Index

a
acetic acid 4, 77
acoustic wave separation (AWS) 220, 221
adsorbent materials 3
 – agarose/cellulose-based 4
 – commercial 5, 6
 – suppliers 7
 – with a high-density matrix 9
 – ligand 4
adsorbents. see adsorbent materials
adsorption 98
 – capacity vs. concentration of vacant sites 100
 – determination of 104
 – expanded bed adsorption technology 1
 – irreversible 101
 – isotherms 6, 8, 16
 – methods 328
 – of protein monomeraggregate on resin surface 101
 – rate of adsorption of aggregate 102
adsorption–desorption rate 9
adsorptive filter materials 410
affinity chromatography (AC) 16
agarose 3, 16, 328, 488
alternating tangential flow (ATF) 386
anion exchange chromatography (AEX) 280, 379, 426, 441, 450, 482
anion exchanger 6, 16, 19, 99, 328
antibody technologies 358
aseptic transfer systems 413
automated fill system 418
automated KrosFlo perfusion system (aKPS) 215
automated single-use centrifugation solution 385
AWS. see acoustic wave separation (AWS)
azeotrope 19

b
bacteria challenge testing 409, 410
bacterial resistance 298
bacteriophages 297
 – adaptation 303
 – concentration 302
 – continuous purification of 325, 326
 – centrifugation 326
 – chromatography 328, 329
 – filtration 327
 – flocculation 326, 327
 – precipitation 326, 327
 – cultivation 305
 – cellstat 310–314
 – cellstat productivity 314–322
 – chemostat 306–310
 – technical challenges 323–325
 – ENKO 298
 – INTESTI 298
 – lambda 302
 – latent period 300, 301
 – life cycle 299–304
 – related parameters 301
 – lysogenic 299
 – multiplication 299
 – properties determination 303–305
 – selection 322, 323
 – therapy 299
 – tool in biotechnology and applications 297
 – traits 298
baculovirus expression vector system (BEVS) 165
batch-based chromatography 257, 274
 – separations 255
batch-based downstream processing 58
 – high-level gap analysis 258
batch chromatography system 48
 – chromatograms 236
 – shared and segregated flow paths 49
– integrated continuous processing flowsheets 450, 451
– perfusion setup (BioSep) 167
– BioSep perfusion setup 168
– cell count in the bioreactor 168, 169
– cells in perfusate over time at 1.5, 4.5, and 20 l working volume 175
– change in power setting for 4.5 l bioreactor runs 175
– controlling the cell concentration through bleed rate control 169, 170
– cell viability 169
– cultivation, parameters of interest 168
– development of perfusion rate profile 170
– cell count in the bioreactor 168, 169
– effects of BioSep settings on cell loss and viability 169
– initial testing of robustness of upstream process in 1.5 l fermentations 170–173
– process scale-up 174, 175
– scaling up and consistency in 4.5 l fermentations 171, 173, 174
– results
– cell counts achieved using perfusion technology 177
– effect of feed strategy 178
– protein stability 179, 180
– VAR2CSA truncation variant 180
– yield improvements achieved using fed-batch and concentrated perfusion 179
– semicontinuous affinity chromatography for clinical and commercial manufacture 446–449

cell retention devices 116, 125, 126
– acoustic (ultrasonic) separators 134
– alternating tangential flow system 136–138
– centrifugation 130, 131
– coupling to bioreactor in perfusion system 128
– floating membrane devices 138
– gravitational settlers 126–130
– hydrocyclones 131–134
– in perfusion bioreactors
– separation techniques employed for animal cell 127
– rotating cylindrical filters 140, 141
– rotating disc filters 141
– spin-filters 138–140
– tangential flow-filtration 134–136
– cell-specific perfusion rate (CSPR) 342, 343

CellTank 34, 341
– perfusion runs using 346
– prototype 341
cell viability 344
centrifugation 385
centrifugal separation 385
centrifugation
– centrifugal force and fluid-flow force, complete balance 389
– continuous single-use centrifugation integrated with CMCC/SPTFF 259
– separation by 385, 386
– single-use 387
charge–charge interaction 15
chemical-based drug 358
Chinese hamster ovary (CHO) cell lines 115, 340
cellulose 3
cell viability 344
cell bank 117
cell culture process 75, 116, 155, 163, 367, 375, 377, 389, 462, 463
– batch 462
– continuous 458, 463
– fed-batch 482
– upstream 458
cell culture strategies 166
– decline 468
downstream process challenges of high cell density cultures 386, 387
– high 135, 344, 347, 466, 482
– steady-state 122
– viable 121, 342, 344, 350, 351
Celligen bioreactors 216
cell line development 366
cation exchanger 4, 16
Cellbag™ 340
cell viability 344
chemically functionalized membrane 16
chemical-functionalized membrane 16
chemical-based drug 358
Chinese hamster ovary (CHO) cell lines 115, 340
cellulose 3
cell viability 344
cell viability 344
cell viability 344
cell viability 344
charge–charge interaction 15
chemical-based drug 358
Chinese hamster ovary (CHO) cell lines 115, 340
cellulose 3
cell viability 344
chemically functionalized membrane 16
chemical-functionalized membrane 16
chemical-based drug 358
Chinese hamster ovary (CHO) cell lines 115, 340
cellulose 3
cell viability 344
cell viability 344
cell viability 344
cell viability 344
charge–charge interaction 15
chemical-based drug 358
Chinese hamster ovary (CHO) cell lines 115, 340
cellulose 3
cell viability 344
chemically functionalized membrane 16
chemical-functionalized membrane 16
chemical-based drug 358
Chinese hamster ovary (CHO) cell lines 115, 340
cellulose 3
cell viability 344
cell viability 344
cell viability 344
cell viability 344
charge–charge interaction 15
chemical-based drug 358
Chinese hamster ovary (CHO) cell lines 115, 340
cellulose 3
cell viability 344
chemically functionalized membrane 16
chemical-functionalized membrane 16
chemical-based drug 358
Chinese hamster ovary (CHO) cell lines 115, 340
cellulose 3
cell viability 344
cell viability 344
cell viability 344
cell viability 344
charge–charge interaction 15
chemical-based drug 358
Chinese hamster ovary (CHO) cell lines 115, 340
cellulose 3
cell viability 344
cell viability 344
cell viability 344
cell viability 344
charge–charge interaction 15
chemical-based drug 358
Chinese hamster ovary (CHO) cell lines 115, 340
chlorhexadine 411
Chroma-Con (CaptureSMB process) 236
chromatographic breakthrough (BT) curves 232
chromatography techniques
– four-column 50
– global chromatography market 56, 57
– hydophobic interaction chromatography (HIC) 16, 41, 97, 99, 112, 237, 379
– IE-SMB 20–22
– ion exchange chromatography (IEC) 2
– membrane chromatography device 412
– periodic countercurrent 143
– reverse phase 243
– semicontinuous 436, 437
– simulated moving bed (SMB) chromatography 2, 195, 198, 235, 260
used in downstream purification of biomolecules 55, 56
classic steady-state countercurrent chromatography 260
clean-in-place (CIP) operation 117, 234, 235
CMCC. see continuous multicolumn chromatography (CMCC)
compounded annual growth rate (CAGR) 53
computational fluid dynamics (CFD) model 130, 139–141
geometry selected using 142–144
simulations 139, 141
contaminants 1, 21, 26, 280, 379, 386, 408, 410–412, 426
continuous animal cell perfusion processes. see perfusion processes
continuous biomanufacturing 194
– biopharmaceutical manufacturing practices
– potential impact of continuous processing on 490–492
environmental objectives 213
GMP facilities 210
multicolumn countercurrent chromatography in 251, 252
new manufacturing goals and considerations 209
potential benefits 210, 211
– single-use 205–213
– potential in next-gen products 212
– ThermoTM ScientificTM BioProcess Container assembly 208
continuous chromatography system 48
– shared and segregated flow paths 49
– vs. traditional batch processing methods 58
continuous disposable systems 340
continuous flow centrifugation 218–220
for Biological Production (BioSMB) 260–263
continuous processing (CP) 183, 184
– in biomanufacturing (see continuous processing in biomanufacturing)
– in biopharmaceutical manufacturing, difficulties 184
– challenges in adoption of 190–193
– EMA guidelines 187
– exploiting values of single-use technology 187
– impact to reducing tank volumes and reduction in capital avoidance 294
– obstacles for implementation for biopharmaceuticals 485–487
– potential advantages in 187
– ease in process development 188
– improved product quality 187, 188
– improved scalability 188
– increased profitability 189, 190
– sustainability 190
– potential impact on process economics 487–490
– process analytical tools for multicolumn 252, 253
– quality by design 187
– rationale for 483–485
– single-use revolution to enable process intensification and 256–260
– values for pharmaceutical manufacturing 185, 186
– verification (CPV) 206
continuous processing in biomanufacturing
– approved biopharmaceutical products produced by continuous cell culture 459
– brief history 458, 459
– challenges for implementing 462, 463
– opportunities for 459
– better product quality 462
– compact and flexible facilities 461
– higher process efficiencies 461
– higher process yields 459–461
– stable and consistent production 462
– process characterization/validation
– complexity of a scale-down model for perfusion process 474, 475
– process optimization/characterization for perfusion process 475
– process validation 475
– process complexity 463
– cell retention 463–466
– high cell density 466, 467
– longer run times 467–470
– process consistency/control 473, 474
– process scalability 470
– process scale-up 471, 472
– scale and capacity limitations 470, 471
continuous quality verification (CQV) 185, 206
controlled gene expression 358
controlled-shear affinity filtration (CSAF) concept 143
CP. see continuous processing (CP)
CPP. see critical process parameter (CPP)
CQAs. see critical quality attributes (CQAs)
CQV. see continuous quality verification (CQV)
critical process parameter (CPP) 193, 195, 359, 378

critical quality attributes (CQAs) 359

– based approach 357

– assessment of product quality and 366

– based clone 366

– selection/upstream process development 365, 366

– biologics, factors affecting 366

– expression host and recombinant cell line 366, 367

– process related 367

– cell line changes, and 370

– in formulation and stability 381

– formulation and quality attributes 381

– stability and quality attributes 382

– incomplete processing, of signal sequences and 373, 374

– protein production host and 368–369

– cell line changes 370

– host cell line and clone selection criteria 370–371

– in purification and formulation 379

– downstream processing 379–380

– major challenges, for monoclonal antibody manufacturing 379

– sequence variants identification by 371–373

– cross-flow filtration (CFF) 198

– cryopreservation 119, 187, 205, 340, 350–354

– culture media 116, 142, 166, 205, 207, 211, 415, 442, 443, 458

– cyclic steady state “fingerprint” 252

– cytokines 166, 358

– evolution 259

– manufacturing schedules 37

– need for continuous manufacturing in 56–58

– timeline for batch production process 482

– transformation, to continuous processing 259

– unit operations and their availability in a disposable/single-use format 44

– with varying degree of multicolumn countercurrent process implementation 250

– Drosophila S2 system 165

– S2 expressed proteins 166

DSP, see downstream purification processes (DSP)

eight-column affinity adsorption 262

– chronogram 262

– electrostatic interaction 4

– endotoxins 71, 411, 412

– Escherichia coli 1, 115, 297

– ethylene-vinyl acetate (EVA) 404

– expanded bed adsorption/desorption of protein 10–13

– expanded bed adsorption (EBA) technology 1, 2, 10

– expanded bed, modeling of 13–15

– expanded bed technology, protein capture by 3

extracapillary space (ECS) 217

failure mode and effect analysis (FMEA) principles 50

fed-batch processes 115

– bioreactor and tanks in 117

– fermentation 169–171, 438

– advancements in 257

– broth 78

– continuous 237, 251

– self-cycling 313

– fermentor 412

– filter membrane polymers 411

– filter pore size 409

– filter process validation 409

– filtration technologies 386, 406–413

– category 386

– fine purification 280, 281, 284

– cation exchange elution zone considerations 285, 287

– cation exchange loading zone optimization 284, 285

depth-flow filtration (DFF) 221

desorption kinetic constants

– determination of 104

– diethylaminoethyl (DEAE) 4

– disk stack centrifuges 76

– disposable

– continuous processing 44–46

– filter capsules 408

– and single-use bioprocessing technologies 44

downstream purification processes (DSP) 36, 84, 255, 291, 441

– basic steps, mAb production platform 72

– batch-based processing time with linear processing 257

– biomolecules, chromatography techniques 55, 56

– costs 54, 55
– effect of sample loading amount on 281, 283
– effects of sample flow rate on 281
– scaling-up membrane chromatography for continuous processing 283, 284
flexible production platforms 418
– construction and design types 418–422
– process location and flow 422, 423
flow rate 409
formulation: continuous ultrafiltration 287–291
Fourier transform infrared (FTIR) methodology 410
future processing and facility requirements
– downstream technologies 426, 427
– facilities and process design 428–431
– process platform design 430
– single-use engineering and design 427, 428
– upstream technologies 424–426

i
iCellis bioreactors 216
IE-SMB chromatography 16, 20, 21
– gradient IE-SMB with open loop/closed loop
– operation modes 20
– process design for 20, 21
– salt gradient formations in 22
IgG production 344–346
industrial relevant cell lines 368
integrated continuous bioprocessing 36–39
integrated perfusion–purification processes 142–144
intermolecular forces 6
intraparticle diffusion rate 10
intraparticle diffusion resistance 10, 22
ion exchange chromatography (IEC) 2
ion exchangers 4
ion exchange (IEX) technique 97
isoelectric point 16

k
kSep6000 system 390
kSep system configuration 390–392
– automated recipe screen for concentrate 392
– chamber capacity determination 391
– comparable processing time, cell recovery, and viability 392
kSep technology 387–390
– automated concentration 395
– automated harvest clarification process 397
– efficient washing by 397
– harvest clarification reliability, and recovery 398
– harvest process 395
– mechanism 388
– media replacement 395
– no change in LDH release after 393
– perfusion process 393, 394
– separation of cells, from microcarriers 398, 399
– viability and recovery of cells 396
– virus productivity comparison 396

Index

– geometry suited for mammalian cell separation 132
– performance determined by 133
– properties perfusion devices 160
hydrogen bond interaction 4
hydrophobic interaction chromatography (HIC) 15, 16, 41, 97, 99, 112, 234, 237, 379
– rate-limiting step in 99
hydrophobic interactions 4, 16, 26, 97, 243

h
gap analysis 402
gas chromatography-mass spectrometry (GC-MS) methodology 410
gel filtration (GF) technique 97
generally recognized as safe (GRAS) 298
glycosylation variation 376
good manufacturing practice (GMP) 194, 207, 294, 405, 452

h
height equivalent to a theoretical plate (HETP) 9
HIC. see hydrophobic interaction chromatography (HIC)
high-performance liquid chromatography (HPLC) 9
hollow fiber media exchange 214, 215
hollow fiber perfusion bioreactors (HFPB) system 217
– cell culture 218
– fundamental characteristics 217
– posttranslational modifications 218
– reduction in both protein and DNA contamination 218
"homemade" adsorbents 3, 4
homogenous diffusion model 98
host cell line, and clone selection criteria 370–371
host cell proteins (HCPs) 71, 412
hybrid systems 202, 203
hydrocyclone 131, 133
– conventional showing primary and secondary vortices 132

k
kSep6000 system 390
kSep system configuration 390–392
– automated recipe screen for concentrate 392
– chamber capacity determination 391
– comparable processing time, cell recovery, and viability 392
kSep technology 387–390
– automated concentration 395
– automated harvest clarification proces 397
– efficient washing by 397
– harvest clarification reliability, and recovery 398
– harvest process 395
– mechanism 388
– media replacement 395
– no change in LDH release after 393
– perfusion process 393, 394
– separation of cells, from microcarriers 398, 399
– viability and recovery of cells 396
– virus productivity comparison 396
Laboratory of Separation and Reaction Engineering (LSRE) 2
Langmuir binary isotherm, modified competitive 98
large-volume three-dimensional bags 404
Lean Six Sigma 51
ligand
– binding 98
– of Streamline DEAE 8
lipopolysaccharide 300
liquid filtration, separation mechanisms in 410
Listeria monocytogenes 298
loading zone 260
– on BioSMB, protein A capture using multiple columns 271
– cation exchange loading zone optimization 284, 285
– of CMCC 262, 263
– comparison, from batch chromatography 261
– effect optimizing 275
– permutations configuration 271
– protein A loading zone optimization 271
low-shear process 392, 393

mAbs. see monoclonal antibodies (mAbs)
mAb’s material attributes 359
mathematical model 99
– applications 109–112
– dimensional considerations 100
– experimentation 103–105
– Langmuir-type adsorption mechanism, for protein and aggregates 101
– adsorption/desorption kinetic constant parameters 105–107
– batch contact vs. equilibrium experiment data 107
– breakthrough profile for β-lactoglobulin 106
– conventional Langmuir-type kinetic experiment 102
– material balance of region 102
– rate of adsorption of monomer 101, 102
– reaction rate as a function of concentration adsorbed 105
– Reynolds number for flow in a packed bed 103
– model vs. experimental results 108, 109
– protein denaturation 107, 108
– rate-limiting step in HIC process 99

MCSGP, see multicolumn countercurrent solvent gradient purification chromatography system (MCSGP)
mechanically agitated suspension reactors 213, 214
membrane chromatography device 412
microcarriers 398
separation of cells from 398
microfiltration 76, 135, 327, 340, 411
mixing hardware 406
monoclonal antibodies (mAbs) 36, 71
– bulk purification 270–280
– capture case studies 82, 232
– continuous protein A chromatography capture 82, 83
– effect of clarification method on protein A performance 83, 84
– compounded annual growth rate 53
– continuous downstream processing for unit operation development 263–265
– block flow diagram 264
– surge vessels and balancing flows 265
– continuous multicolumn chromatography
– BioSMB protein A capture and viral inactivation 270, 271
– cost of goods (CoGs) analysis 89, 90–92
– CQA identification and function of 365
– downstream purification process (DSP) 72
– evolutionary process 73
– QbD method, applications 73
– steps 72
– template process, main areas 72–74
– fine filtration 280–287
– formulation: continuous ultrafiltration 287–291
– harvest and clarification 74
– centrifugation 76
– challenge and technology selection 74, 75
– filtration 76, 77
– impurity precipitation 76, 77
– heterogeneity 379
– pilot-scale demonstration of the integrated continuous process 291–293
– polishing 84–86
– complete flow-through polishing case study 87, 88
– technology selection strategy 86, 87
– traditional DSP vs. flow-through based approach 85
– primary capture from clarified cell culture 78
– chromatographic methods 79
– continuous chromatography 79–82
– protein A chromatography 78
Index

-- slurred bed methods 79
-- techniques 78
-- primary recovery 266–270
-- production platform process flow diagram 72
-- protein A affinity capture 236
-- protein A elution zone considerations 275–277
-- protein A loading zone optimization 271–275
-- surge vessels and balancing flows 265
-- therapies 71
-- typical batch production process of 481
multicolumn countercurrent solvent gradient purification chromatography system (MCSGP) 58, 59, 227, 229, 329
-- applications 236, 237
-- polishing 237–239
-- case study 243–247
-- complete cycle of 240
-- in continuous manufacturing 251, 252
-- designing 242, 243, 245
-- discovery and development applications 247, 248
-- impact on
-- biologic supply chains 62
-- chromatography market 64
-- patent approval structure of biologic drugs 62, 63
-- improving downstream processing of bispecific Mabs 61, 63
-- limitations of system 64
-- principle 239–241
-- process 39, 40, 227–230, 232, 236, 237
-- analytical tools for 252, 253
-- principle 234–236
-- as replacement for batch chromatography unit operations 249–251
-- scale-up of 249
-- start-up and steady state, for lysozyme purification 241
-- in value chain 61
-- vs. batch chromatography, in bispecific Mabs purification 61
multimodal ligand 6
multivariate data analysis (MVDA) system 292
mutation rate 303
myoglobin 16
-- breakthrough curves at various NaCl concentrations 18
-- competitive adsorption 18
-- diffusion coefficients 19
-- on Q-Sepharose FF anion exchanger resin 16, 17
-- salt gradient ion exchange SMB
-- constraints to net fluxes separation in 23
n
net present cost (NPC) 257
nonlinear equilibrium isotherm 16
nonwoven fiber matrix-based bioreactor. see CellTank
nucleic acids 1, 16, 71, 87, 135, 379

o
optimal downstream process
-- decision tree for selection 229
-- operations 481, 482
over-the-counter (OTC) products 35

p
packed bed (PB) bioreactors 215–217
-- commercialized reactors 216
particle imaging velocimetry (PIV) 141
particle size 6, 8, 14, 15, 77, 411
PAT. see process analytical technologies (PAT)
pellicular adsorbent/inert core adsorbent 9
perfusion culture 203, 204
-- manufacturing strategies 434–436
-- processes 221
perfusion processes 116, 117, 342
-- ATF/TFF in wave-induced bioreactor 342–353
-- bioreactor and tanks in 117
-- cell banking 117–119
-- cost comparison 156, 157
-- culture conditions 120–125
-- inoculum development 117–119
-- SDS-PAGE analysis 144
periodic countercurrent chromatography 143
pharmaceutical use isolator technology 413
pilot-scale demonstration of the integrated continuous process 291–293
polyamide 411
polydiallyldimethylammonium chloride (pDADMAC) 77
polyester (PE) 404
polymeric materials 408
precipitating agents 77
precipitation 75, 77, 83, 98, 143, 326, 327, 379
preferential interaction theory 98
preservatives 411
pressure/temperature conditions 409
process analytical technologies (PAT) 36, 184, 185, 235, 292, 293, 376
process complexity 115
product and component, transfer 413–415
– clamshell around a blast freeze bag 415
product batch, in continuous manufacturing 252
productivity gain 257
product-related impurities 71
Protein A 236
proteins
– capture, by expanded bed technology 3
– monomer/aggregate purification, modeling of 97
– production host, and CQA 368, 369
– purification processes 257
– retention, on ionic surface of adsorbent 4
– separation and purification 1
– by salt gradient ion exchange SMB 15, 16
Pseudomonas aeruginosa 299
purification technologies 406–413

q
Q-Sepharose FF 16
quality-by-design (QbD) 36, 360
– approach, steps 360
– components 360
– initiatives 433
– key steps for implementation 361

r
real-time release (RTR) 206
recombinant biopharmaceuticals 115
recombinant DNA technology 358, 458
recombinant mAbs 71
recombinant proteins 36
recombinant strains 299
recombinant therapeutic proteins 116, 368
regulatory aspects 47–50
– cGMP guidance 48
– FMEA principles 50
– improved process development 48
– Quality by Design and Process Analytical Technologies 48
– US FDA guidelines 47
repetitive elution peaks
– for a four-column chromatography process 49
RepliGen’s ATF™ System 214
reversed-phase chromatography (RPC) 16
reversed-phase high-performance liquid chromatography (RPHPLC)
methylation 410
roller bottle systems 213

s
salt gradient formation 20, 21
salt gradient IE-SMB chromatography 16, 21
– proteins separation and purification in 15, 16, 24
– with open loop configuration 24–26
– separation region 21–24
sanitization agents 413
scalable perfusion technologies 167
seeding process 161, 162
– cell culture results
– using CELL-tainer® expansion set 161, 162
– growth rates in 162
– for mammalian cell culture 161
semicontinuous chromatography 436, 437
sequence variants identification by CQA 371–373
settlers
– gravitational settlers 126, 128
– inclined lamella settler 128
– laboratory-scale lamella settler system 129
– vertical settler 128
sieve retention 410
simulated moving bed (SMB)
– chromatography 2, 198, 235, 260, 329
– eight-column four-zone 231
– simulation tool structure 439
– single-pass tangential-flow filtration (SPTFF) 259
– single-use and hybrid perfusion-type culture enabling products 195
– single-use bags system 402, 403, 414
– advantage 403
– benefit of noncontact stirring 405
– good manufacturing practice 405
– large volume to small volume transfer 403
– mixing or agitation process activities 405
– preassembled and sterilized by 404
– process validation 405
– process validation studies 404
– qualification tests 404
– single-use bioprocessing components 197
– commercially available upstream 197
– single-use bioreactor (SUB) 155, 158, 194, 197
– advantages 155
– companies 197, 198
– cost reduction 155–157
– limitation 155
– single-use centrifugation 387
– single-use components existent, immature, and trends 402
– single-use concepts
– in tangential-flow filtration (TFF)/cross-flow applications 413
 single-use equipment 155
 single-use final filling systems 417, 418
 single-use liquid hold 402
 single-use mixing systems 406
 – benefits 406
 single-use perfusion process 157
 – disposable bioreactor oxygen transfer coefficient \((k_L a) \) 157–159
 – as function of cell density at different specific oxygen uptake rates 158
 – equipment requirements for 157–159
 – properties perfusion devices 160
 – simplified seeding process 161, 162
 – testing results 159, 161
 single-use revolution, to enable process intensification and continuous processing 256–260
 single-use systems 196, 197, 198
 – coordinated implementation, with appropriate control 211
 – example 202
 – requirements, sponsors identified 199
 single-use (SU) technology 196
 – benefits with disposable components 256
 – connections/disconnections 415, 416
 – developments 196
 – gap analysis 200
 – key elements 415
 – reliability of 402
 – threats caused the design 411
 – vs. stainless steel facility economics for production of monoclonal antibody 256
 – welding thermoplastic tubing 416
 – single-use TFF cassettes and devices 413
 size exclusion (gel filtration) chromatography (SEC) 15, 87, 231
 size exclusion–simulated moving bed (SE-SMB) chromatography 16
 SMB technology 16
 staphylococcal enterotoxin B (SEB) 100
 static binding capacity (SBC) 232
 static capacity 98
 stationary phase 2, 99
 steam sterilization 408
 sterilizing-grade filters 408, 409, 411
 sterilizing-in-place (SIP) operation 117
 stirred tank bioreactor (STR) 213
 SUB. see single-use bioreactor (SUB)
surfactants 410

\textbf{t}

tingential-flow filtration (TFF) processing 77, 198, 339, 386
tingential-flow microfiltration (\(\mu \text{TFF} \)) 76
techic acids 300
ternal stability 410
ree-column capture process (3C-PCC) 235
ree-column equipment 236
tool description 438
– key inputs/outputs of decisional tool 438, 439
trifunctional antibodies 59
t-olumn CaptureSMB process 234, 235
t-olumn MCSGP process
 – complete cycle 240
 – phases 240
 – principle 239
t-olumn sequential loading process 237
two-column equipment 236
two packed bed bioreactors 217

\textbf{u}

ultrafiltration (UF) 340
ultrafiltration membrane 257
– structure 414
ultrasonic separators 221
upstream process (USP) 424
– characterization spaces 255
– impact on product quality attributes 374
 – bioreactor optimization and scale up 374–379
 – cell culture process operating parameters affecting 375
 – upstream process, tools used by 377
UV-based monitoring 252
UV signals 252

\textbf{v}

viruses 71

\textbf{w}

W-ATF bioreactor 340
WAVE BioreactorTM 340
wave D3TM separation technology 221
wave-induced bioreactors 339, 342
– perfusion run 342, 343
wave-induced disposable bioreactor 340
W-TFF bioreactor 340

\textbf{x}

Xcellerex XDR Single-Use Bioreactor 214