Part I Active and Atmospheric Packaging

1 Selected Techniques to Decontaminate Minimally Processed Vegetables

Vicente M. Gómez-López

1.1 Introduction

1.2 UV-C light

1.3 Pulsed light

1.4 Electrolysed oxidizing water

1.5 Ozone

1.6 Low-temperature blanching

References
Active and Intelligent Packaging of Food

István Siró

2.1 Introduction

2.2 Active scavengers

- **2.2.1 Oxygen scavengers**
- **2.2.2 Ethylene scavengers**
- **2.2.3 Carbon dioxide scavengers**
- **2.2.4 Moisture regulators**
- **2.2.5 Aroma scavengers/absorbers**

2.3 Active releasers/emitters

- **2.3.1 Antimicrobial packaging**
- **2.3.2 Antimicrobial substances**
- **2.3.3 Development of antimicrobial packaging**
- **2.3.4 Antioxidative packaging**
- **2.3.5 Other releasers/emitters**
- **2.3.6 Controlled release of active compounds**

2.4 Intelligent packaging

- **2.4.1 Gas indicators and sensors**
- **2.4.2 Time-temperature indicators**
- **2.4.3 Freshness/spoilage indicators**
- **2.4.4 Biosensors/nanosensors**
- **2.4.5 Radio frequency identification**

2.5 Nanotechnology in active and intelligent packaging

2.6 Future trends

2.7 Further sources of information

References

Modified-Atmosphere Storage of Foods

Osman Erkmen

3.1 Introduction

3.2 Modified atmosphere

- **3.2.1 Types of modified-atmosphere techniques**
- **3.2.2 Gases used for modification of atmosphere**

3.3 Effects of modified gas atmospheres on microorganisms and foods

- **3.3.1 Mechanism of effects**
- **3.3.2 Effects of modified atmosphere on spoilage microorganisms**
- **3.3.3 Effects of modified atmosphere on microorganisms that cause food poisoning**

3.4 Application of modified atmospheres for food preservation

- **3.4.1 Meat and meat products**
- **3.4.2 Seafoods**
- **3.4.3 Dairy products**
- **3.4.4 Bakery products**
- **3.4.5 Dried food products**
- **3.4.6 Fruits and vegetables**

3.5 Food safety and future outlook

3.6 Conclusions

References
4 **Effects of Combined Treatments with Modified-Atmosphere Packaging on Shelf-Life Improvement of Food Products** 67
Shengmin Lu and Qile Xia

4.1 Introduction 67
4.2 Physical treatments 68
4.2.1 Low temperature 68
4.2.2 High pressure 70
4.2.3 Radiation 72
4.2.4 Heat treatment 73
4.2.5 Films 74
4.3 Chemical treatments 75
4.3.1 Chemical sanitizers and preservatives 75
4.4 Quality-improving agents 82
4.5 Antibrowning agents 83
4.6 Natural products 84
4.7 Other methods, such as oxygen scavengers and coatings 89
4.8 Biocontrol 90
4.8.1 Bacterial antagonists 90
4.8.2 Yeast antagonists 92
References 96

5 **Coating Technology for Food Preservation** 111
Chamorn Chawengkijwanich and Phikunthong Kopermsub

5.1 Introduction 111
5.2 Progress in relevant materials and their applications in coating 112
5.2.1 Active agents for coating 112
5.2.2 Controlled release of active agents 114
5.2.3 Multifunctional surface-coating materials 117
5.2.4 Nutraceutical coatings 118
5.3 Progress in coating methodology 118
5.4 Future trends in coating technology 121
5.5 Conclusions 122
References 123

Part II Novel Decontamination Techniques 129

6 **Biological Materials and Food-Drying Innovations** 131
Habib Kocabiylk

6.1 Introduction 131
6.2 Microwave drying 133
6.3 Radio frequency drying 134
6.4 Infrared drying 136
6.5 Refractance window™ drying 138
References 139
7 Atmospheric Freeze Drying
Shek Mohammod Atique Rahman and Arun S. Mujumdar

7.1 Introduction 143
7.2 Basic principles 144
7.3 Types of atmospheric freeze dryer and application 146
 7.3.1 Fluid-bed freeze drying 146
 7.3.2 Tunnel freeze drying 146
 7.3.3 Atmospheric spray-freeze drying 147
 7.3.4 Heat-pump technology 148
7.4 A novel approach to AFD 149
 7.4.1 Experimental results 150
7.5 Model 156
 7.5.1 Assumptions 156
 7.5.2 Governing equations 157
7.6 Conclusions 158
References 159

8 Osmotic Dehydration: Theory, Methodologies, and Applications in Fish, Seafood, and Meat Products
Ioannis S. Arvanitoyannis, Agapi Veikou, and Panagiota Panagiotaki

8.1 Introduction 161
 8.1.1 Determination of physical characteristics 163
8.2 Methods of drying 165
 8.2.1 Sun drying/solar drying 165
 8.2.2 Air and contact drying under atmospheric pressure 165
 8.2.3 Freeze drying 165
 8.2.4 Osmotic dehydration 166
 8.2.5 Vacuum osmotic dehydration 166
 8.2.6 Vacuum impregnation 166
 8.2.7 Pulse VOD 167
 8.2.8 Traditional meat smoking 167
 8.2.9 Meat treatments by soaking 167
8.3 Some results 168
8.4 Conclusions 186
References 188

9 Dehydration of Fruit and Vegetables in Tropical Regions
Salim-ur-Rehman and Javaid Aziz Awan

9.1 Introduction 191
9.2 Forms of water 192
 9.2.1 Role of water in food 192
9.3 Advantages of dried foods 192
9.4 Drying processes 193
 9.4.1 Sun drying/solar drying of fruit and vegetables 193
 9.4.2 Solar driers 194
9.4.3 Drying under shade 195
9.4.4 Osmotic drying 195
9.5 Dehydration 196
 9.5.1 Drying conditions 196
 9.5.2 Factors affecting evaporation of water from food surfaces 196
 9.5.3 Types of dehydrator 197
9.6 Evaporation and concentration 200
 9.6.1 Freeze drying 201
 9.6.2 Dehydro-freezing 201
 9.6.3 Intermediate-moisture food technology 202
9.7 Spoilage of dried fruits and vegetables 203
9.8 Merits of dehydration over sun drying 203
9.9 Effects of dehydration on nutritive value of fruits and vegetables 204
9.10 Effects of drying on microorganisms 204
9.11 Effect of drying on enzyme activity 205
9.12 Influence of drying on pigments 205
9.13 Reconstitution test 205
9.14 Drying parameters 208
References 208

10 Developments in the Thermal Processing of Food 211
Tareq M. Osaili

 10.1 Introduction 211
 10.2 Thermal processing 212
 10.2.1 Thermal inactivation kinetics 212
 10.2.2 Process lethality of thermal process 213
 10.2.3 Requirement of thermal process 214
 10.2.4 Process verification/validation 214
 10.3 Innovative thermal processing techniques 215
 10.3.1 Indirect electroheating techniques: radio frequency
 and microwave 215
 10.3.2 Direct electroheating techniques: ohmic heating 224
References 227

11 Ozone in Food Preservation 231
Bülent Zorluğenç and Feyza Kıroğlu Zorluğenç

 11.1 Introduction 231
 11.2 History 232
 11.3 Chemistry
 11.3.1 Solubility 233
 11.3.2 Stability 233
 11.3.3 Reactivity 233
 11.4 Generation 233
 11.5 Antimicrobial effect 234
 11.5.1 Inactivation spectrum 235
 11.5.2 Influencing factors 236
12 Application of High Hydrostatic Pressure Technology for Processing and Preservation of Foods
Hudaa Neetoo and Haiqiang Chen

12.1 Introduction
12.2 The working principles of high hydrostatic pressure
12.3 Microbial inactivation by high hydrostatic pressure
 12.3.1 Effect of high pressure on bacterial cell membrane
 12.3.2 Effect of high pressure on bacterial cell morphology
 12.3.3 Effect of high pressure on biochemical and enzymatic processes in microorganisms
12.4 Effect of high pressure on the physical and biochemical characteristics of food systems
12.5 Applications of high hydrostatic pressure to specific food commodities
 12.5.1 Effect of high hydrostatic pressure on muscle foods
 12.5.2 Effect of high hydrostatic pressure processing on fishery products
 12.5.3 Effect of high hydrostatic pressure processing on milk and dairy products
 12.5.4 Effect of high hydrostatic pressure on eggs and egg products
 12.5.5 Effect of high hydrostatic pressure on fruit and vegetable products
12.6 Conclusions
References

13 Pulsed Electric Fields for Food Preservation: An Update on Technological Progress
Abdorreza Mohammadi Nafchi, Rajeev Bhat, and Abd Karim Alias

13.1 Introduction
13.2 Historical background of pulsed electric fields
13.3 Pulsed electric field processing
13.4 Mechanisms and factors affecting pulsed electric fields
 13.4.1 Increase in transmembrane potential
13.4.2 Pore-initiation stage
13.4.3 Evolution of the pore population
13.4.4 Pore resealing or cell death
13.5 Pulsed electric field applications in food processing
13.6 Nanosecond pulsed electric fields
13.7 Impacts of pulsed electric fields on antioxidant features
 13.7.1 Antioxidants and vitamin C
 13.7.2 Carotenoids and vitamin A
13.8 Effects of pulsed electric fields on solid textures
13.9 Starch modification by pulsed electric fields
13.10 Conclusions

References

14 Salting Technology in Fish Processing
Hülya Turan and İbrahim Erkoyuncu

14.1 Introduction
 14.1.1 Purpose and principles of salting
14.2 Process steps in salting technology
 14.2.1 Salt quality
 14.2.2 Fish preparation
 14.2.3 Salting methods
 14.2.4 Additives used in the salting process
14.3 Factors affecting the penetration of salt
 14.3.1 Salting method
 14.3.2 Salt concentration
 14.3.3 Salt quality
 14.3.4 Fish freshness
 14.3.5 Amount of fat
 14.3.6 Size of the fish
 14.3.7 Temperature
14.4 Ripening of salted fish
 14.4.1 Storage of salted fish
 14.4.2 Undesirable changes in salted products
14.5 Conclusion

References

15 Hypoxanthine Levels, Chemical Studies and Bacterial Flora of Alternate Frozen/Thawed Market-Simulated Marine Fish Species
Olusegun A. Oyelese

15.1 Introduction
15.2 Sources of contamination of fish
15.3 Fish as a perishable food
 15.3.1 Autolytic spoilage
 15.3.2 Microbiological spoilage
15.4 Indicators of deterioration in frozen fish
15.5 Bacterial food poisoning in seafood

References
15.6 Methods used for assessing deteriorative changes in fish
15.6.1 Organoleptic or sensory assessment 320
15.6.2 Chemical assessment 320
15.6.3 Bacteriological assessment (microbiological analysis) 322
15.7 Study of three marine fish species
15.7.1 Proximate composition of marine fish samples 323
15.7.2 Results of bacteriological assessment 324
15.8 Conclusions 328
References 328

16 Preservation of Cassava (*Manihot esculenta* Crantz): A Major Crop to Nourish People Worldwide

G.J. Benoit Gnonlonfin, Ambaliou Sanni and Leon Brimer

16.1 Introduction: cassava production and importance 331
16.2 Nutritional value 331
16.3 Cassava utilization 332
16.4 Factors that limit cassava utilization, and its toxicity 333
16.5 Cassava processing
16.5.1 Description of some cassava-based products 336
16.6 Storage of processed cassava products 339
References 339

17 Use of Electron Beams in Food Preservation

Rajeev Bhat, Abd Karim Alias and Gopinadhan Paliyath

17.1 Introduction 343
17.2 Food irradiation, source and technology 344
17.3 The food industry and electron-beam irradiation 346
17.3.1 Fruits and vegetables 346
17.3.2 Cereals, legumes and seeds 360
17.3.3 Poultry, meat and seafood 362
17.4 Electron-beam irradiation and microorganisms 364
17.5 Conclusion and future outlook 365
References 366

Part III Modelling

18 Treatment of Foods using High Hydrostatic Pressure

Sencer Buzrul and Hami Alpas

18.1 Introduction 375
18.2 Pressure and the earth 376
18.3 Main factors characterizing high hydrostatic pressure
18.3.1 Energy 376
18.3.2 Densification effect 377
18.3.3 Isostatic (Pascal) principle 377
18.4 Historical perspective 377
18.5 High hydrostatic pressure process and equipment 378
18.6 Commercial high hydrostatic pressure-treated food products around the world
 18.6.1 Meat products 381
 18.6.2 Seafood and fish products 382
 18.6.3 Vegetable products 382
 18.6.4 Juices and beverages 382
18.7 Consumer acceptance of high hydrostatic pressure processing 382
References 385

19 Role of Predictive Microbiology in Food Preservation 389
Francisco Noé Arroyo-López, Joaquín Bautista-Gallego and Antonio Garrido-Fernández

19.1 Microorganisms in foods 389
 19.1.1 Why is it necessary to control microbial growth in foods? 389
 19.1.2 Main factors affecting microbial growth and survival in food ecosystems 390
19.2 Predictive microbiology 391
 19.2.1 Origin and concept 391
 19.2.2 The modelling process 392
19.3 Software packages and web applications in predictive microbiology 400
19.4 Applications of predictive microbiology in food preservation 402
References 402

20 Factors Affecting the Growth of Microorganisms in Food 405
Siddig Hussein Hamad

20.1 Introduction 405
20.2 Intrinsic factors 406
 20.2.1 Water activity 406
 20.2.2 pH value 409
 20.2.3 Nutrient content 412
 20.2.4 Antimicrobial substances and mechanical barriers to microbial invasion 413
 20.2.5 Redox potential 416
20.3 Extrinsic factors 417
 20.3.1 Impact of storage temperature 417
 20.3.2 Impact of storage atmosphere of the food 421
20.4 Implicit factors 423
 20.4.1 Antagonism 423
 20.4.2 Synergism 424
20.5 Processing factors 424
20.6 Interaction between factors 425
References 426
21 A Whole-Chain Approach to Food Safety Management and Quality Assurance of Fresh Produce 429
Hans Rediers, Inge Hanssen, Matthew S. Krause, Ado Van Assche, Raf De Vis, Rita Moloney and Kris A. Willems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>Introduction: the management of food safety requires a holistic approach</td>
</tr>
<tr>
<td>21.2</td>
<td>Microbial quality management starts in production</td>
</tr>
<tr>
<td>21.3</td>
<td>Processing of fresh produce is a key step in quality preservation</td>
</tr>
<tr>
<td>21.3.1</td>
<td>Hand hygiene</td>
</tr>
<tr>
<td>21.3.2</td>
<td>The use of at-line microbial monitoring in food processing</td>
</tr>
<tr>
<td>21.4</td>
<td>Monitoring the entire food supply chain</td>
</tr>
<tr>
<td>21.4.1</td>
<td>Temperature management in the cold chain</td>
</tr>
<tr>
<td>21.4.2</td>
<td>Construction of a microbiological database as a tool for process control</td>
</tr>
<tr>
<td>21.5</td>
<td>The improvement of compliance by increasing awareness</td>
</tr>
<tr>
<td>21.6</td>
<td>Last but not least: consumers</td>
</tr>
<tr>
<td>21.7</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

References

Part IV Use of Natural Preservatives 451

22 Food Bioprotection: Lactic Acid Bacteria as Natural Preservatives 453
Graciela Vignolo, Lucila Saavedra, Fernando Sesma, and Raúl Raya

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>22.2</td>
<td>Antimicrobial potential of LAB</td>
</tr>
<tr>
<td>22.3</td>
<td>Bacteriocins</td>
</tr>
<tr>
<td>22.3.1</td>
<td>Biosynthetic pathways</td>
</tr>
<tr>
<td>22.4</td>
<td>Food applications</td>
</tr>
<tr>
<td>22.4.1</td>
<td>Bioprotection of meat, poultry, and seafood products</td>
</tr>
<tr>
<td>22.4.2</td>
<td>Bioprotection of dairy products</td>
</tr>
<tr>
<td>22.4.3</td>
<td>Bioprotection of vegetable products</td>
</tr>
<tr>
<td>22.5</td>
<td>Hurdle technology to enhance food safety</td>
</tr>
<tr>
<td>22.6</td>
<td>Bacteriocins in packaging films</td>
</tr>
<tr>
<td>22.7</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>

References

23 Bacteriocins: Recent Advances and Opportunities 485
Taoufik Ghrairi, Nawel Chaftar and Khaled Hani

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>23.2</td>
<td>Bacteriocins produced by LAB</td>
</tr>
<tr>
<td>23.2.1</td>
<td>Detection</td>
</tr>
<tr>
<td>23.2.2</td>
<td>Classification</td>
</tr>
<tr>
<td>23.2.3</td>
<td>Mechanisms of action</td>
</tr>
</tbody>
</table>

References
23.2.4 Genetic organization and regulation 492
23.2.5 Immunity 493
23.3 Bioprotection against pathogenic bacteria 493
 23.3.1 Biocontrol of *Listeria monocytogenes* 493
 23.3.2 Biocontrol of *Clostridium botulinum* and *Clostridium perfringens* 497
 23.3.3 Biocontrol of *Staphylococcus aureus* 498
 23.3.4 Biocontrol of Gram-negative bacteria 498
23.4 Bioprotection against spoilage microorganisms 500
 23.4.1 Biocontrol of *Bacillus* spp. 500
 23.4.2 Biocontrol of yeasts and moulds 500
23.5 Medical and veterinary potential of LAB bacteriocins 501
23.6 Conclusion 501
References 502

24 Application of Botanicals as Natural Preservatives in Food 513
Vibha Gupta and Jagdish Nair

24.1 Introduction 513
24.2 Antibacterials 514
 24.2.1 Spices and their essential oils 514
 24.2.2 Allium species 515
 24.2.3 Citrus fruits 516
 24.2.4 Cruciferae family 516
24.3 Antifungals 517
24.4 Antioxidants 518
 24.4.1 Cereals and legumes 519
 24.4.2 Fruits 519
 24.4.3 Herbs and spices 519
24.5 Applications 520
 24.5.1 Meat products 521
 24.5.2 Dairy products 521
 24.5.3 Vegetables and fruits 522
 24.5.4 Synergistic effects 522
24.6 Conclusion 523
References 524

25 Tropical Medicinal Plants in Food Processing and Preservation: Potentials and Challenges 531
Afolabi F. Eleyinmi

25.1 Introduction 531
25.2 Some tropical medicinal plants with potential food-processing value 532
 25.2.1 *Ageratum conyzoides* 532
 25.2.2 *Cymbopogon citratus* (lemongrass) 532
 25.2.3 *Chromolaena odorata* (Siam weed) 533
 25.2.4 *Garcinia kola* (bitter kola) 533
25.2.5 *Vernonia amygdalina* (bitter leaf) 534
25.2.6 *Allium sativum* L. (garlic) 534
25.2.7 *Gongronema latifolium* 534
25.2.8 *Dracaena mannii* 534
25.2.9 *Salvia officinalis* 535

25.3 Conclusion 535
References 535

26 Essential Oils and Other Plant Extracts as Food Preservatives 539
Thierry Regnier, Sandra Combrinck and Wilma Du Plooy

26.1 Background 539
26.2 Secondary metabolites of plants 542
26.2.1 Essential oils 542
26.2.2 Non-volatile secondary metabolites 543
26.3 Modes of action of essential oils and plant extracts 544
26.4 Specific applications of plant extracts in the food industry 545
26.4.1 Fruits 546
26.4.2 Vegetables, legumes and grains 558
26.4.3 Seaweed 559
26.4.4 Fish and meat 563
26.5 Medicinal plants and the regulations governing the use of botanical biocides 564
26.6 Future perspectives 568
26.7 Conclusions 569
References 569

27 Plant-Based Products as Control Agents of Stored-Product Insect Pests in the Tropics 581
Joshua O. Ogendo, Arop L. Deng, Rhoda J. Birech and Philip K. Bett

27.1 Introduction 581
27.2 Common insect pests of stored food grains in the tropics 583
27.2.1 Primary insect pests of stored cereals 583
27.2.2 Primary insect pests of pulses 586
27.2.3 Secondary insect pests of stored cereals and pulses 588
27.3 Advances in stored-product insect pest control in the tropics 590
27.3.1 Cultural control 590
27.3.2 Monitoring of pest populations 590
27.3.3 Grain moisture content control 590
27.3.4 Biological control 591
27.3.5 Synthetic chemical control 591
27.4 Advances in development of botanical pesticides in the tropics 592
27.4.1 Botanical insecticides 592
27.4.2 Essential oils 593
27.4.3 Case studies on control of stored-grain insect pests using essential oils 595
27.5 Prospects of botanical pesticides 597
References 597
28 Preservation of Plant and Animal Foods: An Overview
 Gabriel O. Adegoke and Abiodun A. Olapade

28.1 Introduction: definition and principles
28.2 Food preservation methods
 28.2.1 Precooling
 28.2.2 Canning
 28.2.3 Drying and dehydration
 28.2.4 Packaging methods
 28.2.5 Antimicrobial-packaging technology
 28.2.6 Smoking
 28.2.7 Chemical preservatives/food additives
 28.2.8 Shelf-life extension using additives of plant origin
 28.2.9 Food irradiation
 28.2.10 High-pressure food processing
 28.2.11 Modified gas atmosphere
28.3 Conclusion
References

Index