Contents

About the Authors xvii
Preface to Second Edition xix
Acknowledgements for First Edition xxi
Acknowledgements for Second Edition xxiii
List of Symbols xxv
Figures C1 and C2 – Co-ordinate Systems xxxv

1 Introduction 1
 1.1 Historical development 1
 1.2 Modern wind turbines 4
 1.3 Scope of the book 6
 References 7
 Further reading 8

2 The wind resource 9
 2.1 The nature of the wind 9
 2.2 Geographical variation in the wind resource 10
 2.3 Long-term wind speed variations 11
 2.4 Annual and seasonal variations 12
 2.5 Synoptic and diurnal variations 14
 2.6 Turbulence 14
 2.6.1 The nature of turbulence 14
 2.6.2 The boundary layer 16
 2.6.3 Turbulence intensity 18
 2.6.4 Turbulence spectra 20
 2.6.5 Length scales and other parameters 22
 2.6.6 Asymptotic limits 24
 2.6.7 Cross-spectra and coherence functions 25
 2.6.8 The Mann model of turbulence 28
CONTENTS

2.7 Gust wind speeds 28
2.8 Extreme wind speeds 29
 2.8.1 Extreme winds in standards 30
2.9 Wind speed prediction and forecasting 32
 2.9.1 Statistical methods 32
 2.9.2 Meteorological methods 33
2.10 Turbulence in wakes and wind farms 33
2.11 Turbulence in complex terrain 36
 References 36

3 Aerodynamics of horizontal axis wind turbines 39
 3.1 Introduction 39
 3.2 The actuator disc concept 40
 3.2.1 Simple momentum theory 41
 3.2.2 Power coefficient 42
 3.2.3 The Lanchester-Betz limit 43
 3.2.4 The thrust coefficient 43
 3.3 Rotor disc theory 44
 3.3.1 Wake rotation 44
 3.3.2 Angular momentum theory 46
 3.3.3 Maximum power 48
 3.4 Vortex cylinder model of the actuator disc 49
 3.4.1 Introduction 49
 3.4.2 Vortex cylinder theory 50
 3.4.3 Relationship between bound circulation and the induced velocity 51
 3.4.4 Root vortex 51
 3.4.5 Torque and power 53
 3.4.6 Axial flow field 53
 3.4.7 Tangential flow field 53
 3.4.8 Axial thrust 55
 3.4.9 Radial flow field 56
 3.4.10 Conclusions 57
 3.5 Rotor blade theory (blade-element/momentum theory) 57
 3.5.1 Introduction 57
 3.5.2 Blade element theory 57
 3.5.3 The blade-element/momentum (BEM) theory 59
 3.5.4 Determination of rotor torque and power 62
 3.6 Breakdown of the momentum theory 64
 3.6.1 Free-stream/wake mixing 64
 3.6.2 Modification of rotor thrust caused by flow separation 64
 3.6.3 Empirical determination of thrust coefficient 65
 3.7 Blade geometry 66
 3.7.1 Introduction 66
 3.7.2 Optimal design for variable speed operation 66
 3.7.3 A simple blade design 70
 3.7.4 Effects of drag on optimal blade design 73
 3.7.5 Optimal blade design for constant speed operation 74
CONTENTS

3.8 The effects of a discrete number of blades 75
 3.8.1 Introduction 75
 3.8.2 Tip-losses 75
 3.8.3 Prandtl's approximation for the tip-loss factor 81
 3.8.4 Blade root losses 83
 3.8.5 Effect of tip-loss on optimum blade design and power 85
 3.8.6 Incorporation of tip-loss for non-optimal operation 88
 3.8.7 Alternative explanation for tip-loss 89

3.9 Stall delay 92

3.10 Calculated results for an actual turbine 95

3.11 The performance curves 97
 3.11.1 Introduction 97
 3.11.2 The $C_P - \lambda$ performance curve 98
 3.11.3 The effect of solidity on performance 98
 3.11.4 The $C_Q - \lambda$ curve 100
 3.11.5 The $C_T - \lambda$ curve 101

3.12 Constant rotational speed operation 101
 3.12.1 Introduction 101
 3.12.2 The $K_P - 1/\lambda$ curve 101
 3.12.3 Stall regulation 102
 3.12.4 Effect of rotational speed change 103
 3.12.5 Effect of blade pitch angle change 105

3.13 Pitch regulation 105
 3.13.1 Introduction 105
 3.13.2 Pitching to stall 106
 3.13.3 Pitching to feather 106

3.14 Comparison of measured with theoretical performance 107

3.15 Variable speed operation 108

3.16 Estimation of energy capture 109

3.17 Wind turbine aerofoil design 114
 3.17.1 Introduction 114
 3.17.2 The NREL aerofoils 114
 3.17.3 The Risø aerofoils 116
 3.17.4 The Delft aerofoils 117

References 119

Websites 120

Further reading 120

Appendix A3 lift and drag of aerofoils 120
 A3.1 Definition of drag 121
 A3.2 Drag coefficient 123
 A3.3 The boundary layer 124
 A3.4 Boundary layer separation 124
 A3.5 Laminar and turbulent boundary layers 125
 A3.6 Definition of lift and its relationship to circulation 127
 A3.7 The stalled aerofoil 130
 A3.8 The lift coefficient 131
CONTENTS

A3.9 Aerofoil drag characteristics 131
A3.10 Cambered aerofoils 134

4 Further aerodynamic topics for wind turbines 137

4.1 Introduction 137
4.2 The aerodynamics of turbines in steady yaw 137
 4.2.1 Momentum theory for a turbine rotor in steady yaw 138
 4.2.2 Glauert’s momentum theory for the yawed rotor 140
 4.2.3 Vortex cylinder model of the yawed actuator disc 144
 4.2.4 Flow expansion 146
 4.2.5 Related theories 152
 4.2.6 Wake rotation for a turbine rotor in steady yaw 152
 4.2.7 The blade element theory for a turbine rotor in steady yaw 154
 4.2.8 The blade element – momentum theory for a rotor in steady yaw 155
 4.2.9 Calculated values of induced velocity 158
4.3 The method of acceleration potential 163
 4.3.1 Introduction 163
 4.3.2 The general pressure distribution theory of Kinner 165
 4.3.3 The axi-symmetric pressure distributions 168
 4.3.4 The anti-symmetric pressure distributions 171
 4.3.5 The Pitt and Peters model 174
 4.3.6 The general acceleration potential method 175
 4.3.7 Comparison of methods 175
4.4 Unsteady flow 176
 4.4.1 Introduction 176
 4.4.2 Adaptation of the acceleration potential method to unsteady flow 177
 4.4.3 Unsteady yawing and tilting moments 180
4.5 Quasi-steady aerofoil aerodynamics 183
 4.5.1 Introduction 183
 4.5.2 Aerodynamic forces caused by aerofoil acceleration 184
 4.5.3 The effect of the wake on aerofoil aerodynamics in unsteady flow 185
4.6 Dynamic stall 189
4.7 Computational fluid dynamics 190
 References 191
 Further reading 192

5 Design loads for horizontal axis wind turbines 193

5.1 National and international standards 193
 5.1.1 Historical development 193
 5.1.2 IEC 61400–1 193
 5.1.3 GL rules 194
5.2 Basis for design loads 194
 5.2.1 Sources of loading 194
 5.2.2 Ultimate loads 195
5.2.3 Fatigue loads 195
5.2.4 Partial safety factors 195
5.2.5 Functions of the control and safety systems 197
5.3 Turbulence and wakes 197
5.4 Extreme loads 199
5.4.1 Operational load cases 199
5.4.2 Non-operational load cases 202
5.4.3 Blade/tower clearance 204
5.4.4 Constrained stochastic simulation of wind gusts 204
5.5 Fatigue loading 205
5.5.1 Synthesis of fatigue load spectrum 205
5.6 Stationary blade loading 205
5.6.1 Lift and drag coefficients 205
5.6.2 Critical configuration for different machine types 206
5.6.3 Dynamic response 206
5.7 Blade loads during operation 213
5.7.1 Deterministic and stochastic load components 213
5.7.2 Deterministic aerodynamic loads 213
5.7.3 Gravity loads 222
5.7.4 Deterministic inertia loads 222
5.7.5 Stochastic aerodynamic loads: analysis in the frequency domain 225
5.7.6 Stochastic aerodynamic loads: analysis in the time domain 235
5.7.7 Extreme loads 238
5.8 Blade dynamic response 241
5.8.1 Modal analysis 241
5.8.2 Mode shapes and frequencies 244
5.8.3 Centrifugal stiffening 245
5.8.4 Aerodynamic and structural damping 247
5.8.5 Response to deterministic loads: step-by-step dynamic analysis 249
5.8.6 Response to stochastic loads 254
5.8.7 Response to simulated loads 256
5.8.8 Teeter motion 256
5.8.9 Tower coupling 261
5.8.10 Aeroelastic stability 266
5.9 Blade fatigue stresses 267
5.9.1 Methodology for blade fatigue design 267
5.9.2 Combination of deterministic and stochastic components 269
5.9.3 Fatigue prediction in the frequency domain 269
5.9.4 Wind simulation 271
5.9.5 Fatigue cycle counting 272
5.10 Hub and low speed shaft loading 273
5.10.1 Introduction 273
5.10.2 Deterministic aerodynamic loads 274
5.10.3 Stochastic aerodynamic loads 275
5.10.4 Gravity loading 276
5.11 Nacelle loading 277
5.11.1 Loadings from rotor 277
5.11.2 Cladding loads 278
Contents

5.12 Tower loading 278
5.12.1 Extreme loads 278
5.12.2 Dynamic response to extreme loads 279
5.12.3 Operational loads due to steady wind (deterministic component) 282
5.12.4 Operational loads due to turbulence (stochastic component) 283
5.12.5 Dynamic response to operational loads 285
5.12.6 Fatigue loads and stresses 287
5.13 Wind turbine dynamic analysis codes 288
5.14 Extrapolation of extreme loads from simulations 294
5.14.1 Derivation of empirical cumulative distribution function of global extremes 295
5.14.2 Fitting an extreme value distribution to the empirical distribution 296
5.14.3 Comparison of extreme value distributions 301
5.14.4 Combination of probability distributions 302
5.14.5 Extrapolation 303
5.14.6 Fitting probability distribution after aggregation 303
5.14.7 Local extremes method 304
5.14.8 Convergence requirements 305
References 306

Appendix 5: dynamic response of stationary blade in turbulent wind 308
A5.1 Introduction 308
A5.2 Frequency response function 309
A5.2.1 Equation of motion 309
A5.2.2 Frequency response function 309
A5.3 Resonant displacement response ignoring wind variations along the blade 310
A5.3.1 Linearisation of wind loading 310
A5.3.2 First mode displacement response 311
A5.3.3 Background and resonant response 311
A5.4 Effect of across-wind turbulence distribution on resonant displacement response 313
A5.4.1 Formula for normalised co-spectrum 314
A5.5 Resonant root bending moment 316
A5.6 Root bending moment background response 318
A5.7 Peak response 319
A5.8 Bending moments at intermediate blade positions 322
A5.8.1 Background response 322
A5.8.2 Resonant response 322
References 323

6 Conceptual design of horizontal axis wind turbines 325
6.1 Introduction 325
6.2 Rotor diameter 325
6.2.1 Cost modelling 326
6.2.2 Simplified cost model for machine size optimisation an illustration 326
6.2.3 The NREL cost model 329
CONTENTS xi

6.2.4 Machine size growth 331
6.2.5 Gravity limitations 332
6.3 Machine rating 332
 6.3.1 Simplified cost model for optimising machine rating in relation to diameter 332
 6.3.2 Relationship between optimum rated wind speed and annual mean 334
 6.3.3 Specific power of production machines 335
6.4 Rotational speed 336
 6.4.1 Ideal relationship between rotational speed and solidity 336
 6.4.2 Influence of rotational speed on blade weight 337
 6.4.3 Optimum rotational speed 338
 6.4.4 Noise constraint on rotational speed 338
 6.4.5 Visual considerations 338
6.5 Number of blades 338
 6.5.1 Overview 338
 6.5.2 Ideal relationship between number of blades, rotational speed and solidity 339
 6.5.3 Some performance and cost comparisons 339
 6.5.4 Effect of number of blades on loads 343
 6.5.5 Noise constraint on rotational speed 345
 6.5.6 Visual appearance 345
 6.5.7 Single-bladed turbines 345
6.6 Teetering 346
 6.6.1 Load relief benefits 346
 6.6.2 Limitation of large excursions 347
 6.6.3 Pitch-teeter coupling 348
 6.6.4 Teeter stability on stall-regulated machines 348
6.7 Power control 349
 6.7.1 Passive stall control 349
 6.7.2 Active pitch control 349
 6.7.3 Passive pitch control 354
 6.7.4 Active stall control 354
 6.7.5 Yaw control 355
6.8 Braking systems 356
 6.8.1 Independent braking systems: requirements of standards 356
 6.8.2 Aerodynamic brake options 356
 6.8.3 Mechanical brake options 358
 6.8.4 Parking versus idling 358
6.9 Fixed speed, two speed or variable speed 358
 6.9.1 Two speed operation 359
 6.9.2 Variable slip operation (see also Chapter 8, Section 8.3.8) 360
 6.9.3 Variable speed operation 361
 6.9.4 Other approaches to variable speed operation 363
6.10 Type of generator 365
 6.10.1 Historical attempts to use synchronous generators 365
 6.10.2 Direct drive generators 367
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.10.3 Evolution of generator systems</td>
<td>368</td>
</tr>
<tr>
<td>6.11 Drive train mounting arrangement options</td>
<td>369</td>
</tr>
<tr>
<td>6.11.1 Low speed shaft mounting</td>
<td>369</td>
</tr>
<tr>
<td>6.11.2 High speed shaft and generator mounting</td>
<td>372</td>
</tr>
<tr>
<td>6.12 Drive train compliance</td>
<td>373</td>
</tr>
<tr>
<td>6.13 Rotor position with respect to tower</td>
<td>375</td>
</tr>
<tr>
<td>6.13.1 Upwind configuration</td>
<td>375</td>
</tr>
<tr>
<td>6.13.2 Downwind configuration</td>
<td>376</td>
</tr>
<tr>
<td>6.14 Tower stiffness</td>
<td>376</td>
</tr>
<tr>
<td>6.14.1 Stochastic thrust loading at blade passing frequency</td>
<td>376</td>
</tr>
<tr>
<td>6.14.2 Tower top moment fluctuations due to blade pitch errors</td>
<td>378</td>
</tr>
<tr>
<td>6.14.3 Tower top moment fluctuations due to rotor mass imbalance</td>
<td>378</td>
</tr>
<tr>
<td>6.14.4 Tower stiffness categories</td>
<td>379</td>
</tr>
<tr>
<td>6.15 Personnel safety and access issues</td>
<td>379</td>
</tr>
<tr>
<td>References</td>
<td>381</td>
</tr>
</tbody>
</table>

7 Component design

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Blades</td>
<td>383</td>
</tr>
<tr>
<td>7.1.1 Introduction</td>
<td>383</td>
</tr>
<tr>
<td>7.1.2 Aerodynamic design</td>
<td>384</td>
</tr>
<tr>
<td>7.1.3 Practical modifications to optimum design</td>
<td>384</td>
</tr>
<tr>
<td>7.1.4 Form of blade structure</td>
<td>385</td>
</tr>
<tr>
<td>7.1.5 Blade materials and properties</td>
<td>386</td>
</tr>
<tr>
<td>7.1.6 Properties of glass/polyester and glass/epoxy composites</td>
<td>390</td>
</tr>
<tr>
<td>7.1.7 Properties of wood laminates</td>
<td>395</td>
</tr>
<tr>
<td>7.1.8 Blade loading overview</td>
<td>398</td>
</tr>
<tr>
<td>7.1.9 Blade resonance</td>
<td>409</td>
</tr>
<tr>
<td>7.1.10 Design against buckling</td>
<td>414</td>
</tr>
<tr>
<td>7.1.11 Blade root fixings</td>
<td>418</td>
</tr>
<tr>
<td>7.2 Pitch bearings</td>
<td>419</td>
</tr>
<tr>
<td>7.3 Rotor hub</td>
<td>422</td>
</tr>
<tr>
<td>7.4 Gearbox</td>
<td>425</td>
</tr>
<tr>
<td>7.4.1 Introduction</td>
<td>425</td>
</tr>
<tr>
<td>7.4.2 Variable loading during operation</td>
<td>425</td>
</tr>
<tr>
<td>7.4.3 Drive train dynamics</td>
<td>427</td>
</tr>
<tr>
<td>7.4.4 Braking loads</td>
<td>427</td>
</tr>
<tr>
<td>7.4.5 Effect of variable loading on fatigue design of gear teeth</td>
<td>429</td>
</tr>
<tr>
<td>7.4.6 Effect of variable loading on fatigue design of bearings and shafts</td>
<td>432</td>
</tr>
<tr>
<td>7.4.7 Gear arrangements</td>
<td>433</td>
</tr>
<tr>
<td>7.4.8 Gearbox noise</td>
<td>435</td>
</tr>
<tr>
<td>7.4.9 Integrated gearboxes</td>
<td>436</td>
</tr>
<tr>
<td>7.4.10 Lubrication and cooling</td>
<td>436</td>
</tr>
<tr>
<td>7.4.11 Gearbox efficiency</td>
<td>437</td>
</tr>
<tr>
<td>7.5 Generator</td>
<td>437</td>
</tr>
<tr>
<td>7.5.1 Fixed-speed induction generators</td>
<td>437</td>
</tr>
<tr>
<td>7.5.2 Variable slip induction generators</td>
<td>439</td>
</tr>
</tbody>
</table>
CONTENTS

7.5.3 Variable speed operation 440
7.5.4 Variable speed operation using a Doubly Fed Induction Generator (DFIG) 442
7.5.5 Variable speed operation using a Full Power Converter (FPG) 445

7.6 Mechanical brake 446
7.6.1 Brake duty 446
7.6.2 Factors governing brake design 447
7.6.3 Calculation of brake disc temperature rise 448
7.6.4 High speed shaft brake design 450
7.6.5 Two level braking 452
7.6.6 Low speed shaft brake design 453

7.7 Nacelle bedplate 453
7.8 Yaw drive 453
7.9 Tower 456
7.9.1 Introduction 456
7.9.2 Constraints on first mode natural frequency 456
7.9.3 Steel tubular towers 457
7.9.4 Steel lattice towers 466

7.10 Foundations 467
7.10.1 Slab foundations 467
7.10.2 Multi-pile foundations 468
7.10.3 Concrete monopile foundations 468
7.10.4 Foundations for steel lattice towers 469
7.10.5 Foundation rotational stiffness 469

References 471

8 The controller 475
8.1 Functions of the wind turbine controller 476
8.1.1 Supervisory control 476
8.1.2 Closed loop control 477
8.1.3 The safety system 477

8.2 Closed loop control: issues and objectives 478
8.2.1 Pitch control (See also Chapter 3, Section 3.13 and Chapter 6, Section 6.7.2) 478
8.2.2 Stall control 480
8.2.3 Generator torque control (see also Chapter 6, Section 6.9 and Chapter 7, Section 7.5) 480
8.2.4 Yaw control 481
8.2.5 Influence of the controller on loads 481
8.2.6 Defining controller objectives 482
8.2.7 PI and PID controllers 483

8.3 Closed loop control: general techniques 484
8.3.1 Control of fixed speed, pitch regulated turbines 484
8.3.2 Control of variable speed pitch regulated turbines 485
8.3.3 Pitch control for variable speed turbines 488
8.3.4 Switching between torque and pitch control 488
8.3.5 Control of tower vibration 490
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Modelling and prediction of EMI from wind turbines</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Aviation radar</td>
</tr>
<tr>
<td>9.5</td>
<td>Ecological assessment</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Impact on birds</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

10 Wind energy and the electric power system 565

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>10.1.1</td>
<td>The electric power system</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Electrical distribution networks</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Electrical generation and transmission systems</td>
</tr>
<tr>
<td>10.2</td>
<td>Wind farm power collection systems</td>
</tr>
<tr>
<td>10.3</td>
<td>Earthing (grounding) of wind farms</td>
</tr>
<tr>
<td>10.4</td>
<td>Lightning protection</td>
</tr>
<tr>
<td>10.5</td>
<td>Connection of wind generation to distribution networks</td>
</tr>
<tr>
<td>10.6</td>
<td>Power system studies</td>
</tr>
<tr>
<td>10.7</td>
<td>Power quality</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Voltage flicker</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Harmonics</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Measurement and assessment of power quality characteristics of grid connected wind turbines</td>
</tr>
<tr>
<td>10.8</td>
<td>Electrical protection</td>
</tr>
<tr>
<td>10.8.1</td>
<td>Wind farm and generator protection</td>
</tr>
<tr>
<td>10.8.2</td>
<td>Islanding and self-excitation of induction generators</td>
</tr>
<tr>
<td>10.8.3</td>
<td>Interface protection for wind turbines connected to distribution networks</td>
</tr>
<tr>
<td>10.9</td>
<td>Distributed generation and the Grid Codes</td>
</tr>
<tr>
<td>10.9.1</td>
<td>Grid Code – continuous operation</td>
</tr>
<tr>
<td>10.9.2</td>
<td>Grid Code – voltage and power factor control</td>
</tr>
<tr>
<td>10.9.3</td>
<td>Grid Code – frequency response</td>
</tr>
<tr>
<td>10.9.4</td>
<td>Grid Code – fault ride through</td>
</tr>
<tr>
<td>10.9.5</td>
<td>Synthetic inertia</td>
</tr>
<tr>
<td>10.10</td>
<td>Wind energy and the generation system</td>
</tr>
<tr>
<td>10.10.1</td>
<td>Capacity credit</td>
</tr>
<tr>
<td>10.10.2</td>
<td>Wind power forecasting</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

Appendix A10 Simple calculations for the connection of wind turbines 609

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10.1</td>
<td>The Per-unit system</td>
</tr>
<tr>
<td>A10.2</td>
<td>Power flows, slow voltage variations and network losses</td>
</tr>
</tbody>
</table>

11 Offshore wind turbines and wind farms 613

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Development of offshore wind energy</td>
</tr>
<tr>
<td>11.2</td>
<td>The offshore wind resource</td>
</tr>
<tr>
<td>11.2.1</td>
<td>The structure of winds offshore</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Site wind speed assessment</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Wakes and array losses in offshore wind farms</td>
</tr>
</tbody>
</table>
CONTENTS

11.3 Design loads 620
 11.3.1 International Standards 620
 11.3.2 Wind conditions 621
 11.3.3 Marine conditions 622
 11.3.4 Wave spectra 623
 11.3.5 Ultimate loads: operational load cases and accompanying wave climates 624
 11.3.6 Ultimate loads: non-operational load cases and accompanying wave climates 632
 11.3.7 Fatigue loads 634
 11.3.8 Wave theories 636
 11.3.9 Wave loading on support structure 644
 11.3.10 Constrained waves 657
 11.3.11 Analysis of support structure loads 660

11.4 Machine size optimisation 661

11.5 Reliability of offshore wind turbines 663

11.6 Support structures 667
 11.6.1 Monopiles 667
 11.6.2 Monopile fatigue analysis in the frequency domain 674
 11.6.3 Gravity bases 690
 11.6.4 Jacket structures 695
 11.6.5 Tripod structures 702
 11.6.6 Tripile structures 702

11.7 Environmental assessment of offshore wind farms 704

11.8 Offshore power collection and transmission 707
 11.8.1 Offshore wind farm transmission 708
 11.8.2 Submarine AC cable systems 712
 11.8.3 HVDC transmission 715

11.9 Operation and access 717
 References 719

Appendix A11 723
 References for table A11.1 723

Index 729