CONTENTS

Preface viii

1 Heterogeneous Catalysis and a Sustainable Future 1

2 The Potential Energy Diagram 6
 2.1 Adsorption, 7
 2.2 Surface Reactions, 11
 2.3 Diffusion, 13
 2.4 Adsorbate–Adsorbate Interactions, 15
 2.5 Structure Dependence, 17
 2.6 Quantum and Thermal Corrections to the Ground-State
 Potential Energy, 20

3 Surface Equilibria 26
 3.1 Chemical Equilibria in Gases, Solids, and Solutions, 26
 3.2 The Adsorption Entropy, 31
 3.3 Adsorption Equilibria: Adsorption Isotherms, 34
 3.4 Free Energy Diagrams for Surface Chemical Reactions, 40
 Appendix 3.1 The Law of Mass Action and the Equilibrium
 Constant, 42
 Appendix 3.2 Counting the Number of Adsorbate Configurations, 44
 Appendix 3.3 Configurational Entropy of Adsorbates, 44
4 Rate Constants

4.1 The Timescale Problem in Simulating Rare Events, 48
4.2 Transition State Theory, 49
4.3 Recrossings and Variational Transition State Theory, 59
4.4 Harmonic Transition State Theory, 61

5 Kinetics

5.1 Microkinetic Modeling, 68
5.2 Microkinetics of Elementary Surface Processes, 69
5.3 The Microkinetics of Several Coupled Elementary Surface Processes, 74
5.4 Ammonia Synthesis, 79

6 Energy Trends in Catalysis

6.1 Energy Correlations for Physisorbed Systems, 85
6.2 Chemisorption Energy Scaling Relations, 87
6.3 Transition State Energy Scaling Relations in Heterogeneous Catalysis, 90
6.4 Universality of Transition State Scaling Relations, 93

7 Activity and Selectivity Maps

7.1 Dissociation Rate-Determined Model, 97
7.2 Variations in the Activity Maximum with Reaction Conditions, 101
7.3 Sabatier Analysis, 103
7.4 Examples of Activity Maps for Important Catalytic Reactions, 105
 7.4.1 Ammonia Synthesis, 105
 7.4.2 The Methanation Reaction, 107
7.5 Selectivity Maps, 112

8 The Electronic Factor in Heterogeneous Catalysis

8.1 The d-Band Model of Chemical Bonding at Transition Metal Surfaces, 114
8.2 Changing the d-Band Center: Ligand Effects, 125
8.3 Ensemble Effects in Adsorption, 130
8.4 Trends in Activation Energies, 131
8.5 Ligand Effects for Transition Metal Oxides, 134

9 Catalyst Structure: Nature of the Active Site

9.1 Structure of Real Catalysts, 138
9.2 Intrinsic Structure Dependence, 139
9.3 The Active Site in High Surface Area Catalysts, 143
9.4 Support and Structural Promoter Effects, 146
10 Poisoning and Promotion of Catalysts 150

11 Surface Electro catalysis 155

11.1 The Electrified Solid–Electrolyte Interface, 156
11.2 Electron Transfer Processes at Surfaces, 158
11.3 The Hydrogen Electrode, 161
11.4 Adsorption Equilibria at the Electrified Surface–Electrolyte Interface, 161
11.5 Activation Energies in Surface Electron Transfer Reactions, 162
11.6 The Potential Dependence of the Rate, 164
11.7 The Overpotential in Electro catalytic Processes, 167
11.8 Trends in Electro catalytic Activity: The Limiting Potential Map, 169

12 Relation of Activity to Surface Electronic Structure 175

12.1 Electronic Structure of Solids, 175
12.2 The Band Structure of Solids, 179
12.3 The Newns–Anderson Model, 184
12.4 Bond-Energy Trends, 186
12.5 Binding Energies Using the Newns–Anderson Model, 193

Index 195