terminology: Genes, Alleles, Loci, and Polymorphism, 324
 16.2.2 Population Genetics: Allele and Genotype Frequencies, 326
 16.2.3 Quantitative Genetics and Complex Traits, 327
16.3 Pharmacogenetics, 328
 16.3.1 Pharmacogenetics of Drug-Metabolizing Enzymes, 330
 16.3.2 Pharmacogenetics of Drug Transporters, 333
16.4 Genetics and Pharmacodynamics, 334
 16.4.1 Drug Target Pharmacogenetics, 334
16.5 Summary, 335
Reference, 335
Suggested Readings, 335

17 Models Used to Predict Drug–Drug Interactions for Orally Administered Drugs 337
Sara E. Rosenbaum

17.1 Introduction, 338
17.2 Mathematical Models for Inhibitors and Inducers of Drug Metabolism Based on In Vitro Data, 340
 17.2.1 Reversible Inhibition, 340
 17.2.2 Time-Dependent Inhibition, 341
 17.2.3 Induction, 345
17.3 Surrogate In Vivo Values for the Unbound Concentration of the Perpetrator at the Site of Action, 345
 17.3.1 Surrogate Measures of Hepatic Inhibitor and Inducer Concentrations, 346
CONTENTS

17.3.2 Surrogate Measures of Intestinal Inhibitor and Inducer Concentrations, 346
17.4 Models Used to Predict DDIs In Vivo, 347
17.4.1 Introduction, 347
17.4.2 Basic Predictive Models: R Values, 348
17.4.3 Predictive Models Incorporating Parallel Pathways of Elimination (fm), 350
17.4.4 Models Incorporating Intestinal Extraction, 354
17.4.5 Models Combining Multiple Actions of Perpetrators, 358
17.5 Predictive Models for Transporter-Based DDIs, 359
17.5.1 Kinetics of Drug Transporters, 359
17.6 Application of Physiologically Based Pharmacokinetic Models to DDI Prediction: The Dynamic Approach, 362
17.7 Conclusion, 362
Problems, 363
References, 364

18 Introduction to Physiologically Based Pharmacokinetic Modeling 367
Sara E. Rosenbaum
18.1 Introduction, 368
18.2 Components of PBPK Models, 369
18.3 Equations for PBPK Models, 369
18.4 Building a PBPK Model, 373
18.5 Simulations, 377
18.6 Estimation of Human Drug-Specific Parameters, 378
18.6.1 Tissue Plasma Partition Coefficient, 379
18.6.2 Volume of Distribution, 379
18.6.3 Clearance, 380
18.7 More Detailed PBPK Models, 381
18.7.1 Permeability-Limited Distribution, 381
18.7.2 Drug Transporters, 383
18.7.3 Models for Oral Absorption, 386
18.7.4 Reduced Models, 387
18.8 Application of PBPK Models, 387
References, 388

19 Introduction to Pharmacodynamic Models and Integrated Pharmacokinetic–Pharmacodynamic Models 391
Drs. Diane Mould and Paul Hutson
19.1 Introduction, 392
19.2 Classic Pharmacodynamic Models Based on Receptor Theory, 393
19.2.1 Receptor Binding, 394
19.2.2 Concentration-Response Models, 395
19.3 Direct Effect Pharmacodynamic Models, 402
19.3.1 E_{max} and Sigmoidal E_{max} Models, 402
19.3.2 Inhibitory I_{max} and Sigmoidal I_{max} Models, 404
19.3.3 Linear Adaptations of the E_{max} and I_{max} Model, 404
CONTENTS

 19.4.1 Simulation Exercise, 409
19.5 Pharmacodynamic Drug–Drug Interactions, 410
 19.5.1 Simulation Exercise, 410
Problems, 411
References, 412

20 Semimechanistic Pharmacokinetic–Pharmacodynamic Models 413
Drs. Diane Mould and Paul Hutson

20.1 Introduction, 414
20.2 Hysteresis and the Effect Compartment, 416
 20.2.1 Simulation Exercise, 419
20.3 Physiological Turnover Models and Their Characteristics, 419
 20.3.1 Points of Drug Action, 421
 20.3.2 System Recovery After Change in Baseline Value, 421
20.4 Indirect Effect Models, 422
 20.4.1 Introduction, 422
 20.4.2 Characteristics of Indirect Effect Drug Responses, 424
 20.4.3 Characteristics of Indirect Effect Models Illustrated Using Model I, 426
20.5 Other Indirect Effect Models, 432
 20.5.1 Transit Compartment Models, 435
 20.5.2 Model for Hematological Toxicity of Anticancer Drugs, 439
 20.5.3 Alternate Parameterizations of Transit Models, 442
20.6 Models of Tolerance, 442
 20.6.1 Introduction to Pharmacologic Tolerance, 442
 20.6.2 Counter-Regulatory Force Tolerance Model, 444
 20.6.3 Precursor Pool Model of Tolerance, 447
20.7 Irreversible Drug Effects, 450
 20.7.1 Application of the Turnover Model to Irreversible Drug Action, 450
20.8 Disease Progression Models, 452
 20.8.1 Drug Pharmacokinetics, 452
 20.8.2 Pharmacodynamics, 452
 20.8.3 Disease Activity Models, 453
 20.8.4 Disease Progression Models, 453
Problems, 459
References, 465

Appendix A Review of Exponents and Logarithms 469
Sara E. Rosenbaum

A.1 Exponents, 469
A.2 Logarithms: Log and Ln, 470
A.3 Performing Calculations in the Logarithmic Domain, 471
 A.3.1 Multiplication, 471
 A.3.2 Division, 472
CONTENTS

D.2 Basic Equation for Plasma Concentration After Multiple Intravenous Bolus Injections, 505
D.3 Steady-State Equations, 508

Appendix E Enzyme Kinetics: Michaelis–Menten Equation and Models for Inhibitors and Inducers of Drug Metabolism 509
Sara E. Rosenbaum and Roberta S. King

E.1 Kinetics of Drug Metabolism: The Michaelis–Menten Model, 510
E.1.1 Overview, 510
E.1.2 Assumptions for Validity of Michaelis–Menten Model, 510
E.1.3 \(K_m\) and \(V_{\text{max}}\), 511
E.1.4 Derivation of the Michaelis–Menten Equation, 511
E.1.5 Summary, Practical Considerations, and Interpretations, 513
E.1.6 Relationship Between Intrinsic Clearance and the Michaelis–Menten Parameters, 514

E.2 Effect of Perpetrators of DDI on Enzyme Kinetics and Intrinsic Clearance, 515
E.2.1 Reversible Inhibition, 515
E.2.2 Time-Dependent Inhibition, 518
E.2.3 Enzyme Induction, 524

References, 526

Appendix F Summary of the Properties of the Fictitious Drugs Used in the Text 527
Sara E. Rosenbaum

Appendix G Computer Simulation Models 529
Sara E. Rosenbaum

Glossary of Terms 531

Index 537