Contents

List of Contributors XI
Preface XV
A Personal Foreword XVII

Part One Principles 1

1 Bioisosterism in Medicinal Chemistry 3
 Nathan Brown
 1.1 Introduction 3
 1.2 Isosterism 3
 1.3 Bioisosterism 6
 1.4 Bioisosterism in Lead Optimization 9
 1.4.1 Common Replacements in Medicinal Chemistry 9
 1.4.2 Structure-Based Drug Design 9
 1.4.3 Multiobjective Optimization 12
 1.5 Conclusions 13
 References 14

2 Classical Bioisosteres 15
 Caterina Barillari and Nathan Brown
 2.1 Introduction 15
 2.2 Historical Background 15
 2.3 Classical Bioisosteres 17
 2.3.1 Monovalent Atoms and Groups 17
 2.3.2 Bivalent Atoms and Groups 17
 2.3.3 Trivalent Atoms and Groups 18
 2.3.4 Tetravalent Atoms 19
 2.3.5 Ring Equivalents 19
 2.4 Nonclassical Bioisosteres 20
 2.4.1 Carbonyl Group 20
 2.4.2 Carboxylic Acid 21
 2.4.3 Hydroxyl Group 22
 2.4.4 Catechol 22
5 Mining the Cambridge Structural Database for Bioisosteres 75
Colin R. Groom, Tjelvar S. G. Olsson, John W. Liebeschuetz, David A. Bardwell, Ian J. Bruno, and Frank H. Allen

5.1 Introduction 75
5.2 The Cambridge Structural Database 76
5.3 The Cambridge Structural Database System 78
5.3.1 ConQuest 78
5.3.2 Mercury 78
5.3.3 WebCSD 79
5.3.4 Knowledge-Based Libraries Derived from the CSD 80
5.4 The Relevance of the CSD to Drug Discovery 83
5.5 Assessing Bioisosteres: Conformational Aspects 84
5.6 Assessing Bioisosteres: Nonbonded Interactions 86
5.7 Finding Bioisosteres in the CSD: Scaffold Hopping and Fragment Linking 91
5.7.1 Scaffold Hopping 91
5.7.2 Fragment Linking 92
5.8 A Case Study: Bioisosterism of 1H-Tetrazole and Carboxylic Acid Groups 94
5.8.1 Conformational Mimicry 94
5.8.2 Intermolecular Interactions 94
5.9 Conclusions 97
References 98

6 Mining for Context-Sensitive Bioisoteric Replacements in Large Chemical Databases 103
George Papadatos, Michael J. Bodkin, Valerie J. Gillet, and Peter Willett

6.1 Introduction 103
6.2 Definitions 104
6.3 Background 105
6.4 Materials and Methods 109
6.4.1 Human Microsomal Metabolic Stability 109
6.4.2 Data Preprocessing 109
6.4.3 Generation of Matched Molecular Pairs 110
6.4.4 Context Descriptors 111
6.4.4.1 Whole Molecule Descriptors 111
6.4.4.2 Local Environment Descriptors 112
6.4.5 Binning of ΔP Values 112
6.4.6 Charts and Statistics 112
6.5 Results and Discussion 113
6.5.1 General Considerations 123
6.6 Conclusions 124
References 125
Part Three Methods 129

7 Physicochemical Properties 131
Peter Ertl
7.1 Introduction 131
7.2 Methods to Identify Bioisosteric Analogues 132
7.3 Descriptors to Characterize Properties of Substituents and Spacers 132
7.4 Classical Methods for Navigation in the Substituent Space 135
7.5 Tools to Identify Bioisosteric Groups Based on Similarity in Their Properties 136
7.6 Conclusions 138
References 138

8 Molecular Topology 141
Nathan Brown
8.1 Introduction 141
8.2 Controlled Fuzziness 141
8.3 Graph Theory 142
8.4 Data Mining 144
8.4.1 Graph Matching 144
8.4.2 Fragmentation Methods 145
8.5 Topological Pharmacophores 146
8.6 Reduced Graphs 149
8.7 Summary 151
References 152

9 Molecular Shape 155
Pedro J. Ballester and Nathan Brown
9.1 Methods 156
9.1.1 Superposition-Based Shape Similarity Methods 156
9.1.2 Superposition-Free Shape Similarity Methods 158
9.1.3 Choosing a Shape Similarity Technique for a Particular Project 160
9.2 Applications 161
9.3 Future Prospects 164
References 165

10 Protein Structure 167
James E. J. Mills
10.1 Introduction 167
10.2 Database of Ligand–Protein Complexes 168
10.2.1 Extraction of Ligands 168
10.2.2 Assessment of Ligand and Protein Criteria 169
13 Perspectives from Medicinal Chemistry 217
Nicholas A. Meanwell, Marcus Gastreich, Matthias Rarey, Mike Devereux, Paul L.A. Popelier, Gisbert Schneider, and Peter Willett

13.1 Introduction 217
13.2 Pragmatic Bioisostere Replacement in Medicinal Chemistry: A Software Maker’s Viewpoint 219
13.3 The Role of Quantum Chemistry in Bioisostere Prediction 221
13.4 Learn from “Naturally Drug-Like” Compounds 223
13.5 Bioisosterism at the University of Sheffield 224
References 227

Index 231